Resultados

6.1 Teste em Laboratório

Com o objetivo de se verificar os efeitos reais da variação do *tap* de um transformador com *tap* variável, para cada sentido do fluxo de potência através do mesmo, foram realizados ensaios em laboratório com um transformador de 1kVA, 220:220V (corrente nominal de 4,5A), sendo que, através de alteração do *tap* em ambos os lados é possível alterar a tensão de 220 para 190 ou 110V. Neste trabalho utilizou-se a configuração com 0,5kVA, 110:220V, alterando-se o *tap* no lado de alta para 190V em alguns ensaios.

Os ensaios consistiram na alimentação, de um dos lados do transformador, através de um Variac, e inserção gradativa de resistores no outro lado, anotandose tensão e potência da carga, em cada ponto de operação, de forma a se obter a curva ϕ constante no plano PV. Variação do *tap* e do sentido do fluxo de potência foram efetuadas, de forma a confirmar os resultados do modelo proposto apresentados no Capítulo 4.

6.1.1

Fluxo de Potência do Lado de Baixa para o Lado de Alta Tensão

Nessa situação, o lado de baixa tensão foi alimentado com tensão nominal (110 V), sendo inserida carga no lado de alta tensão gradativamente. Para cada inserção de carga foram anotados os valores da potência e da tensão na carga. Esse procedimento foi realizado para os dois *taps* do transformador, ou seja, para as situações em que as relações de transformação são 110:190V e 110:220V. Na Figura 6.1 apresenta-se as duas curvas ϕ constante no plano PV, uma para cada valor de *tap*.

De acordo com a Figura 6.1, verifica-se que, aumentando-se o *tap* do transformador, o ponto de máximo carregamento varia de 1370 W para 1490 W. A partir de medições de correntes realizadas nos pontos de máximo carregamento, foi possível, também, obter a impedância equivalente da carga nesses pontos, tendo sido verificado que a mesma aumentou de 17,4 Ω para 18,4 Ω . É importante mencionar que, após a obtenção do ponto de máximo carregamento e de alguns pontos na região anormal, foi interrompido o teste, devido à crescente dissipação de potência no transformador desde vazio até curto-circuito.

6.1.2

Fluxo de Potência do Lado de Alta para o Lado de Baixa Tensão

Nesse caso, o lado de alta tensão foi alimentado com 220 V, sendo inserida carga no lado de baixa tensão gradativamente. Novamente, para cada inserção de carga foram anotados os valores da potência e da tensão na carga. Esse procedimento foi realizado para os dois *taps* do transformador, ou seja, para as situações em que as relações de transformação são 190:110V e 220:110V. Na

Figura 6.2 apresenta-se as 2 curvas ϕ constante no plano PV, uma para cada valor de *tap*.

Figura 6.2: Curvas ϕ Constante para Dois Valores de *Tap* Obtidas em Laboratório e com Fluxo de Potência do Lado de Alta para o Lado de Baixa Tensão

De acordo com a Figura 6.2, verifica-se que, diminuindo-se o *tap* do transformador, o ponto de máximo carregamento varia de 1022W para 1205W. A partir de medições de correntes realizadas nos pontos de máximo carregamento, foi possível, também, obter a impedância equivalente da carga nesses pontos, tendo sido verificado que a mesma aumentou de 10,4 Ω para 12,3 Ω .

Verifica-se, dessa forma, a partir dos testes em laboratório, que, tanto a impedância equivalente da carga no ponto de máximo carregamento, quanto à margem de estabilidade de tensão, variam quando o *tap* é alterado, independente do sentido do fluxo de potência, conforme modelo proposto, apresentado no Capítulo 4.

O modelo usual, que é utilizado pelos programas de fluxo de potência, informa que, dependendo do sentido do fluxo de potência, o ponto de máximo carregamento e a impedância equivalente da carga neste ponto podem ou não variar.

Não foi possível confirmar em laboratório a suposição de que o modelo usual pode fornecer informações incorretas sobre ações de controle de tensão na região anormal, devido à impossibilidade de se obter em laboratório todos os pontos da região anormal da curva ϕ constante. Essa impossibilidade se deve somente ao aquecimento crescente do transformador na medida em que a carga era inserida.

Oscilações de medições e imperfeições do transformador utilizado nos testes de laboratório são alguns dos fatores que não permitem que seja realizada comparação numérica entre os valores obtidos em laboratório com simulações do modelo usual de transformador com *tap* variável.

Outro aspecto relevante, que complicaria a comparação numérica, é que a corrente do transformador fica superior ao valor nominal (4,5A), a partir do terceiro ponto da curva apresentada na Figura 6.1, para a situação 110:220V, e a partir do quarto ponto da curva, para *tap* a situação 110:190V. Em relação à Figura 6.2, a corrente do transformador fica superior ao valor nominal, a partir do oitavo ponto, para a situação 220:110V, e a partir do nono ponto da curva, para a situação 190:110V,

Além disso, ressalta-se novamente nesta tese, que uma máquina elétrica não é um circuito elétrico, por mais adequado e completo que seja o modelo. Assim, apesar de o modelo proposto ser mais preciso que o usual (de acordo com o que foi apresentado no Capítulo 4), ele é, ainda, uma aproximação, mesmo que não fossem desprezadas a impedância *shunt* e a variação das impedâncias série (incluindo as resistências) com o *tap*.

6.2 Simulações Computacionais

6.2.1 Sistemas Radiais

6.2.1.1 Sistema de 2 Barras

Na Figura 6.3 é apresentado sistema de 2 barras utilizado nas simulações que quantificarão as informações apresentadas genericamente na Seção 4.5. O transformador situado entre as barras 1 e 2 possui impedância total sob condições nominais (a=1) igual a j0,2 p.u..

Figura 6.3: Sistema de 2 Barras

Na Figura 6.4 é apresentada comparação entre os modelos usual e proposto ao variar o *tap* do transformador do valor referente ao caso-base, a=1 p.u., para a=1.1 p.u.. Nessa simulação, a geração está na barra 1 ($\dot{V}_1 = 1 | \underline{0^\circ} p.u.$) e carga ($\cos \phi_{cte} = 0,92$ ind) na barra 2, de forma que o fluxo de potência flua da barra 1 para a barra 2.

Na Figura 6.5 também é apresentada comparação entre os modelos usual e proposto. Nessa situação, entretanto, gerador está na barra 2 ($\dot{V}_2 = 1 | \underline{0^{\circ}} p.u.$) e carga na barra 1 ($\cos \phi_{cte} = 0,92$ ind), de forma a se inverter o sentido do fluxo de potência. Nesse caso, o *tap* foi reduzido de seu valor base, a=1 p.u., para a = 0,9 p.u..

Analisando-se as Figuras 6.4 e 6.5, verifica-se que quando o *tap* é nominal, as curvas obtidas pelos modelos usual e proposto são as mesmas, uma vez que

86

quando a=1 os valores das impedâncias dos circuitos apresentados nas Figuras 3.4 e 4.4 são iguais, conforme Figura 4.5. Observa-se, também, que em p.u. as curvas para *tap* nominal são as mesmas, independente do sentido do fluxo de potência, uma vez que os circuitos elétricos em p.u. são os mesmos.

Para *tap* diferente do nominal, observa-se nessas figuras, que as tensões obtidas pelos modelos usual e proposto nos pontos de máximo carregamento são iguais para cada sentido do fluxo de potência, valendo 0,66 p.u. para fluxo da barra 1 para a barra 2, e 0,67 p.u. para fluxo inverso. Os valores das tensões são próximos porque os valores dos *taps* para diferentes sentidos do fluxo são quase inversos. Se os valores dos *taps* fossem exatamente inversos ($a_{12}=1/a_{21}$), ao se inverter o sentido do fluxo, as tensões seriam idênticas para ambos modelos, independente do sentido do fluxo de potência. No Apêndice V é detalhada esta questão, apresentando-se, inclusive, como poderiam ser calculados os valores das tensões.

Ainda para *tap* diferente do nominal, no que diz respeito à potência no ponto de máximo carregamento, para sentidos diferentes do fluxo de potência, valores diferentes são obtidos pelo modelo usual, o que pode ser observado comparando-se a Figura 6.4 com a Figura 6.5. Para fluxo da barra 1 para a barra 2, o ponto de máximo carregamento vale 2,17 p.u.. Invertendo-se o sentido do fluxo, o ponto de máximo carregamento vale 1,8 p.u.. Para o modelo proposto, todavia, para fluxo de potência da barra 1 para a barra 2, o ponto de máximo carregamento vale 1,8 p.u.. Para o modelo proposto, todavia, para fluxo de potência da barra 1 para a barra 2, o ponto de máximo carregamento vale 1,96 p.u.. Invertendo-se o fluxo de potência, tem-se um máximo carregamento de 1,99 p.u.. Se os valores dos *taps* fossem exatamente inversos $(a_{12}=1/a_{21})$, ao se inverter o sentido do fluxo, os pontos de máximo carregamento seriam idênticos para o modelo proposto, independente do sentido do fluxo de potência, uma vez que os circuitos seriam simétricos para cada caminho da corrente elétrica, segundo o modelo proposto do transformador de *tap* variável, apresentado na Figura 4.3.

Figura 6.4: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 1 para Barra 2

Figura 6.5: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 2 para Barra 1

Nas Tabelas 6.1, 6.2, 6.3 e 6.4 são apresentados valores de tensões, potências e margens de estabilidade de tensão referentes aos casos-base (A e B) e o efeito da alteração do *tap* do transformador nos valores dessas grandezas para os modelos usual e proposto, em função do sentido do fluxo de potência, para carga potência e impedância constante. Análise qualitativa foi apresentada na Seção 4.5.

Tabela 6.1: Grandezas Referentes ao Caso-Base (A) e Comparação entre os Modelos Usual e Proposto ao Alterar o *Tap* para 1.1 p.u., com Fluxo de Potência da Barra 1 para a Barra 2

Ponto de Operação	Caso B	Base (A)	Model	o Usual	Modelo Proposto	
Modelo de Carga	S cte	Z cte	S cte	Z cte	S cte	Z cte
Tensão (p.u.)	0,71	0,71	0,89	0,78	0,84	0,75
S (p.u.)	1,70	1,70	1,70	2,05	1,70	1,91
S max (p.u.)	1,80	1,80	2,17	2,17	1,96	1,96
M (p.u)	0,10	0,10	0,47	0,12	0,26	0,05

A partir da Tabela 6.1, pode ser calculado que, para o modelo usual com carga potência constante, a tensão aumenta 25%, o ponto de máximo carregamento 21% e a margem 370%, em relação ao caso-base. Já para o modelo proposto, a tensão aumenta 18%, o ponto de máximo carregamento 9% e a margem de estabilidade de tensão 160%.

Ainda em relação à Tabela 6.1, para o modelo usual com carga impedância constante, a tensão aumenta 10% e a margem 20%, em relação ao caso-base. Para o modelo proposto, a tensão aumenta 6% e a margem diminui 50%. Os pontos de máximo carregamento independem do modelo de carga, conforme a teoria estabelece [42], sendo obtidas as mesmas variações percentuais em relação ao caso-base, apresentadas no parágrafo anterior.

Tabela 6.2: Grandezas Referentes ao Caso-Base (B) e Comparação entre os Modelos Usual e Proposto ao Alterar o *Tap* para 1.1 p.u., com Fluxo de Potência da Barra 1 para a Barra 2

Ponto de Operação	Caso B	Base (B)	Modelo Usual		Modelo Proposto	
Modelo de Carga	S cte	Z cte	S cte	Z cte	S cte	Z cte
Tensão (p.u.)	0,48	0,48	0,38	0,52	0,44	0,49
S (p.u.)	1,70	1,70	1,70	2,05	1,70	1,80
S max (p.u.)	1,80	1,80	2,17	2,17	1,96	1,96
M (p.u)	0,10	0,10	0,47	0,12	0,26	0,16

Da Tabela 6.2, pode ser calculado que, para o modelo usual com carga potência constante, a tensão diminui 21%, o ponto de máximo carregamento aumenta 21% e a margem aumenta 370%, em relação ao caso-base. Já para o modelo proposto, a tensão diminui 8%, o ponto de máximo carregamento aumenta 9% e a margem de estabilidade de tensão aumenta 160%.

Para o modelo usual, mas agora com carga impedância constante, a tensão aumenta 8% e a margem 20%, em relação ao caso-base. Para o modelo proposto, a tensão aumenta 2% e a margem 60%.

Tabela 6.3: Grandezas Referentes ao Caso-Base (A) e Comparação entre os Modelos Usual e Proposto ao Alterar o *Tap* para 0,9 p.u., com Fluxo de Potência da Barra 2 para a Barra 1

Ponto de Operação	Caso B	Base (A)	Modelo Usual		Modelo Proposto	
Modelo de Carga	S cte	Z cte	S cte	Z cte	S cte	Z cte
Tensão (p.u.)	0,71	0,71	0,78	0,72	0,86	0,75
S (p.u.)	0,70	1,70	1,70	1,77	1,70	1,93
S max (p.u.)	1,80	1,80	1,80	1,80	1,98	1,98
M (p.u)	0,10	0,10	0,10	0,03	0,28	0,05

A partir da Tabela 6.3, pode ser calculado que, para o modelo usual com carga potência constante, a tensão aumenta 10%, enquanto que o ponto de máximo carregamento e a margem de estabilidade de tensão não variam, em relação ao caso-base. Já para o modelo proposto, a tensão aumenta 21%, o ponto de máximo carregamento 10% e a margem de estabilidade de tensão 180%.

Ainda em relação à Tabela 6.3, para o modelo usual com carga impedância constante, a tensão aumenta 1% e a margem diminui 70%, em relação ao casobase. Para o modelo proposto, a tensão aumenta 6% e a margem diminui 50%.

Tabela 6.4: Grandezas Referentes ao Caso-Base (B) e Comparação entre os Modelos Usual e Proposto ao Alterar o *Tap* para 0,9 p.u., com Fluxo de Potência da Barra 2 para a Barra 1

Ponto de Operação	Caso Base (B)		Model	o Usual	Modelo Proposto		
Modelo de Carga	S cte	Z cte	S cte	Z cte	S cte	Z cte	
Tensão (p.u.)	0,48	0,48	0,53	0,46	0,43	0,49	
S (p.u.)	1,70	1,70	1,70	1,58	1,70	1,81	
S max (p.u.)	1,80	1,80	1,80	1,80	1,98	1,98	
M (p.u)	0,10	0,10	0,10	0,22	0,28	0,17	

Da Tabela 6.4, pode ser calculado que, para o modelo usual com carga potência constante, a tensão aumenta 10%, enquanto que o ponto de máximo carregamento e a margem de estabilidade de tensão não variam, em relação ao caso-base. Já para o modelo proposto, a tensão diminui 10%, o ponto de máximo carregamento aumenta 10% e a margem de estabilidade de tensão aumenta 180%.

Para o modelo usual, mas agora com carga impedância constante, a tensão diminui 4% e a margem aumenta 120%, em relação ao caso-base. Para o modelo proposto, a tensão aumenta 2% e a margem aumenta 70%.

Resumindo, se o fluxo de potência flui da barra 1 para a barra 2, as diferenças entre os modelos usual e proposto são quantitativas, como pode ser observado na Figura 6.4 e Tabelas 6.1 e 6.2. Por outro lado, de acordo com a Figura 6.5 e com as Tabelas 6.3 e 6.4, se o fluxo flui no sentido inverso, além das diferenças quantitativas, também podem ser notadas diferenças qualitativas, como no ponto de máximo carregamento, que só varia com o *tap* no modelo proposto, e nas diferenças das informações sobre ações de controle de tensão.

6.2.1.2

Sistema de 4 Barras

De forma a se ratificar as diferenças entre as modelagens usual e proposta, foram efetuadas simulações em um sistema elétrico de 4 barras, conforme apresentado na Figura 6.6. Ao contrário das situações anteriormente apresentadas, o transformador, que está entre as barras 2 e 3, não tem a tensão em um de seus terminais controlada por gerador. Para se verificar os efeitos da variação do sentido do fluxo de potência, o gerador pode estar na barra 1 ou na barra 4. A carga, por sua vez, estará em barra terminal oposta ao gerador. O transformador situado entre as barras 2 e 3 possui impedância total sob condições nominais (a=1) igual a j0,2 p.u..

Figura 6.6: Sistema de 4 Barras

Nas Figuras 6.7, 6.8 e 6.9 apresenta-se a comparação entre curvas ϕ constante no plano SV para os modelos usual e proposto, referentes as barras 4, 3 e 2, respectivamente, considerando-se que gerador foi inserido na barra 1 $(\dot{V}_1 = 1 | \underline{0^\circ} \text{ p.u.})$ e carga ($\cos \phi_{cte} = 0,92 \text{ ind}$) na barra 4, de forma que o fluxo de potência flua da barra 1 para a barra 4. O *tap* do transformador foi alterado do valor referente ao caso-base, a=1 p.u. para a=1,1p.u..

Figura 6.7: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 1 para Barra 4 / Curvas Referentes à Barra 4

Figura 6.8: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 1 para Barra 4 / Curvas Referentes à Barra 3

Figura 6.9: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 1 para Barra 4 / Curvas Referentes à Barra 2

Nas Figuras 6.10, 6.11 e 6.12 apresenta-se comparação entre curvas ϕ constante no plano SV para os modelos usual e proposto, referentes as barras 1, 2 e 3, respectivamente, considerando-se que gerador foi inserido na barra 4 $(\dot{V}_4 = 1 | \underline{0}^\circ \text{ p.u.})$ e carga ($\cos \phi_{cte} = 0,92$ ind) na barra 1, de forma que o fluxo de potência flua da barra 4 para a barra 1. O *tap* do transformador foi alterado do valor referente ao caso-base, a=1 p.u. para a=0,9 p.u.. Além das diferenças entre os valores das tensões informados pelos modelos usual e proposto, que aumentam com a carga, e dos pontos de máximo carregamento, é importante notar, na Figura 6.11, que informações sobre ações de controle de tensão fornecidas pelos dois modelos começam a ser diferentes em pontos posteriores ao ponto X assinalado.

Figura 6.10: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 4 para Barra 1 / Curvas Referentes à Barra 1

Figura 6.11: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 4 para Barra 1 / Curvas Referentes à Barra 2

Figura 6.12: Comparação entre os Modelos Usual e Proposto com Fluxo da Barra 4 para Barra 1 / Curvas Referentes à Barra 3

6.2.2 Sistemas Malhados

As curvas ϕ constante no plano *Carregamento Adicional* x *V* foram obtidas através de um algoritmo de fluxo de potência continuado [43]. Nas simulações apresentadas, o carregamento adicional é realizado em todas as barras com carga do sistema, mantendo-se constante o fator de potência. As expressões para os incrementos das potências ativa e reativa demandadas de cada barra com carga são:

 $P_{D_k} = P_{D_k}^0 (1 + Carregamento Adicional)$

 $Q_{D_k} = Q_{D_k}^0 (1 + Carregamento Adicional)$

O aumento da carga foi suprido apenas pelo gerador da barra de referência de ângulo de tensão. Não foram considerados os limites de geração de potência reativa das barras PV do sistema. Além disso, não foram alterados os *taps* dos transformadores, de forma a se controlar tensões. Apesar disso, diferenças são observadas entre os modelo usual e proposto porque alguns transformadores, dos diversos sistemas-teste utilizados nas simulações, possuem valor do *tap* diferente do nominal. A seguir serão apresentadas simulações realizadas em sistemas-teste do IEEE apresentados em [44].

6.2.2.1 Sistema IEEE 14 Barras

Nas Figuras 6.13 e 6.14 são apresentadas as curvas ϕ constante no plano *Carregamento Adicional x V* para as barras 5 e 6. Entre essas barras está um dos três transformadores com *taps* variáveis desse sistema-teste. Nessa simulação, considerou-se que a barra 6 é PQ. Podem ser observadas diferenças entre os valores de tensão, principalmente na medida em que o carregamento do sistema é aumentado e na região anormal de operação. Os pontos de máximo carregamento também são diferentes.

Figura 6.13: Comparação entre os Modelos Usual e Proposto / Barra 5 / IEEE14 Barras

Figura 6.14: Comparação entre os Modelos Usual e Proposto / Barra 6 / IEEE14

Barras

Importante notar na Figura 6.14 que, se o sistema opera na região anormal, com carregamento adicional de 0,8 p.u. e ocorre corte de carga, de forma que o carregamento adicional passe a valer 0,6 p.u., informações contrárias referentes ao comportamento da tensão são fornecidas pelos dois modelos. Ou seja, é informado que a tensão será elevada, utilizando-se o modelo usual, ou reduzida no caso do modelo proposto.

6.2.2.2 Sistema IEEE 118 Barras

O sistema IEEE 118 barras possui nove transformadores, sendo que dois deles não tem tensão controlada por gerador (transformador entre as barras 17 e 30 e transformador entre as barras 37 e 38). São apresentadas nas Figuras 6.15, 6.16, 6.17 e 6.18, as curvas ϕ constante no plano *Carregamento Adicional x V* para as barras 17, 30, 37 e 38, respectivamente.

Novamente são observadas diferenças entre os valores das tensões obtidos entre os modelos usual e proposto, principalmente na região anormal de operação, sendo também observada diferença entre os pontos de máximo carregamento. É importante observar que todos os pontos apresentados nas Figuras 6.15, 6.16 e 6.17 apresentam valores de tensão aceitáveis para operação de sistemas elétricos de potência.

Figura 6.15: Comparação entre os Modelos Usual e Proposto / Barra 17 / IEEE 118 Barras

Figura 6.16: Comparação entre os Modelos Usual e Proposto / Barra 30 / IEEE 118 Barras

Figura 6.17: Comparação entre os Modelos Usual e Proposto / Barra 37 / IEEE 118 Barras

Figura 6.18: Comparação entre os Modelos Usual e Proposto / Barra 38 / IEEE

118 Barras

Nas figuras anteriores observa-se que, se o sistema opera na região anormal, com carregamento adicional de 0,8 p.u. e ocorre pequeno corte de carga, informações contrárias referentes ao comportamento da tensão são fornecidas pelos dois modelos. Ou seja, é informado que a tensão será elevada, utilizando-se o modelo proposto ou reduzida no caso do modelo usual.

6.2.2.3 Sistemas IEEE 30, 57 e 300 Barras

Nas simulações anteriores, foram comparados perfis de tensão de barras terminais de transformadores, obtidos pelos modelos usual e proposto. Conforme mostrado nas Figuras 6.19, 6.20 e 6.21, o perfil de tensão de barras não terminais de transformadores com *taps* variáveis também são modificados quando se compara os modelos usual e proposto. Nessas situações, as maiores diferenças são observadas na proximidade do ponto de máximo carregamento.

Figura 6.19: Comparação entre os Modelos Usual e Proposto / Barra 30 / IEEE 30 Barras

Figura 6.20: Comparação entre os Modelos Usual e Proposto / Barra 31 / IEEE

57 Barras

Figura 6.21: Comparação entre os Modelos Usual e Proposto / Barra 9033 / IEEE 300 Barras

Controle de Tensão através de Transformador com Tap Variável

As curvas ϕ constante no plano *Carregamento Adicional* x *V* foram obtidas através de um algoritmo de fluxo de potência continuado com possibilidade de se controlar tensões de barras terminais ou remotas de transformadores através da variação de *tap* de transformador [41]. Se o *tap* atinge seu limite mínimo ou máximo, a barra cuja tensão estava sendo controlada muda seu tipo, de PQV para PQ. Porém, a cada carregamento posterior, ou iteração do método de Newton Raphson, é verificada a possibilidade de a barra voltar a ser PQV, através da avaliação do sinal do resíduo da tensão da barra de tensão controlada, como detalhado em [41].

Nas simulações apresentadas, o carregamento adicional é realizado em todas as barras com carga do sistema, mantendo-se constante o fator de potência. As expressões para os incrementos das potências ativa e reativa demandadas de cada barra com carga são as mesmas apresentadas na Seção 6.2.2.

O aumento da carga foi suprido apenas pelo gerador da barra de referência de ângulo de tensão. Foram utilizados sistemas IEEE, apresentados em [44], nos quais foram considerados os limites de geração de potência reativa das barras PV dos sistemas de 14, 57 e 118 barras. Para os sistemas IEEE 30 e 300 barras, os limites foram desprezados, conforme [45].

Os transformadores com *taps* variáveis com controle automático de *tap*, bem como as respectivas barras de tensão controladas (terminais ou remotas) escolhidos foram os mesmos de [45]. As tensões são controladas em 1 p.u. (exceto para o sistema de 300 barras), desde que o limite do *tap* não seja alcançado.

Como mencionado, alguns transformadores com *taps* variáveis dos sistemas-teste foram escolhidos para controlar tensões de barras terminais ou remotas. Apesar disso, os modelos de todos os transformadores com *taps* variáveis dos sistemas-teste são modificados quando o modelo proposto é usado, apresentando diferença em relação ao modelo usual se $a \neq 1$, ou seja, quando o valor do *tap* é diferente do nominal.

6.2.3.1 Sistema IEEE 14 Barras

Nesse sistema, o transformador com *tap* variável situado entre as barras 4 e 9 controla a tensão da barra 9. Através da Figuras 6.22 e 6.23, verifica-se que já no carregamento inicial, o limite mínimo do *tap*, de 0,9 p.u., é atingido, não sendo possível controlar a tensão da barra 9. Porém, com carregamento adicional em torno de 0,21 p.u., o *tap* do transformador fica na sua faixa normal de operação, sendo possível controlar a tensão da barra 9, até um carregamento adicional de aproximadamente 0,4 p.u., quando o *tap* atinge seu limite máximo, de 1,1 p.u.. A partir desse carregamento, a tensão da barra 9 não é mais controlada, devido ao fato de o limite do *tap* ter sido atingido. Na Figura 6.22, observa-se maiores diferenças nos valores das tensões obtidos pelos modelos usual e proposto nas proximidades do ponto de máximo carregamento e na região anormal. É possível notar, também, que o ponto de máximo carregamento utilizando-se o modelo proposto é inferior ao obtido via modelo usual.

Figura 6.22: Comparação entre os Modelos Usual e Proposto / Barra 9 / Controle de Tensão / IEEE 14 Barras

Figura 6.23: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 4 e 9 / Controle de Tensão / IEEE 14 Barras

6.2.3.2 Sistema IEEE 30 Barras

Os transformadores com *taps* variáveis situados entre as barras 6 e 9, 4 e 12, 6 e 10, 28 e 27, controlam as tensões das barras 9, 12, 24 (controle remoto) e 27 respectivamente.

Através das Figuras 6.24 e 6.25, verifica-se que a tensão da barra 9 é controlada até um carregamento adicional de aproximadamente 1,7 p.u., quando o *tap* do transformador com *tap* variável atinge valor máximo, sendo que, no modelo usual, a tensão não é controlada do carregamento inicial até aproximadamente 0,2 p.u., devido à violação do limite inferior do *tap*. A partir do carregamento adicional de aproximadamente 1,7 p.u., a tensão diminui até um valor mínimo no ponto de máximo carregamento, quando começa a aumentar, até um carregamento adicional de aproximadamente 1,1 p.u. quando a tensão volta a ser controlada uma vez que o *tap* do transformador volta a operar na faixa permitida de operação.

Analisando-se as Figuras 6.24 e 6.25, percebe-se diferenças entre os modelos usual e proposto nos pontos de máximo carregamento, nos carregamentos nos quais os limites dos *taps* são atingidos ou voltam à região de controlabilidade (podendo ser observados pontos de operação onde é informado que a tensão é controlada ou não, dependendo do modelo do transformador) e nos valores das tensões quando a barra deixa de ser controlada, para determinado carregamento.

Figura 6.24: Comparação entre os Modelos Usual e Proposto / Barra 9 / Controle de Tensão / IEEE 30 Barras

Figura 6.25: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 6 e 9 / Controle de Tensão / IEEE 30 Barras

Curvas similares às obtidas anteriormente são obtidas para a barra 12, conforme apresentado nas Figuras 6.26 e 6.27, com a diferença que, com ambos os modelos, não é possível controlar a tensão da barra 12 do carregamento inicial até carregamento adicional em torno de 0,2 p.u., devido à violação do limite mínimo do *tap* do transformador com *tap* variável.

Figura 6.26: Comparação entre os Modelos Usual e Proposto / Barra 12 / Controle de Tensão / IEEE 30 Barras

Figura 6.27: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 4 e 12 / Controle de Tensão / IEEE 30 Barras

Na Figura 6.28, observa-se que o transformador situado entre as barras 6 e 10 não controla a tensão da barra 24 para nenhum carregamento, uma vez que, desde o carregamento inicial é atingido o limite máximo do *tap* de 1,1 p.u., tanto para o modelo usual quanto para o modelo proposto. É possível observar as diferenças obtidas para os dois modelos no perfil de tensão das barras, que aumentam nas proximidades do ponto de máximo carregamento e na região anormal. Novamente, o ponto de máximo carregamento obtido através do modelo proposto é inferior ao valor utilizando-se o modelo usual.

Figura 6.28: Comparação entre os Modelos Usual e Proposto / Barra 24 /Controle de Tensão / IEEE 30 Barras

Através das Figuras 6.29 e 6.30, observa-se que o transformador situado entre as barras 28 e 27 controla a tensão da barra 27 até um carregamento adicional de aproximadamente 0,8 p.u., quando o *tap* do transformador atinge o valor máximo de 1,1 p.u.. A partir dessa violação de limite, a barra 27 permanece sem controle de tensão para todos os carregamentos adicionais. Além disso, observa-se diferenças entre os dois modelos no carregamento no qual o limite de *tap* do transformador é atingido, nos valores das tensões quando a barra deixa de ser controlada e no ponto de máximo carregamento.

Figura 6.29: Comparação entre os Modelos Usual e Proposto / Barra 27 / Controle de Tensão / IEEE 30 Barras

Figura 6.30: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 28 e 27 / Controle de Tensão / IEEE 30 Barras

6.2.3.3 Sistema IEEE 57 Barras

Neste sistema-teste, o transformador situado entre as barras 32 e 34 controla a tensão na barra 32, enquanto o transformador situado entre as barras 10 e 51 controla remotamente a tensão da barra 50.

Nas Figuras 6.31 e 6.32 observa-se que a tensão da barra 32 é controlada até o *tap* do transformador atingir seu limite máximo de 1,15 p.u.. A partir do ponto em que o limite máximo é atingido, a tensão dessa barra não volta mais a ser controlada. A partir das citadas figuras, diferenças podem ser observadas entre os modelos usual e proposto, como no carregamento no qual o *tap* máximo é atingido, nos valores diferentes das tensões para cada carregamento adicional e no ponto de máximo carregamento que, novamente, é inferior com o modelo proposto.

Figura 6.31: Comparação entre os Modelos Usual e Proposto / Barra 32 / Controle de Tensão / IEEE 57 Barras

Figura 6.32: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 32 e 34 / Controle de Tensão / IEEE 57 Barras

Com relação ao perfil da tensão da barra 50, ocorre situação semelhante à observada anteriormente, ou seja, é atingido o limite máximo do *tap* de 1,1 p.u. em um certo carregamento adicional e, a partir dessa violação, perde-se o controle da tensão, conforme observa-se nas Figuras 6.33 e 6.34. A partir dessas figuras, diferenças podem ser observadas entre os modelos usual e proposto.

Figura 6.33: Comparação entre os Modelos Usual e Proposto / Barra 50 / Controle de Tensão / IEEE 57 Barras

Figura 6.34: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 10 e 51 / Controle de Tensão / IEEE 57 Barras

6.2.3.4 Sistema IEEE 118 Barras

Nesse sistema-teste, o transformador situado entre as barras 37 e 38, controla a tensão da barra 38. A partir das Figuras 6.35 e 6.36, observa-se que o limite mínimo de 0,9 p.u. do *tap* do transformador é atingido quando o carregamento adicional vale aproximadamente 0,3 p.u., para os dois modelos de transformador. Observa-se que o ponto de máximo carregamento é inferior para o modelo proposto e que maiores diferenças nos valores das tensões são obtidos na região anormal, nas proximidades do ponto de máximo carregamento.

Figura 6.35: Comparação entre os Modelos Usual e Proposto / Barra 38 / Controle de Tensão / IEEE 118 Barras

Figura 6.36: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 37 e 38 / Controle de Tensão / IEEE 118 Barras

6.2.3.5 Sistema IEEE 300 Barras

O transformador situado entre as barras 9001 e 9006 do sistema-teste controla remotamente a tensão da barra 9003. Nas Figuras 6.37 e 6.38 observa-se as diferenças entre os modelos usual e proposto. Com os dois modelos, é atingido o limite máximo de 1,1 p.u. para carregamento adicional em torno de 0,028 p.u.. A partir dessa violação, a tensão da barra 9003 não volta a ser controlada.

Figura 6.37: Comparação entre os Modelos Usual e Proposto / Barra 9003 /

Controle de Tensão / IEEE 300 Barras

Figura 6.38: Comparação entre os Modelos Usual e Proposto / Transformador entre as Barras 9001 e 9006 / Controle de Tensão / IEEE 300 Barras

6.2.4 Sistemas Brasileiros

A seguir serão apresentadas simulações realizadas em sistemas brasileiros, de 16 e de 33 barras, elaborados em [46]. Os dados de barra, de linha e demais informações relevantes sobre a obtenção desses sistemas podem ser obtidos em [46] ou em [47]. Inicialmente, serão apresentados resultados de simulações nas quais os transformadores têm *taps* diferentes do valor nominal (a=1), não sendo efetuado controle de tensão. Posteriormente, os transformadores controlarão tensões de barras, através da variação do *tap*.

6.2.4.1

Sistema-Teste Brasileiro de 16 Barras

Figura 6.39: Sistema-Teste de 16 Barras

Na Figura 6.39 apresenta-se o diagrama do sistema-teste brasileiro de 16 barras, onde estão destacados os três transformadores cujos *taps* são diferentes do nominal, não sendo efetuado controle de tensão. Os demais transformadores desse sistema possuem *taps* nominais. Esse sistema-teste foi elaborado a partir de dados do sistema da Eletrobras Furnas da região Goiás/Brasília.

Nas Tabelas 6.5 e 6.6, apresentadas a seguir, tem-se relatório obtido de [43] para solução de fluxo de potência com carga pesada, utilizando o modelo usual de transformadores com *tap* variável.

Tabela 6.5: Relatório com Solução do Fluxo de Potência / Dados de Barra / Sistema-Teste Brasileiro de 16 Barras / Modelo Usual

Barra	Tipo	Tensão (p.u.)	Ângulo (graus)	PG(MW)	QG(MVAr)	PD (MW)	QD (MVAr)
001	PV	1.03000	2.46391	350.000	12.5386	0.00000	0.00000
002	PQ	1.02944	-0.37416	0.00028	0.00011	0.00000	0.00000
003	PQ	1.00468	-5.08197	0.00013	0.00029	47.0000	31.0000
004	PQ	1.04630	-7.20463	-0.0002	0.00011	106.000	70.0000
005	PQ	1.04599	-5.79773	0.00005	0.00005	31.0000	20.0000
006	PQ	1.03852	-2.80521	0.00011	0.00003	17.0000	12.0000
007	PQ	1.03978	-5.82662	0.00001	0.00002	15.0000	14.0000
008	PQ	1.03910	-7.78879	-0.0000	0.00004	39.0000	24.0000
009	PV	1.01000	-7.78879	0.00000	-23.513	0.00000	0.00000
010	PQ	0.97781	-9.51638	-0.0000	0.00002	42.0000	30.0000
011	PQ	0.98889	-9.39545	0.00001	0.00002	40.0000	28.0000
012	PQ	0.99918	-8.22682	-0.0000	0.00013	101.000	56.0000
013	PQ	0.99580	-8.63436	0.00003	0.00002	59.0000	34.0000
014	PQ	1.07288	-7.37928	-0.0002	0.00029	57.0000	39.0000
015	PQ	0.99426	-5.84790	0.00005	0.00002	0.00000	0.00000
016	VTETA	1.03000	0.00000	209.403	-29.993	0.00000	0.00000

Tabela 6.6: Relatório com Solução do Fluxo de Potência / Dados de Linha /

Sistema-Teste Brasileiro de 16 Barras / Modelo Usual

DE	PARA		I(A)	Fa	tivo	Fre	eativo	tap	Det	fasamei	nto
				(M	IW)	(1)	fVAr)	(p.u.)		(graus)	
001	002		3 75586	350	0000	12	53960	1 000		0 000	
002	001		3.75586	-35	0.000	4.8	30374	1.000		0.000	
000	000			175	0001		10102	1 000		0.000	
002	003		69.04537	-17	3 622	-4	1480	1 000		0.000	
005	002		02.10/11	-17	3.022	-70	.1405	1.000		0.000	
002	003		69.04537	175	.0001	-2.4	10182	1.000		0.000	
003	002		62.46714	-17	3.622	-70	.1489	1.000		0.000	
				1111							
003	012		32.07189	209	9.3021	-15	6666	1.000		0.000	
012	005		25.21004	-20	0.205	-10		1.000		0.000	
003	014		41.11614	57.	00024	42.4	45163	0.910		0.000	
014	003		37.41569	-57	.0002	-38	9997	0.910		0.000	
003	015		20.63582	16.	97175	-4.4	15679	1.000		0.000	
015	003		18.70279	-16	.9397	-25	8021	1.000		0.000	
003	015		20.63582	16.	97175	-4.4	15679	1.000		0.000	
015	003		18.70279	-16	.9397	-25	8021	1.000		0.000	
004	005		14.14467	-36	.0603	-10	. 4834	1.000		0.000	
005	004		14.06160	36.	14347	-18	.1236	1.000		0.000	
004	005		14.14467	-36	.0603	-10	4834	1.000		0.000	
005	004		14.06160	36.	14347	-18	1236	1.000		0.000	
004	1	015	47.246	48	-33.87	795	-49.0	1330.	1.090		0.000
015		004	51.498	66	33.879	952	51.60	429	1.090		0.000
005		006	17 006	20	102 2	000	16 24	727	1 000		0 000
005		008	16.423	69	103.80	176	-31.9	564	1.000		0.000
006		007	12.063	17	88.595	550	-20.5	821	1.000		0.000
007	1	006	12.439	60	-88.15	552	0.11	759	1.000		0.000
00.0		010	24 007		200	102	40 52	0.00	1 000		0.000
016		016	34.097	85	209.4	130	-79 0	935	1 000		0.000
ore		000	51.057		205.10		25.5		1.000		0.000
007		008	9.7705	в	73.155	527	-14.1	175	1.000		0.000
008		007	9.5184	1	-72.92	218	-3.24	274	1.000		0.000
10.00							-				
008		009	23.280	84 ¤4	0.000	000	24.19	114	1.000		0.000
005		000	23.200	JT	0.000	000	-23.3	130	1.000		0.000
010	1	008	48.448	68	-33.92	217	47.88	524	0.903		0.000
008		010	43.749	16	33.921	176	-44.9	483	0.903		0.000
010		011	40.958	23	-8.078	324	-58.7	628	1.000		0.000
UII		010	45.133	4/	8.109	16	-2.40	1055	1.000		0.000
011	1	012	41.819	05	-48.10	091	-54.9	3 62	1.000		0.000
012	1	011	45.704	12	48.215	534	-17.2	010	1.000		0.000
012	1	013	26.149	20	29.521	191	-10.0	661	1.000		0.000
013		012	24.068	46	-29.49	99	-31.8	742	1.000		0.000
012		013	26.149	20	29.521	191	-10.0	661	1.000		0.000
013		012	24.068	46	-29.49	999	-31.8	742	1.000		0.000

Nas Tabelas 6.7 e 6.8 apresentadas a seguir, tem-se os resultados obtidos utilizando-se o modelo proposto.

Tabela 6.7: Relatório com Solução do Fluxo de Potência / Dados de Barra / Sistema-Teste Brasileiro de 16 Barras / Modelo Proposto

Barra	Tipo	Tensão(p.u.)	Ângulo(graus)	PG (MW)	QG(MVAr)	PD (MW)	QD(MVAr)
001	PV	1.03000	2.32430	350.000	12,2570	0.00000	0.00000
002	PQ	1.02948	-0.51365	0.00027	0.00010	0.00000	0.00000
003	PQ	1.00479	-5.22111	0.00012	0.00028	47.0000	31.0000
004	PQ	1.04780	-7.21690	-0.0002	0.00012	106.000	70.0000
005	PQ	1.04695	-5.80560	0.00005	0.00005	31.0000	20.0000
008	PQ	1.03868	-2.80478	0.00011	0.00003	17.0000	12.0000
007	PQ	1.03936	-5.81513	0.00001	0.00002	15.0000	14.0000
008	PQ	1.03824	-7.77046	-0.0000	0.00004	39.0000	24.0000
009	PV	1.01000	-7.77046	-0.0000	-22.816	0.00000	0.00000
010	PQ	0.97996	-9.67654	-0.0000	0.00002	42.0000	30.0000
011	PQ	0.99036	-9.54694	0.00001	0.00002	40.0000	28.0000
012	PQ	0.99982	-8.37020	-0.0000	0.00013	101.000	56.0000
013	PQ	0,99645	-8.77723	0.00002	0.00002	59.0000	34.0000
014	PQ	1.06955	-7.76464	-0.0002	0.00025	57.0000	39.0000
015	PQ	0.99379	-5.97810	0.00006	0.00002	0.00000	0.00000
016	VTETA	1.03000	0.00000	209.401	-30.627	0.00000	0.00000

Tabela 6.8: Relatório com Solução do Fluxo de Potência / Dados de Linha / Sistema-Teste Brasileiro de 16 Barras / Modelo Proposto

DE	PARA	I(A)	F_ativo	F_reativo	tap	Defasamento
			(MW)	(MVAr)	(p.u.)	(graus)
001	002	3.48277	350.0000	12.25706	1.000	0.000
002	001	3.48277	-350.000	5.08438	1.000	0.000
002	003	68.94234	175.0001	-2.54214	1.000	0.000
003	002	62.37146	-173.623	-70.0280	1.000	0.000
002	003	68,94234	175.0001	-2.54214	1.000	0.000
003	002	62. <mark>3</mark> 7146	-173.623	-70.0280	1.000	0.000
003	012	30.67023	209.5544	-17.1278	1.000	0.000
012	003	27.96970	-208,509	-16.6395	1.000	0.000
003	014	45.66392	62.91637	47.27949	0.910	0.000
014	003	41.55416	-62.9163	-43.0476	0.910	0.000
003	015	21.10291	16.84621	-3.75709	1.000	0.000
015	003	19.10737	-16.8132	-26.4812	1.000	0.000
003	015	21.10291	16.84621	-3.75709	1.000	0.000
015	003	19.10737	-16.8132	-26.4812	1.000	0.000
004	005	14.27259	-36.1868	-9.74254	1.000	0.000
005	004	14.04714	36.27072	-18.9252	1.000	0.000
004	005	14.27259	-36.1868	-9.74254	1.000	0.000
005	004	14.04714	36.27072	-18.9252	1.000	0.000

004	015	44.71351	-30.9647	-46.5160	1.090	0.000
015	004	48.73773	30.96473	48.76993	1.090	0.000
005	006	19.24821	-103.541	17.85044	1.000	0.000
006	005	17.62148	104.0677	-33.5226	1.000	0.000
006	007	12.03709	88.33418	-19.6589	1.000	0.000
007	006	12.24552	-87.8974	-0.83637	1.000	0.000
006	016	34.71260	-209.401	41.18163	1.000	0.000
016	006	34.71260	209,4017	-30.6275	1.000	0.000
007	008	10.00820	72.89742	-13.1636	1.000	0.000
008	007	9.59421	-72.6657	-4.19123	1.000	0.000
008	009	22.59104	0.00000	23.45489	1.000	0.000
009	008	22.59104	0.00000	-22.8169	1.000	0.000
010	008	52.03465	-37.4762	51.61526	0.903	0.000
008	010	46.98729	37.47628	-48.1606	0.903	0.000
010	011	39.84970	-8.33432	-57.1605	1.000	0.000
011	010	43.88842	8.36187	-4.26578	1.000	0.000
011	012	40.97451	-48.3618	-53.1584	1.000	0.000
012	011	44.63080	48.46605	-19.1569	1.000	0.000
012	013	26.15087	29.52188	-10.1017	1.000	0.000
013	012	24.07159	-29.4999	-31.8935	1.000	0.000
012	013	26.15087	29.52188	-10.1017	1.000	0.000
013	012	24.07159	-29,4999	-31.8935	1.000	0.000

Os valores dos *taps* dos três transformadores destacados na Figura 6.39 são diferentes do nominal. Comparando-se as Tabelas 6.5 e 6.7, observa-se diferenças em todas as grandezas apresentadas. Nos módulos das tensões, verifica-se diferenças na segunda casa decimal de algumas barras, como a 11. Com relação aos ângulos das tensões, cita-se, como exemplo, o ângulo da tensão da barra 2, que vale -0,37°, utilizando-se o modelo usual, e -0,51°, utilizando-se o modelo proposto. Comparando-se as potências geradas, as maiores variações são observadas para potência reativa. Como exemplo, a potência reativa gerada pela barra 9 vale -23,51 MVAr, utilizando-se o modelo usual, e -22,81 MVAr, utilizando-se o modelo proposto.

Com relação às correntes e aos fluxos nas linhas de transmissão, diferenças também são observadas, comparando-se as Tabelas 6.6 e 6.8. Como exemplo, a corrente da barra 3 para a barra 14 vale 41,11 A, utilizando-se o modelo usual, e 45,66 A, utilizando-se o modelo proposto. O fluxo de potência ativa nessa linha vale 57,00 MW, utilizando-se o modelo usual, e 62,91 MW, utilizando-se o modelo proposto. O fluxo de potência reativa vale 42,45 MVAr, utilizando-se o modelo usual, e 47,27 MVAr, utilizando-se o modelo proposto

Na Figura 6.40 mostra-se curvas referentes ao algoritmo de fluxo de potência continuado [43], comparando-se os modelos usual e proposto de transformador com *tap* variável. Observa-se maior diferença entre os modelos nas proximidades do ponto de máximo carregamento e na região anormal de operação.

Figura 6.40: Comparação entre os Modelos Usual e Proposto / Barra 4 / Sistema-Teste Brasileiro de 16 Barras

Nas Figuras 6.41 e 6.42, apresenta-se o número de iterações para ser obtido cada ponto das curvas do fluxo de potência continuado apresentado na Figura 6.40, através dos modelos usual e proposto, respectivamente. Verifica-se que o número de iterações necessárias para se obter cada ponto das curvas apresentadas na Figura 6.40 é praticamente o mesmo utilizando cada modelo de transformador, havendo diferenças em poucos pontos.

Figura 6.41: Número de Iterações para Obtenção de cada Ponto do Fluxo de Potência Continuado / Modelo Usual / Sistema-Teste Brasileiro de 16 Barras

Figura 6.42: Número de Iterações para Obtenção de cada Ponto do Fluxo de Potência Continuado / Modelo Proposto / Sistema-Teste Brasileiro de 16 Barras

6.2.4.2 Sistema-Teste Brasileiro de 33 Barras

Esse sistema, como detalhado em [46] e [47], foi elaborado a partir de dados extraídos da malha de 500kV da região Sul do Brasil, acoplado com um trecho em 230kV, formando um anel. A escolha deste sistema se deve às suas características topológicas de um arranjo todo malhado que interliga as usinas da região, formando um sistema de transmissão robusto. Na Figura 6.43 apresenta-se o diagrama desse sistema, destacando-se os trechos onde há transformadores cujos *taps* são diferentes do nominal, não sendo efetuado controle de tensão. Os demais transformadores desse sistema possuem valores dos *taps* nominais. Por simplificação, não são indicados no diagrama os trechos onde há transformadores em paralelo, estes, inclusive, com valores de impedâncias e *taps* diferentes.

Figura 6.43: Sistema-Teste de 33 Barras

Nas Tabelas 6.9 e 6.10 é apresentado o relatório obtido do algoritmo para solução de fluxo de potência [43], utilizando o modelo usual de transformadores com *tap* variável.

Barra	Tipo	Tensão (p.u.)	Ângulo(graus)	PG(MW)	QG(MVAr)	PD (MW)	QD(MVAr)
001	VTETA	1.01000	0.00000	913.254	-249.517	0.00000	0.00000
002	PV	1.02000	10.4674	1000.00	45.00280	0.00000	0.00000
003	PQ	1.01894	4.64871	1000.00	-400.000	0.00000	0.00000
004	PQ	0.96183	-19.801	0.00000	0.00000	680.000	130.000
005	PQ	1.06762	-5.5741	-0.0000	0.00000	0.00000	0.00000
006	PQ	0.98282	2.60381	0.00000	-0.00000	0.00000	0.00000
007	PQ	0.89689	-0.7995	0.00000	0.00000	150.000	32.0000
008	PQ	0.94382	4.07133	0.00000	0.00000	90.0000	17.0000
009	PQ	1.06516	-0.9030	-0.0000	0.00000	0.00000	0.00000
010	PQ	1.05433	-17.768	-0.0000	0.00000	0.00000	0.00000
011	PQ	1.08713	3.90123	-0.0000	-0.00000	0.00000	0.00000
012	PQ	1.09184	4.84344	-0.0000	0.00000	0.00000	0.00000
013	PQ	1.02421	7.70395	0.00000	-0.00000	0.00000	0.00000
014	PQ	1.02962	-6.8714	400.000	-475.000	0.00000	0.00000
015	PV	1.02000	-2.3730	400.000	-178.357	0.00000	0.00000
016	PQ	0.99721	15.8191	700.000	220.0000	0.00000	0.00000
017	PV	1.02000	7.49344	800.000	125.2008	0.00000	0.00000
018	PQ	1.06914	-5.8689	-0.0000	0.00000	0.00000	0.00000
019	PQ	0.97742	-5.4137	0.00000	-0.00000	235.000	57.0000
020	PQ	1.08665	-21.035	-0.0000	-0.00000	0.00000	0.00000
021	PQ	1.00776	-22.854	0.00000	0.00000	940.000	50.0000
022	PQ	1,11216	-12.450	-0.0000	0.00000	0.00000	0.00000
023	PQ	1.05580	-18.288	-0.0000	0.00000	0.0000	0.00000
024	PQ	0.94196	-20.673	0.00000	0.00000	790.000	330.000
025	PQ	1.11274	-18.935	-0.0000	0.00000	0.00000	0.00000
026	PQ	1.03113	-20,919	0.00000	0.00000	700.000	49.0000
027	PQ	1.09474	-21.063	-0.0000	0.00000	0.00000	0.00000
028	PQ	1.10176	-10.010	-0.0000	0.00000	0.00000	0.00000
029	PQ	1.10418	-10.809	-0.0000	0.00000	0.0000	0.0000
030	PQ	1.03289	8.74083	0.00000	0.00000	0.00000	0.00000
031	PQ	1.08813	0.72844	-0.0000	0.00000	0.00000	0.00000
032	PQ	0.99184	-23.160	0.00000	0.00000	1100.00	400.000
033	PQ	0.97955	2.21733	0.00000	-0.00000	400.000	125.000

Tabela 6.9: Relatório com Solução do Fluxo de Potência / Dados de Barra / Sistema-Teste Brasileiro de 33 Barras / Modelo Usual

Tabela 6.10: Relatório com Solução do Fluxo de Potência / Dados de Linha / Sistema-Teste Brasileiro de 33 Barras / Modelo Usual

DE	PARA	I (A)	F_ativo	F_reativo	tap	Defasamento
			(MW)	(MVAr)	(p.u.)	(graus)
004	010	83.96163	-342.8706	-65,1659	0.920	0.000
010	004	77.24470	343.22723	77.93721	0.920	0.000
004	010	02 50002	227 1202	64 0240	0.000	0 000
010	010	82.59003	-337.1293	-64.8340	0.920	0.000
010	FOO	13,50202	337,43207	11.35741	0.520	0.000
005	001	284.24386	-913.2542	347.9240	1.024	0.000
001	005	291.06572	913.25421	-249.517	1.024	0.000
005	018	121.87199	460.15182	-175.502	1.000	0.000
018	005	123.17564	-459.9416	160.7538	1.000	0.000
	and the second	MMO THE STORE	PROF PROVIDE	And a second	al Charges	the line to the
005	018	119.95698	453.10240	-172.422	1.000	0.000
018	005	121,25882	-452.8987	157.3773	1.000	0.000
006	007	18.30896	72.96984	20.16215	1.080	0.000
007	006	19,77367	-72.96984	-15.5669	1.080	0.000
006	007	19.32774	77.03016	21,28406	1.080	0.000
007	006	20.87396	-77.03016	-16.4331	1.080	0.000
006	013	57.78866	-133.0264	-37.08159	1.000	0.000
013	006	59.82519	135.20899	37.87120	1.000	0.000
006	030	63.59815	-146.3920	-39.8724	1.000	0.000
030	006	65.80294	149.23807	43.77523	1.000	0.000
006	033	29.58969	62.99867	16.05997	1.000	0.000
033	006	29.22868	-62.9017	-17.3704	1.000	0.000
006	033	31,49140	66,41987	19,44786	1.000	0.000
033	006	31.16331	-66.3348	-20.9100	1.000	0.000
000	002	440 1499	1000.00	E17 2126	1 000	0 000
009	003	440.1488	1000.00	-400 000	1 000	0.000
005	005	. 110.1100	1000.000	-100.000	1.000	0.000
009	018	71.51920	1497.884	-164.306	1.000	0.000
018	009	77.17467	-1487.53	202.7835	1.000	0.000
009	031	328.0876	-497.884	-353.007	1.000	0.000
031	009	335.5457	499.5655	274.5221	1.000	0.000
	010	RA (R 606	220 200	or 1900	1 000	0,000
012	012	79 63046	-270.763	-95.5793	1.000	0.000
012	UII	15.05010	271.0035	7.00510	1.000	0.000
012	002	3.77062	-1000.00	53.23497	1.070	0.000
002	012	4.03456	1000.000	45.00280	1.070	0.000
013	008	19 65957	90 0000	22 98945	1.070	0.000
008	013	21.03574	-90.0000	-17.0000	1.070	0.000
0000					अवस्थित संस्थित	988.087.7.7.8
013	030	96.05466	-225.208	-60.8606	1.000	0.000
030	013	96.33363	225.9857	63.74307	1.000	0.000
018	010	181.1534	918.2014	-93.6182	1.000	0.000
010	018	170.4094	-903.323	-69.2245	1.000	0.000
010		220 2041	646 C000	200 424	1.000	0 000
018	022	239.3941	-630 004	-380.431	1,000	0.000
044	010	200.3005	-035.504	107.7312	1.000	0.000

018	023	190.0087	908.71729	-108.607	1.000	0.000
023	018	180.7766	-894.1465	-75.1758	1.000	0.000
019	018	60.53864	73.19586	-60.7744	0,920	0.000
018	019	55.69555	-73.17100	61.7 <mark>4234</mark>	0.920	0.000
019	030	34.62060	-153.9997	1.87028	1.000	0.000
030	019	39.71723	161.62878	10.13577	1.000	0.000
019	030	34.65835	-154.1960	1.90418	1.000	0.000
030	019	<mark>39.74940</mark>	161.83449	10.18654	1.000	0.000
020	022	207.2146	-616.8517	-207.348	1.000	0.000
022	020	225.3077	625.08887	-134.140	1.000	0.000
020	023	226.6002	-323.7113	127.3091	1.000	0.000
023	020	210.6076	325.47324	-329.904	1.000	0.000
021	020	28.33641	-325.4522	-14.6326	0.930	0.000
020	021	26.35286	325.73247	25.02707	0.930	0.000
021	020	28.01924	-321.8175	-14.2893	0.930	0.000
020	021	26.05789	322.10030	24.56718	0.930	0.000
021	020	25.52757	-292.7302	-21.0780	0.930	0.000
020	021	23.74064	292.73023	30. <mark>4</mark> 4545	0.930	0.000
022	025	159. <mark>5</mark> 490	594.28992	-19 <mark>4.</mark> 210	1.000	0.000
025	022	160. <mark>02</mark> 99	-588.9262	-94.2035	1.000	0.000
023	010	43.97082	-222.4041	35.24893	1.000	0.000
010	023	39.41355	222.64317	-86.1100	1.000	0.000
024	023	195.3173	-395.5803	-165.027	0.910	0.000
023	024	177.7387	396.12906	184.9682	0.910	0.000
024	023	194.8197	-394.4196	-164.972	0.910	0.000
023	024	177.2859	394.94844	184.8634	0.910	0.000
025	027	210.2308	508.76631	117.6515	1.000	0.000
027	025	200.5133	-507.0267	-232.5634	1.000	0.000
026	025	35.49974	-353.1533	-24.6689	0.930	0.000
025	026	33.01476	353.35723	37.01478	0.930	0.000
026	025	34.86650	-346.8466	-24.3310	0.930	0.000
025	026	32.42584	347.04335	36.45676	0.930	0.000
027	028	269.5197	-594.3572	-214.197	1.000	0.000
028	027	273.8988	602.82639	-265.602	1.000	0.000
028	014	468.9513	-399.5514	530.9565	1.000	0.000
014	028	468.9513	400.00000	-475.000	1.000	0.000
028	025	196.8783	625.54541	-240.222	1.000	0.000
025	028	202.6391	-620.2406	-96,9195	1.000	0.000
028	029	65.23555	181.11773	-110.206	1.000	0.000
029	028	69.18257	-180.9098	-23.74355	1.000	0.000
028	031	163.4110	-1009.938	85.07515	1.000	0.000
031	028	152.6615	1025.2480	-209.835	1.000	0.000
029	015	203.7844	-400.0000	254.5180	1.000	0.000
015	029	203.7844	400.00000	-178.357	1.000	0.000

029	022	137.3973	580.90981	-230.774	1.000	0.000
022	029	143.5405	-579. <mark>474</mark> 1	160.59990	1.000	0.000
030	016	175.1171	-698.6870	-127.8406	1.070	0.000
016	030	187.3753	700.00000	220.0000	1.070	0.000
031	012	72.90437	-725.5276	-34.96367	1.000	0.000
012	031	76.82557	728.91609	-60.83812	1.000	0.000
031	017	76.21011	-799.2859	-29.72329	1.080	0.000
017	031	82.30692	800.00000	125.2008	1.080	0.000
032	027	148.4154	-357.3780	-131.9757	0.920	0.000
027	032	136.5422	357.75262	147.1976	0.920	0.000
032	027	158.9341	-384.0527	-137.6288	0.920	0.000
027	032	146.2194	384.61124	153.9250	0.920	0.000
032	027	148.6393	- <mark>358.5692</mark>	-130.3954	0.920	0.000
027	032	136.7482	359.02013	145.6382	0.920	0.000
033	011	92.59239	-270.7634	-86.7195	0.910	0.000
011	033	84.25908	270.763 <mark>4</mark> 0	95.57938	0.910	0.000

Nas Tabelas 6.11 e 6.12 apresenta-se os resultados obtidos utilizando-se o modelo proposto.

Tabela 6.11: Relatório com Solução do Fluxo de Potência / Dados de Barra /

Sistema-Teste Brasileiro de 33 Barras / Modelo Proposto

Barra	Tipo	Tensão(p.u.)	Ângulo(graus)	PG(MW)	QG(MVAr)	PD(MW)	OD(MVAr)
001	VTETA	1.01000	0.00000	914.059	-237.278	0.00000	0.00000
002	PV	1.02000	10.2672	1000.00	44.40197	0.00000	0.00000
003	PQ	1,01706	4.80253	1000.00	-400.000	0.00000	0.00000
004	PQ	0.95709	-19.962	0.00000	0.00000	680.000	130.000
005	PQ	1.06539	-5.4608	-0.0000	0.00000	0.00000	0.00000
006	PQ	0.98213	2.60856	0.00000	-0.00000	0.00000	0.00000
007	PQ	0.89730	-0.5525	0.00000	0.00000	150.000	32,0000
008	PQ	0.94506	4.34794	0.00000	0.00000	90.0000	17.0000
009	PQ	1.06338	-0.7688	-0.0000	0.00000	0.00000	0.00000
010	PQ	1.05010	-17.726	-0.0000	0.00000	0.00000	0.00000
011	PQ	1.08699	4.06303	-0.0000	-0.00000	0.00000	0.00000
012	PQ	1.09156	4.99883	-0.0000	-0.00000	0.00000	0.00000
013	PQ	1.02449	7.74500	0.00000	-0.00000	0.00000	0.00000
014	PQ	1.02563	-6.7486	400.000	-475.000	0.00000	0.00000
015	PV	1,02000	-2.2546	400.000	-169.807	0.00000	0.00000
016	PQ	0.99602	15.4195	700.000	220.0000	0.00000	0.00000
017	PV	1.02000	7.15591	800.000	135.6568	0.00000	0.00000
018	PQ	1.06683	-5.7568	-0.0000	0.00000	0.00000	0.00000
019	PQ	0.97517	-5.2716	0.00000	-0.00000	235.000	57.0000
020	PQ	1.08202	-21.017	-0.0000	-0.00000	0.00000	0.00000
021	PQ	1.00317	-22.996	0.00000	0.00000	940.000	50.0000
022	PQ	1.10845	-12.368	-0.0000	0.00000	0.00000	0.00000
023	PQ	1.05146	-18.249	-0.0000	0.00000	0.00000	0.00000
024	PQ	0.93581	-20.910	0.00000	0.00000	790.000	330.000
025	PQ	1.10770	-18.902	-0.0000	0.00000	0.00000	0.00000
026	PQ	1.02607	-21.062	0.00000	0.00000	700.000	49.0000
027	PQ	1,08926	-21.051	-0.0000	0.00000	0.00000	0.00000
028	PQ	1.09807	-9.9104	-0.0000	0.00000	0.00000	0.00000
029	PQ	1.10076	-10.717	-0.0000	0.00000	0.00000	0.00000
030	PQ	1.03326	8.78561	0.00000	0.00000	0.00000	0.00000
031	PQ	1.08704	0.86973	-0.0000	0.00000	0.00000	0.00000
032	PQ	0.98522	-23.364	0.00000	0.00000	1100.00	400.000
033	PQ	0.97869	2.21657	0.00000	-0.00000	400.000	125.000

Tabela 6.12: Relatório com Solução do Fluxo de Potência / Dados de Linha / Sistema-Teste Brasileiro de 33 Barras / Modelo Proposto

DE	PARA	I(A)	F ativo	F reativo	tap	Defasamento
			(MW)	(MVAr)	(p.u.)	(graus)
004	010	02 72600	272 0017	71 07002	0.020	0.000
010	010	92.72099	-3/3.981/	-/1.0/893	0.920	0.000
010	004	63.30663	3/4.41023	00.4230/	0.920	0.000
004	010	91.21220	-367.7195	-70.7169	0.920	0.000
010	004	83.91522	368.10825	85.81206	0.920	0.000
005	001	265.2818	-892.8872	325.2129	1.024	0.000
001	005	271.6486	892.88721	-231.782	1.024	0.000
005	019	115 0706	460 66227	167 042	1.000	0.000
018	005	116.3791	-460.3531	153,2571	1.000	0.000
005	018	113.2716	453.49706	-164.980	1.000	0.000
018	005	114.5704	-453.2943	149.99945	1.000	0.000
006	007	16.84721	67.76486	18.41594	1.080	0.000
007	006	18.19499	-67.76486	-14.4565	1.080	0.000
006	007	17,78465	71.53556	19,44067	1,080	0.000
007	006	19.20743	-71.53556	-15.2609	1.080	0.000
006	013	59.14712	-134.0537	-38.14611	1.000	0.000
013	006	61.18377	136.27934	39.20737	1.000	0.000
006	000	64 05 604	147 4004	40.0150	1 000	0.000
000	030	67 16180	150 32504	45 14708	1 000	0.000
030	000	07.10100	130.32334	13.11/00	1.000	0.000
004	6 033	31.13893	64.0226	7 17.39245	1.000	0.000
033	3 006	30.77819	-63.921	.5 -18.6794	1.000	0.000
00	6 033	33.14157	67.4594	8 20.90515	1.000	0.000
03.	3 006	32.813/3	-67.370	18 -22.3420	1.000	0.000
009	9 003	441,1334	6 -1000.0	517,7488	1.000	0.000
003	3 009	441.1334	6 1000.00	-400.0000	1.000	0.000
009	9 018	65.17172	1499.46	1 -155.216	1.000	0.000
018	8 009	70.53328	-1489.0	194.6367	1.000	0.000
	0.001	227 7767			1 000	
003		345 2322	1 501 185	7 284 8482	1.000	
05.	1 000	515.2522		201.0102	1.000	0.000
01:	1 012	73.05958	-268.70	-93.58404	1.000	0.000
013	2 011	77.96512	269.022	7 5.56386	1.000	0.000
013	2 002	1.37844	-936.71	.9 44.60126	1.070	0.000
003	2 012	1.47493	936.719	41.59218	1.070	0.000
01	8 008	18 21978	84 3047	4 21 16583	1.070	0 000
008	B 013	19,49516	-84.304	7 -15.9242	1.070	0.000
013	3 030	97.12333	-226.27	9 -61.8030	1.000	0.000
030	D 013	97.40239	227.064	64.73252	1.000	0.000
					1000 - 100 -	
018		183.8807	1 918.432	8 -84.4697	1.000	0.000
010	018	1/1.9290	/ -903.45	-/4.9564	1.000	,
018	B 022	233.6204	5 646.655	3 -371.896	1.000	0.000
023	2 018	254.3375	5 -639.95	160.5737	1.000	0.000

018	023	192.2603	908.86614	-99.3084	1.000	0.000
023	018	181.7453	-894.2012	-80.8380	1.000	0.000
019	018	61.81686	77.73123	-61,9622	0,920	0.000
018	019	56.87151	-77.70397	63. <mark>0</mark> 2382	0.920	0.000
019	030	36 14285	-153 0349	-0 11177	1 000	0 000
030	019	41.26495	160.58635	11.76622	1.000	0.000
019	020	26 10215	-152 2200	-0 09054	1 000	0.000
020	010	41 20050	-133.2299	-0.08034	1.000	0.000
030	UIS	41.29930	160.79072	11.01909	1.000	0.000
020	022	207.5415	-616.9110	-208.206	1.000	0.000
022	020	226.1656	625.22001	-129.166	1.000	0.000
020	023	224,7817	-323.7015	125,5238	1.000	0.000
023	020	208,8749	325,46398	-326.231	1.000	0.000
			No. of Concession			
021	020	31.17569	-350.8705	-15.77553	0.930	0.000
020	021	28.99339	351.19925	27.96777	0.930	0.000
021	020	30.82674	-346.9519	-15.4053	0.930	0.000
020	021	28.66887	347.28365	27.46090	0.930	0.000
021	020	20 00541	215 5020	22 7242	0 020	0.000
021	020	26.00541	215 50200	22 71101	0.930	0.000
020	021	20.11945	313.39290	55.71191	0.930	0.000
022	025	159.4785	594.58838	-186.512	1.000	0.000
025	022	158.8672	-589.1859	-98.6255	1.000	0.000
023	010	41 74117	-222 4677	32 52413	1 000	0 000
010	023	37.33608	222.70721	-82.9513	1.000	0.000
024	023	218 11769	-436 6383	-182 155	0.910	0 000
023	024	198.48709	437.31569	206.7713	0.910	0.000
			105 0554	100 0055		0.000
024	023	217.56195	-435.35/1	-182.0955	0.910	0.000
023	024	197.98138	436.00994	206.6491	0.910	0.000
025	027	214.68930	508.97543	122.6561	1.000	0.000
027	025	204.99346	-507.2088	-235.930	1.000	0.000
02.6	025	39,02837	-380.7351	-26.59561	0.930	0.000
025	026	36.29638	380.97448	41.08707	0.930	0.000
						0.000
026	025	38.33219	-373.9359	-26.2313	0.930	0.000
025	026	35.64893	3/4.166/8	40.46440	0.930	0.000
027	028	268.18470	-594.3211	-215.761	1.000	0.000
028	027	273.66833	602.85762	-258.156	1.000	0.000
028	014	470 85452	-399 5479	531 39281	1 000	0 000
014	028	470 85452	400 00000	-475 000	1.000	0.000
011	020	170.03132	100.00000	175.000	1.000	0.000
028	025	195.70519	625.56322	-233.431	1.000	0.000
025	028	200.77936	-620.2256	-99.67425	1.000	0.000
028	029	66.07328	181.50493	-112.917	1.000	0.000
029	028	70.38493	-181.2930	-20.10243	1.000	0.000
	-					
028	031	157.88210	-1010.377	73.11201	1.000	0.000
031	028	148.94141	1025.7146	-196.138	1.000	0.000
029	015	195.49258	-400.0000	244.78541	1.000	0.000
015	029	195.49258	400.00000	-169.8070	1.000	0.000

029	022	132.7503	581.29309	-224.6829	1.000	0.000
022	029	138.8570	-579.8550	155.1052	1.000	0.000
030	016	166.6165	-654.5487	-125.019	1.070	0.000
016	030	178.2796	655,70355	206.0782	1.070	0.000
031	012	75.72067	-727.5662	-42.08875	1.000	0.000
012	031	80.31005	730.97730	-53.1781	1.000	0.000
031	017	82.41585	-742.3171	-43.2954	1.080	0.000
017	031	89.00912	742.93553	125.9803	1.080	0.000
032	027	163.7135	-389.8055	-143.950	0.920	0.000
027	032	150.6164	390.25720	162.3047	0.920	0.000
032	027	175.3164	-418.9006	-150.1169	0.920	0.000
027	032	161.2911	419.57404	169.7660	0.920	0.000
032	027	163.9605	-391.1048	-142.227	0.920	0.000
027	032	150.8437	391.64848	160.6062	0.920	0.000
033	011	99.59710	-296.5972	-92.69486	0.910	0.000
011	033	90.63336	296.59727	103.2973	0.910	0.000

Os valores dos *taps* dos transformadores destacados na Figura 6.43 são diferentes do nominal. Comparando-se as Tabelas 6.9 e 6.11, observa-se diferenças em todas as grandezas apresentadas. Para os módulos das tensões, verifica-se diferenças na segunda casa decimal de algumas barras, como a 4. Com relação aos ângulos das tensões, cita-se, como exemplo, o ângulo da tensão da barra 2, que vale 10,46°, utilizando-se o modelo usual, e 10,26°, utilizando-se o modelo proposto. Comparando-se as potências geradas, as maiores variações são observadas para potência reativa. Como exemplo, a potência ativa gerada pela barra 1 vale 913,25 W, utilizando-se o modelo usual, e 914,05 W, utilizando-se o modelo proposto. A potência reativa gerada pela mesma barra vale -249,51 MVAr, utilizando-se o modelo usual, e -237,27 MVAr, utilizando-se o modelo proposto.

Com relação às correntes e fluxos nas linhas de transmissão, diferenças também são observadas comparando-se a Tabela 6.10 com a 6.12. Como exemplo, a corrente da barra 9 para a barra 31 vale 328,08 A, utilizando-se o modelo usual, e 337,77 A, utilizando-se o modelo proposto. O fluxo de potência ativa da linha 2 para a linha 12, vale 1000 MW, utilizando-se o modelo usual, e 936,71 MW, utilizando-se o modelo proposto. O fluxo de potência reativa, pela mesma linha, vale 45 MVAr, utilizando-se o modelo usual, e 41,59 MVAr, utilizando-se o modelo proposto

Na Figura 6.44 mostra-se as curvas referentes ao algoritmo de fluxo de potência continuado [43], apresentando comparação entre os modelos usual e proposto de transformador com *tap* variável. Observa-se diferença entre os modelos em todas as partes das curvas, principalmente na região normal de operação.

Figura 6.44: Comparação entre os Modelos Usual e Proposto / Barra 960 / Sistema Teste Brasileiro de 33 Barras

Nas Figuras 6.45 e 6.46, apresenta-se o número de iterações para ser obtido cada ponto das curvas do fluxo de potência continuado apresentado na Figura 6.44, através dos modelos usual e proposto, respectivamente. Verifica-se que o número de iterações necessárias para se obter cada ponto das curvas é praticamente o mesmo utilizando cada modelo de transformador, havendo diferenças em poucos pontos.

No que se refere especificamente ao tempo computacional, para obtenção das curvas do fluxo de potência continuado, as diferenças entre os dois modelos é desprezível, para os sistemas de 16 e de 33 barras. Destaca-se que, em cada iteração utilizando o modelo proposto, deve ser computado o fator adicional $\frac{a^2 + 1}{2}$, utilizado no cálculo de cada impedância, não existente no modelo

usual, conforme pode ser observado comparando-se a Figura 3.9 com a 4.8. Alternativamente, pode ser inserida barra fictícia para representar o modelo proposto, como detalhado na Seção 6.2.4.3.1. O cálculo do fator adicional ou a inserção da barra fictícia, todavia, nem sempre é predominante na performance computacional, uma vez que o número de pontos para se obter a curva referente ao fluxo de potência continuado é, na maioria das situações, menor para o modelo proposto (carregamento inferior) comparado ao usual. Outro ponto de destaque na avaliação do desempenho computacional é o próprio número de iterações para se obter cada ponto das curvas apresentadas nas Figuras 6.40 e 6.44.

Figura 6.45: Número de Iterações para Obtenção de cada Ponto do Fluxo de Potência Continuado / Modelo Usual / Sistema-Teste Brasileiro de 33 Barras

Figura 6.46: Número de Iterações para Obtenção de cada Ponto do Fluxo de Potência Continuado / Modelo Proposto / Sistema-Teste Brasileiro de 33 Barras

6.2.4.3

Controle de Tensão por Meio de Transformador com Tap Variável

6.2.4.3.1

Representação do Modelo Proposto

As simulações de controle de tensão nos sistemas de 16 e de 33 barras foram efetuadas utilizando-se o programa ANAREDE. Para representar o modelo proposto seria necessário alterar a forma como é montada a matriz admitância nodal e como são calculadas as derivadas das potências em relação ao *tap*, como detalhado nas Seções 4.3 e 5.2.2, respectivamente. Assim, seriam necessárias alterações no código do programa. Alternativamente, podem ser inseridas barras adicionais nos sistemas-teste, conforme detalhado a seguir.

Considerando-se um transformador com *tap* variável situado entre duas barras quaisquer k e m, tem-se a representação do transformador conforme Figura 3.4, que é utilizada mundialmente pelos programas de fluxo de carga, como o ANAREDE. O modelo proposto pode ser representado inserindo-se barra virtual v entre a barra k e o transformador ideal, com impedância da linha entre essas barras

valendo $\frac{\dot{Z}}{2}$, sendo esse também o novo valor da impedância entre o transformador ideal e a barra *m*. Assim, o transformador ficará representado conforme Figura 4.3. Obviamente, o fluxo de potência da barra *k* para a barra *m* é igual ao fluxo de potência da barra *k* para a barra *v*, no modelo proposto. Essa informação é importante na comparação entre os fluxos de potência fornecidos em simulações utilizando-se os diferentes modelos de representação do transformador.

A seguir serão apresentadas as diferenças obtidas quando se compara o modelo usual com o modelo proposto em simulações nas quais foi utilizado o programa ANAREDE. No Apêndice VI apresenta-se resultados de simulações obtidos através dos programas ORGANON e PSAT, que também utilizam o modelo usual para representar transformador com *tap* variável.

6.2.4.3.2 Controle de Tensão no Sistema-Teste Brasileiro de 16 Barras

No sistema de 16 barras apresentado na Figura 6.39, considera-se que os transformadores localizados entre as barras 3 e 14, 4 e 15, e 10 e 8, controlam as tensões das barras 14, 15 e 8 respectivamente, em 1,03 p.u.. Como detalhado na seção anterior, para efetuar simulação utilizando-se o modelo proposto, são inseridas três barras fictícias (barras 17, 18 e 19), conforme apresentado na Figura 6.47, como forma alternativa a se alterar o código fonte do programa.

Figura 6.47: Sistema-Teste Brasileiro de 16 Barras com Barras Fictícias

Na Tabela 6.13 apresenta-se o relatório fornecido pelo programa ANAREDE com os resultados referentes ao modelo usual.

Tabela 6.13: Relatório do ANAREDE para Solução do Fluxo de Potência / Sistema-Teste Brasileiro de 16 Barras / Modelo Usual

X DADOS-BARR	A	K CARGA -		X		- GERACAG	0)
DA BARRA	TENSAO	> MW	1	var >		MW	Mvar
NUM. KV TIPO	MOD	PARA BARRA	FL	UXOS	- C	IRCU	ITOS
NOME	ANG	NUM. NOME	NC	MW	Mvar	TAP	DEFAS TIE
хХ-	;	κΧ	XX	X-		-X	xx>
REA - 1							
1 14 1	1.000			>	3	350.0MW	-37.0Mvar
GERADOR-1	2.2	2 84884 2	1	250 0	27 (1 0005	
07.7% MVA/VU		2 DAKKA-2	· · · · · · · ·		-57.0		
2 245 0	1 007						
2 345 U BADDA_2	-0.8						
67.7% MVA/Vd	520	1 GERADOR-1	1	-350.0	55.6	5	
58.7% MVA/Vd	300	3 BARRA-3	1	175.0	-27.8	ŝ	
58.7% MVA/Vd	300	3 BARRA-3	2	175.0	-27.8	ŝ	
3 345 0	0.995	> 47.0MW	31.0	Ivar			
BARRA-3	-5.7	× 47.011	31.0	i v cu	-89.7	2 SHU	
59.8% MVA/Vd	300	2 BARRA-2	1	-173.6	-42.1	Dillo	
59.8% MVA/Vd	300	2 BARRA-2	2	-173.6	-42.1	E.	
70 3% MVA/Vd	300	12 BARRA-12	ĩ	209 9	-0.0	5	
13 1% MVA/Vd	165	14 BAPPA-14	1	57 0	12	7 0 037*	
21 2% MVA/Vd	200	15 BADDA_15	1	16.7	28 0	0.957	
21.3% MVA/Vd	200	15 BARRA-15	2	16.7	-38.9	9	
10 345 0	0.956	> 42.0MW	30.0	Ivar			
BARRA-10	-10.3				18.3	3 SHU	
25.6% MVA/Vd	260	8 BARRA-8	1	-33.3	54.2	2 0.9001	002
23.2% MVA/Vd	300	11 BARRA-11	1	-8.6	-65.9	9	
11 345 0	0.971	> 40.0MW	28.0	Ivar			
BARRA-11	-10.1				-28.3	3 SHU	
3.9% MVA/Vd	300	10 BARRA-10	1	8.7	7.4	1	
27.5% MVA/Vd	300	12 BARRA-12	1	-48.7	-63.7	7	
12 345 0	0.986	> 101.0MW	56.0	Ivar			
BARRA-12	-8.9						
71.4% MVA/Vd	300	3 BARRA-3	1	-208.9	-31.4	1	
16.6% MVA/Vd	300	11 BARRA-11	1	48.8	-5.9	9	
10.5% MVA/Vd	300	13 BARRA-13	1	29.5	-9.3	3	
10.5% MVA/Vd	300	13 BARRA-13	2	29.5	-9.3	3	
13 345 0	0.983	> 59.0MW	34.0	Ivar			
					20 (CHILL	
BARRA-13	-9.4				-29.0	J SHU	
BARRA-13 14.6% MVA/Vd	-9.4	12 BARRA-12	1	-29.5	-31.5	5	

1.030 14 138 0 57. OMW 39. OMvar BARRA-14 -8.2 165 40.6% MVA/Vd 3 BARRA-3 1 -57.0 -39.0 15 345 0 1.014 BARRA-15 -6.6 9.3% MVA/Vd 200 3 BARRA-3 1 -16.6 8.7 9.3% MVA/Vd 200 3 BARRA-3 2 -16.6 8.7 12.3% MVA/Vd 1 002 300 4 BARRA-4 33.3 -17.4 AREA - 2 0.923 4 230 0 > 106.0MW 70.0Mvar BARRA-4 -7.9 31.0% MVA/Vd 5 BARRA-5 200 1 -36.3 -44.1 31.0% MVA/Vd 200 5 BARRA-5 2 -36.3 -44.1 13.7% MVA/Vd 300 15 BARRA-15 1 -33.3 18.3 0.900I 001 5 230 0 0.952 31. OMW 20.0Mvar > BARRA-5 -6.3 22.5% MVA/Vd 22.5% MVA/Vd 64.4% MVA/Vd 36.5 22.5 200 4 BARRA-4 1 22.5 2 200 4 BARRA-4 1 -104.1 200 6 BARRA-6 -65.0 0.991 6 230 0 > 17.0MW 12.0Mvar BARRA-6 -3.0 59.7% MVA/Vd 5 BARRA-5 7 BARRA-7 200 1 104.8 54.7 48.1% MVA/Vd 200 1 88.1 -36.3 -30.5 1.000F 47.6% MVA/Vd 450 16 GERADOR-2 1 -209.9 7 230 0 1.003 > 15.0MW 14.0Mvar BARRA-7 -6.4 200 44.6% MVA/Vd 6 BARRA-6 -87.6 1 18.5 39.7% MVA/Vd 200 8 BARRA-8 1 72.6 -32.5 8 230 0 1.012 39.0MW 24.OMvar > BARRA-8 -8.5 36.7% MVA/Vd 200 7 BARRA-7 1 -72.3 16.8 9.7% MVA/Vd 9 C. SINCRONO 0.0 9.9 1.000F 100 1 1 23.0% MVA/Vd 260 10 BARRA-10 33.3 -50.6 001 . 1.000 14 1 9 -9.7Mvar > -8.5 C. SINCRONO 9.7% MVA/Vd 8 BARRA-8 1 0.0 -9.7 16 14 2 1.000 209.9MW 41.9Mvar GERADOR-2 0.0 47.6% MVA/Vd 450 6 BARRA-6 1 209.9 41.9 PCEPEL - Centro de Pesquisas de Energia Eletrica - ANAREDE V09.06.02

Verifica-se que somente a tensão da barra 14 foi controlada em 1,03 p.u., com *tap* do transformador situado entre as barras 3 e 14 valendo 0,937 p.u. As tensões das barras 15 e 8 não foram controladas ($V_{15} = 1,014 p.u. e V_8 = 1,012 p.u.$), uma vez que os *taps* dos transformadores situados entre as barras 4 e 15, e 10 e 8 atingiram o valor mínimo de 0.9 p.u..

Na Tabela 6.14 apresenta-se o relatório com o resultado da simulação utilizando-se o modelo proposto de transformador com *tap* variável.

Tabela 6.14: Relatório do ANAREDE para Solução do Fluxo de Potência / Sistema-Teste Brasileiro de 16 Barras / Modelo Proposto

X---- DADOS-BARRA ----X------ CARGA -----X------ GERACAO ------X MW DA BARRA TENSAO Mvar > MW Mvar > Mvar > MW Mva FLUXOS - CIRCUITOS PARA BARRA NUM. KV TIPO MOD DEFAS TIE NOME NOME TAP ANG NUM. NC MW Mvar -X-----X----X-----X---X---X--------X-----X-----X-----X----X X-----AREA - 1 1 14 1 1.000 350.0MW -28.4Mvar > GERADOR-1 2.6 67.5% MVA/Vd 1 350.0 -28.4 1.000F 2 BARRA-2 520 1.006 2 345 0 BARRA-2 -0.4 67.5% MVA/Vd 1 -350.0 1 175.0 520 1 GERADOR-1 46.9 58.5% MVA/Vd 300 3 BARRA-3 -23.5 175.0 3 BARRA-3 2 58.5% MVA/Vd 300 -23.5 > 47.0MW 3 345 0 0.992 31.OMvar BARRA-3 -5.4 -88.6 SHU 2 BARRA-2 2 BARRA-2 60.4% MVA/Vd 300 1 -173.6 -45.9 60.4% MVA/Vd 300 2 -173.6 -45.9 12 BARRA-12 17 VIRTUAL1 15 BARRA-15 70.0% MVA/Vd 300 1 208.2 7.5 57.0 43.2 7.2% MVA/Vd 999 1 21.6% MVA/Vd 200 1 21.6% MVA/Vd 200 15 BARRA-15 2 17.6 -39.2 10 345 0 0.945 42.OMW 30.0Mvar > BARRA-10 -9.8 17.9 SHU -35.2 7.3% MVA/Vd 19 VIRTUAL3 999 1 59.1 002 25.2% MVA/Vd 11 BARRA-11 300 1 -6.8 -71.2 11 345 0 0.962 > 40.0MW 28.0Mvar BARRA-11 -27.8 SHU -9.7 5.4% MVA/Vd 10 BARRA-10 6.9 14.1 300 1 29.2% MVA/Vd -46.9 300 12 BARRA-12 1 -69.9 . 12 345 0 0.981 > 101.0MW 56.0Mvar BARRA-12 -8.6 -207.1 71.7% MVA/Vd 3 BARRA-3 -39.4 1 300 16.0% MVA/Vd 11 BARRA-11 300 1 47.1 1.5 10.5% MVA/Vd 300 13 BARRA-13 1 29.5 -9.0 10.5% MVA/Vd 300 13 BARRA-13 2 29.5 -9.0 13 345 0 0.977 > 59.0MW 34.0Mvar BARRA-13 -9.0 -28.6 SHU 14.7% MVA/Vd -29.5 300 12 BARRA-12 1 -31.3 14.7% MVA/Vd 300 12 BARRA-12 2 -29.5 -31.3

> 57.0MW 39.0Mvar 14 138 0 1.030 RARRA-14 GARRA-14 -8.0 40.6% MVA/Vd 165 17 VIRTUAL1 1 -57.0 -38.9 15 345 0 1.011 -6.3 BARRA-15 9.8% MVA/Vd 3 BARRA-3 1 -17.5 9.2 3 BARRA-3 2 -17.5 9.2 18 VIRTUAL2 1 34.9 -18.4 9.8% MVA/Vd 200 13.0% MVA/Vd 300 002 17 1 0 0.974 VIRTUAL1 -6.8 7.2% MVA/Vd 999 43.6% MVA/Vd 165 3 BARRA-3 1 -57.0 -41.0 14 BARRA-14 1 57.0 40.8 0.931* AREA - 2 4 230 0 0.922 > 106.0MW 70.0Mvar BARRA-4 -7.8
 5 BARRA-5
 1
 -35.5
 -44.8

 5 BARRA-5
 2
 -35.5
 -44.8

 18 VIRTUAL2
 1
 -35.0
 19.6
31.0% MVA/Vd 200 31.0% MVA/Vd 200 4.3% MVA/Vd 999 5 230 0 0.952 31.0MW 20.0Mvar > -6.2 BARRA-5 4 BARRA-4 4 BARRA-4 6 BARRA-6 22.3% MVA/Vd 35.7 23.2 35.7 23.2 200 1 2 35.7 23.2 1 -102.4 -66.3 22.3% MVA/Vd 200 64.1% MVA/Vd 200 22.3% MVA/Vd 200 6 230 0 0.991 > 17.0MW 12.0Mvar BARRA-6 -3.0 59.2% MVA/Vd
 5
 BARRA-5
 1
 103.2
 55.9

 7
 BARRA-7
 1
 90.1
 -38.9

 16
 GERADOR-2
 1
 -210.2
 -29.0
 1.000F
200 200 49.5% MVA/Vd 47.6% MVA/Vd 7 230 0 1.005 BARRA-7 -6.4 45.8% MVA/Vd 200 41.0% MVA/Vd 200 > 15.0MW 14.0Mvar 6 BARRA-6 1 -89.5 21.4 8 BARRA-8 1 74.5 -35.4 8 230 0 1.016 > 39.0MW 24.0Mvar ARRA-8 -8.6 37.8% MVA/Vd 200 12.4% MVA/Vd 100 25.2% MVA/Vd 260 BARRA-8 7 BARRA-7 9 C.SINCRONO 19 VIRTUAL3 -74.2 19.8 0.0 12.6 1.000F 35.1 -56.4 7 BARRA-7 1 9 C.SINCRONO 1 i 9 14 1 1.000 C.SINCRONO -8.6 > -12.4Mvar SINCRONO -8.6 12.4% MVA/Vd 100 8 BARRA-8 1 0.0 -12.4 16 14 2 1.000 GERADOR-2 0.0 210.2MW 40.5Mvar > ERADOR-2 0.0 47.6% MVA/Vd 450 6 BARRA-6 1 210.2 40.5 18 1 0 0.915 VIRTUAL2 IRTUAL2 -7.0 4.3% MVA/Vd 999 14.5% MVA/Vd 300 4 BARRA-4 1 35.0 -18.9 15 BARRA-15 1 -34.9 18.9 0.9001 001 19 1 0 0.914 VIRTUAL3 -8.6 260 999 28.0% MVA/Vd 8 BARRA-8 1 -35.1 56.4 10 BARRA-10 1 35.2 -56.4 56.4 0.900I 7.3% MVA/Vd 999 001

Assim como no modelo usual, somente a tensão da barra 14 foi controlada em 1,03 p.u., com *tap* do transformador situado entre as barras 3 e 14 valendo 0,931 p.u. As tensões das barras 15 e 8 não foram controladas ($V_{15} = 1,011p.u.e$ $V_8 = 1,016p.u.$), uma vez que os *taps* dos transformadores situados entre as barras 4 e 15, e 10 e 8 atingiram valor mínimo de 0.9 p.u..

Comparando-se as Tabelas 6.13 e 6.14, observa-se diferenças em todas as grandezas apresentadas. Verifica-se, como exemplo, que o módulo da tensão da barra 11, tem valor de 0,971 p.u., utilizando-se o modelo usual, e 0,962, utilizando-se o modelo proposto. Com relação ao ângulo das tensões, ainda para a barra 11, tem-se o valor de $-10,1^{\circ}$, utilizando-se o modelo usual, e $-9,7^{\circ}$, utilizando-se o modelo proposto.

Com relação aos fluxos nas linhas de transmissão, diferenças também são observadas. Como exemplo, o fluxo de potência ativa da barra 11 para a barra 10, vale 8,7 MW, utilizando-se o modelo usual, e 6,9 MW, utilizando-se o modelo proposto. O fluxo de potência reativa, nessa mesma linha, vale 7,4 MVAr, utilizando-se o modelo usual, e 14,1 MVAr, utilizando-se o modelo proposto.

6.2.4.3.3

Controle de Tensão no Sistema-Teste Brasileiro de 33 Barras

Na Tabela 6.15, apresenta-se informações referentes aos transformadores do sistema-teste brasileiro de 33 barras, apresentado na Figura 6.43. Nota-se que, para efetuar simulação utilizando-se o modelo proposto de transformador com *tap* variável, é necessário que sejam inseridas 21 barras adicionais para modelar os transformadores com *taps* variáveis, sejam aqueles que controlam ou não tensões de barras, devido a apresentarem valor do *tap* diferente do nominal. Nas simulações, cujos resultados serão apresentados a seguir, as barras controladas, destacadas na Tabela 6.15, terão tensões controladas em 1 p.u..

Barras entre as quais o transformador está localizado	Número de transformadores	Barra controlada	Barras virtuais
824 e 800	1	-	2501
814 e 895	2	814	2502 e 2503
960 e 959	2	960	2504 e 2505
939 e 938	3	939	2506, 2507 e 2508
915 e 1030	3(*)	-	-
965 e 964	2	965	2509 e 2510
1210 e 976	3	1210	2511, 2512 e 2513
904 e 995	5(*)	-	-
810 e 856	4(*)	-	-
1060 e 925	4(**)	-	2514
897 e 808	1	-	2515
2458 e 896	1	2458	2516
839 e 840	2	840	2517 e 2518
898 e 848	1	848	2519
1047 e 919	1	_	2520
934 e 933	1	934	2521

Tabela 6.15: Informações sobre os Transformadores do Sistema-Teste Brasileiro de 33 Barras

(*) Transformador com tap nominal.

(**) Único transformador é apresentado no arquivo de dados. Este refere-se a uma "associação" dos quatro apresentados em [46] e [47].

Na Tabela 6.16 apresenta-se o relatório da simulação utilizando-se o programa ANAREDE, com resultados referentes ao modelo usual de transformador com *tap* variável.

Tabela 6.16: Relatório do ANAREDE para Solução do Fluxo de Potência /

Sistema-Teste Brasileiro de 33 Barras / Modelo Usual

X DADOS-BARRAX CARGAX GERACAO DA BARRA TENSAO > MW MVar > MW MV NUM. KV TIPO MOD PARA BARRA FLUXOS - CIRCUITO S	v
NOME ANG NUM. NOME NC MW Mvar TAP DEFAS XXXXX	var 5 TIE X
AREA - A	
800 14 2 1.000 > 930.9MW 45.5MM GBMUNHOZ-3GR 0.0 55.6% MVA/Vd 1676 824 GBMUNHOZ-500 1 930.9 45.5	/ar
814 230 0 1.000 > 680.0MW 130.0MVar	
BATEIAS230 -22.6 58.2% MVA/Vd 600 895 BATEIAS500 1 -342.9 -65.2 1.049* 57.2% MVA/Vd 600 895 BATEIAS500 2 -337.1 -64.8 1.049*	
824 500 0 1.000 GBMUNHOZ-500 -6.0 55.6% MVA/Vd 1676 800 GBMUNHOZ-3GR 1 -930.9 51.8 1.000F 21.5% MVA/Vd 2182 933 AREIA500 1 469.1 -26.3 21.2% MVA/Vd 2182 933 AREIA500 2 461.7 -25.5	
	••
895 500 0.963 BATEIAS500 -20.2 61.0% MVA/Vd 600 814 BATEIAS230 1 343.3 80.5 60.0% MVA/Vd 600 814 BATEIAS230 2 337.5 80.0 44.7% MVA/Vd 2110 933 AREIA500 1 -902.9 -104.3 11.3% MVA/Vd 2110 959 CURITIBA-500 1 222.1 -56.2	
004 14 1 1 000	
ITA3GR -7.8 27.5% MVA/Vd 1625 995 ITA500 1 400.0 -198.3	/al
915 14 1 1.000 > 400.0MW -48.7MV MACHADIN-IGR -2.9 32.1% MVA/Vd 1254 1030 MACHADIN-500 1 400.0 -48.7	/ar
	••
933 500 0 1.000 AREIA500 -6.3 21.5% MVA/Vd 2182 824 GBMUNHOZ-500 1 -468.9 13.8 21.2% MVA/Vd 2182 824 GBMUNHOZ-500 2 -461.5 12.8 65.1% MVA/Vd 2273 856 SEGREDO500 1 -1477.9 91.7 (7) 43.6% MVA/Vd 2210 895 BATEIAS500 1 920.5 27.5 23.8% MVA/Vd 672 934 AREIA230 1 -81.0 138.2 (7) 34.3% MVA/Vd 2110 955 CNOVOS500 1 658.5 -298.6 41.7% MVA/Vd 2182 959 CURITIBA-500 1 910.2 14.6)02)02
938 500 0 0.993	
BLUMENAU-500 -24.1 49.0% MVA/Vd 672 939 BLUMENAU-230 1 325.8 27.1 48.4% MVA/Vd 672 939 BLUMENAU-230 2 322.2 26.6 44.1% MVA/Vd 672 939 BLUMENAU-230 3 292.7 32.3 32.3% MVA/Vd 2037 955 CNOVOS500 1 -619.1 -208.6 27.4% MVA/Vd 1266 959 CURITIBA-500 1 -321.5 122.6	
020 220 0 1 000 - 040 0m	
BLUMENAU-230 -26.2 48.5% MVA/Vd 672 938 BLUMENAU-500 1 -325.5 -14.6 1.010* 47.9% MVA/Vd 672 938 BLUMENAU-500 2 -321.8 -14.3 1.010* 43.7% MVA/Vd 672 938 BLUMENAU-500 3 -292.7 -21.1 1.010*	
955 500 0 1.034 CNOVOS500 -14.0 30.5% MVA/Vd 2110 933 AREIA500 1 -651.0 134.7 29.9% MVA/Vd 2037 938 BLUMENAU-500 1 629.1 -48.0 34.9% MVA/Vd 1688 964 CAXIAS500 1 597.7 -117.2 25.5% MVA/Vd 2182 1030 MACHADIN-500 1 -575.7 30.5	
959 500 0 0.963 CURITIBA-500 -20.8 10.9% MVA/Vd 2110 895 BATEIA5500 1 -221.8 14.5 42.8% MVA/Vd 2182 933 AREIA500 1 -893.0 -107.2 35.4% MVA/Vd 1266 938 BLUMENAU-500 1 323.5 -285.5 67.8% MVA/Vd 672 960 CURITIBA-230 1 396.2 189.2 67.6% MVA/Vd 672 960 CURITIBA-230 2 395.1 189.1	
960 230 0 1.000 > 790.0MW 330.0MV.am	
CURITIBA-230 -23.7 63.8% MVA/Vd 672 959 CURITIBA-500 1 -395.6 -165.0 1.063* 63.6% MVA/Vd 672 959 CURITIBA-500 2 -394.4 -165.0 1.063*	

964 500 0 CAXIAS500 34.8% MVA/VC 51.7% MVA/VC 50.7% MVA/VC 30.8% MVA/VC 28.3% MVA/VC	1.024 -21.5 1688 672 672 1688 2182	955 965 965 976 995	CNOVOS- CAXIAS- CAXIAS- GRAVATA ITA	500 230 230 AI-500 500	1 1 2 1 1	-591.4 353.4 347.1 510.3 -619.3	-108.4 39.3 38.7 153.3 -122.9	
965 230 0	1.000		> 700.0	DMW	49.	0 _{Mvar}		
CAXIAS230 52.7% MVA/VC 51.7% MVA/VC	-23.9 672 672	964 964	CAXIAS- CAXIAS-	500	1 2	-353.2 -3 <mark>4</mark> 6.8	-24.7 0.981 -24.3 0.981	ŵ ŵ
976 500 0 GRAVATAI-500 33.3% MVA/VC 37.3% MVA/VC 57.6% MVA/VC 61.7% MVA/VC 57.7% MVA/VC	1.002 -24.1 1688 1688 672 672 672	964 995 1210 1210 1210	CAXIAS- ITA GRAVATA GRAVATA GRAVATA	500 500 AI-230 AI-230 AI-230	1 1 2 3	-508.1 -593.5 357.8 384.7 359.1	-241.8 -214.4 150.2 157.2 148.7	002 002 002
995 500 0 ITA500 27.5% MVA/VC 28.5% MVA/VC 35.9% MVA/VC 8.8% MVA/VC 46.8% MVA/VC	1.032 -11.2 1625 2182 1688 2182 2182 2110	904 964 976 1030 1060	ITA CAXIAS- GRAVATA MACHADI SSANTIA	3GR 500 AI-500 IN-500 AG-500	1 1 1 1	-399.8 625.4 603.5 177.4 -1006.6	229.0 1.000 -140.0 -161.0 -89.8 161.8	F 002
1030 500 0 MACHADIN-500 32.1% MVA/VC 25.9% MVA/VC 7.9% MVA/VC	1.033 -12.1 1254 2182 2182	915 955 995	MACHADI CNOVOS- ITA	IN-1GR 500 500	1 1 1	-400.0 577.2 -177.2	115.8 1.000 -88.7 -27.1	F
AREA - B								
808 14 1 SCAXIAS4GR 74.6% MVA/VC	1.000 11.9 1344	<mark>8</mark> 97	SCAXIAS	5500	1	> 1000.0	1000.0MW	78.4Mvar
810 14 1 SSEGREDO-4GR 79.4% MVA/Vd	1.000 5.3 1260	856	SEGREDO	0500	1	> 1000.0	1000.0MW 15.1	15.1Mvar
CASCAVEL-230 50.5% MVA/Vd 53.3% MVA/Vd 69.0% MVA/Vd 76.2% MVA/Vd 21.9% MVA/Vd 20.9% MVA/Vd	3.1 150 150 189 189 319 356	840 C 840 C 898 F 1047 S 2458 C 2458 C	ASCAVEL ASCAVEL CHOPIM- SOSORIO- ASCAVEL	-138 -138 -230 -230 -230 -230	1 2 1 1 2	73.0 77.0 -128.4 -142.3 57.7 62.9	19.3 0.986* 20.3 0.986* 20.2 18.9 -39.2 -39.6	
840 138 0	1.000	>	150.0M		2.0	 Mvar		
CASCAVEL-138 49.7% MVA/Vd 52.5% MVA/Vd	0.4 150 150	839 C	ASCAVEL	-230 -230	1 2	-73.0 -77.0	-15.6 -16.4	
848 138 0 FCHOPIM138 61.1% MVA/Vd	1.000 5.2 150	> 898 F	90.0M	w 1 -230	7.0M	4∨ar -90.0	-17.0	
					• • • •	· · · · · · · · · · ·		
856 500 0 SEGREDO500 79.4% MVA/Vd 65.3% MVA/Vd 22.5% MVA/Vd	-0.8 1260 2273 2182	810 s 933 A 1060 s	SEGREDO AREIA SANTIAG	-4GR -500 -500	1 1 1	-1000.0 1489.3 -489.3	89.9 1.000F -28.5 -61.4	001
896 500 0 CASCAVELO500 22.0% MVA/Vd 60.1% MVA/Vd	0.982 4.9 1637 600	897 s 2458 c	CAXIAS-	-500 -230	1 1	-279.6 279.6	-217.5 217.5	
897 500 0 SCAXIAS500 74.6% MVA/Vd 19.4% MVA/Vd 31.3% MVA/Vd	0.997 6.0 1344 1637 2370	808 s 896 c 1060 s	SCAXIAS- ASCAVEL	-4GR 0500 -500	1 1 1	-1000.0 280.1 719.9	24.2 1.000F 149.4 -173.6	
898 230 0 FCHOPIM230 70.0% MVA/Vd 62.0% MVA/Vd 68.2% MVA/Vd	0.997 8.5 189 150 324	839 C 848 F 1047 S	ASCAVEL CHOPIM- SOSORIO-	-230 -138 -230	1 1 1	130.3 90.0 -220.3	-20.7 22.3 0.985* -1.6	
919 14 1 5050R1A4-4GR 88.9% MVA/Vd	1.000 16.4 788	10 <mark>4</mark> 7 s	5050RIO-	-230	1	> 700.0	700.0MW 26.2	26.2Mvar

925 14 1 SSANTIAG-3GR 57.1% MVA/Vd	1.000 8.1 1402	1060 SSANTIAG-500	1 80	> 0.0 -1	800.0MW 3.7	-13.7Mvar
934 230 0 AREIA230 23.4% MVA/Vd 51.0% MVA/Vd 51.1% MVA/Vd	1.000 -5.7 672 319 319	> 235.0MW 5 933 AREIA500 1047 SOSORIO230 1047 SOSORIO230	57.0Mvar 1 8 1 -15 2 -15	1.0 -13 7.9 3 8.1 3	5.1 1.017* 9.0 9.1	001
1047 230 0 SOSORIO230 77.1% MVA/Vd 68.2% MVA/Vd 88.9% MVA/Vd 52.6% MVA/Vd 52.6% MVA/Vd	1.001 9.6 189 324 788 319 319	839 CASCAVEL-230 898 FCHOPIM230 919 SOSORIA4-4GR 934 AREIA230 934 AREIA230	1 14 1 22 1 -69 1 16 2 16	4.8 -10 1.1 4 8.8 5 6.4 -2 6.6 -2	5.6 4.3 7.3 1.000F 2.6 2.5	
1060 500 0 SSANTIAG-500 22.3% MVA/Vd 30.3% MVA/Vd 57.1% MVA/Vd 49.2% MVA/Vd	1.008 1.2 2182 2370 1402 2110	856 SEGREDO500 897 SCAXIAS500 925 SSANTIAG-3GR 995 ITA500	1 49 1 -71 1 -79 1 102	00.7 -4 5.8 110 9.3 110 4.4 -21	8.8 0.8 0.7 1.000F 2.6	001
1210 230 0 GRAVATAI-230 56.7% MVA/Vd 60.7% MVA/Vd 56.8% MVA/Vd	1.000 -26.6 672 672 672 672	> 1100.0MW 40 976 GRAVATAI-500 976 GRAVATAI-500 976 GRAVATAI-500	00.0M∨ar 1 -35 2 -38 3 -35	7.4 -13 4.1 -13 8.6 -13	2.0 1.01 <mark>6</mark> * 7.6 1.016* 0.4 1.016*	001 001 001
2458 230 0 CASCAVEL-230 21.6% MVA/Vd 20.6% MVA/Vd 57.4% MVA/Vd	1.000 2.7 319 356 600	> 400.0MW 12 839 CASCAVEL-230 839 CASCAVEL-230 896 CASCAVEL0500	25.0Mvar 1 -5 2 -6 1 -27	7.6 3 2.8 3 9.6 -20	7.9 8.1 1.0 1.0 <mark>4</mark> 7*	

Pode ser observado que as tensões de todas as barras foram controladas (em 1 p.u.), considerando que os limites dos *taps* dos transformadores não foram atingidos. Na Tabela 6.17 apresenta-se o relatório com o resultado de simulação utilizando-se o modelo proposto de transformador com *tap* variável.

Tabela 6.17: Relatório do ANAREDE para Solução do Fluxo de Potência / Sistema-Teste Brasileiro de 33 Barras / Modelo Proposto

-	DA BARRA NUM. KV TIPO	TENSAO	PARA	> MW BARRA	F L	Mvar > U X O S	- C I	MW Mvar RCUITOS
X	NOME	ANG	NUM.	NOME	NC	MW	Mvar X	TAP DEFAS TIE
		1	3		ST (ST			
AR	EA - A							
	800 14 2 GBMUNHOZ-3GR 34,4% MVA/Vd	1.000 0.0 1676	2501	VIRTUAL1	1	> 572.5	572 68.4	.5MW 68.4Mvar
	814 230 0	1.000		> 680.0MW 1	L30.0	Mvar		
	BATEIAS230	-20.3	2505		4	242.0	65 D	
	3.5% MVA/Vd 3.4% MVA/Vd	9999	2502	VIRTUALZ	1	-342.8	-63.3	
	824 500 0	0.994						
	GBMUNHOZ-500	-3.7	202.21	0	100	2000	2/01/101	
	5.8% MVA/Vd	9999 21.82	2501	VIRTUAL1	1	-572.5	-31.1	
	13.1% MVA/Vd	2182	933	AREIA500	2 2	283.9	15.5	
		• • • • • • •						
	895 500 0	0.955						
	BATEIAS500	-17.9	2505			242.2	00.1	
	61.5% MVA/Vd 60.5% MVA/Vd	600	2502	VIRTUAL2	1	343.2	80.1	
	44.9% MVA/Vd	2110	933	AREIA500	0 1	-899.1	-105.1	
	11.2% MVA/Vd	2110	959	CURITIBA-500	0 1	218.3	-54.3	
	904 14 1	1.000				>	40	0.0MW -168.6Mvar
	26.7% MVA/Vd	1625	995	5 ITA500	01	400.0	-168.6	
	915 14 1	1 000				>	40	0 OMW -36 5Myar
	MACHADIN-1GR	0.2				<i></i>	40	0.0HW 50.5HVdi
	32.0% MVA/Vd	1254	1030	MACHADIN-500	0 1	400.0	-36.5	
	922 500 0	0 004						
1	AREIA500	-3.9						
	13.4% MVA/Vd	2182	824	GBMUNHOZ - 500	1	-288.4	-29.6	
	75.5% MVA/Vd	2273	824	SEGREDO 500	$) \frac{2}{1}$	-283.9	103.0	002
	43.8% MVA/Vd	2110	895	BATEIAS500	1	916.8	34.1	
	38.4% MVA/Vd	2110	2521	VIRTUAL21	1	-158.8	201.6	002
	41.8% MVA/Vd	2182	959	CURITIBA-500) 1	906.0	21.3	
	938 500 0	0.985						
1	BLUMENAU-500	-21.6			120			
	49.3% MVA/Vd	672	2506	VIRTUALO	1	325.4	26.5	
	44.6% MVA/Vd	672	2508	VIRTUAL8	1	293.5	32.3	
	33.4% MVA/Vd	2037	955	CNOVOS500) 1	-638.3	-205.4	
	20.1% MVA/ VU					- 302.4		
	939 230 0	1 000		> 940 000	50 0	war		
	BLUMENAU-230	-23.8		> 340.0MW	50.0	. v ai		
	3.3% MVA/Vd	9999	2506	VIRTUAL6	1	-325.1	-14.6	
	2.9% MVA/Vd	9999	2508	VIRTUAL 8	1	-293.5	-14.3	
	955 500 0	1.028						
1	CNOVOS500	-11.1						
	28.4% MVA/Vd	2110	933	AREIA500) 1	-603.7	128.5	
	34.0% MVA/Vd	1688	938	CAXIAS500) 1	579.9	-114.3	
	27.9% MVA/Vd	2182	1030	MACHADIN-500) 1	-625.3	23.1	
	· · · · · · · · · · · · · · · · · · ·							
	959 500 0	0.956						
1	CURITIBA-500	-18.5	0.05	PATETAC FOR	1 1	218 0	12.2	
	42.9% MVA/Vd	2182	933	AREIA500) 1	-888.6	-108.0	
	34.2% MVA/Vd	1266	938	BLUMENAU-500) 1	304.2	-281.4	
	69.0% MVA/Vd	672	2504	VIRTUAL4	1	402.1	180.4	
	960 230 0	1 000		> 790 OMW 3	30 0	war		
1	960 230 0 CURITIBA-230	1.000 -21.0		> 790.0MW 3	30.Or	Mvar		
100	960 230 0 CURITIBA-230 4.3% MVA/Vd	1.000 -21.0 9999	2504	> 790.0MW 3	30.0r	-395.8	-163.3	

OCEPEL - Centro de Pesquisas de Energia Eletrica - ANAREDE V09.06.02

964 500 0 CAXIAS500 34.0% MVA/Vd 52.0% MVA/Vd 51.1% MVA/Vd 30.7% MVA/Vd 28.9% MVA/Vd	1.018 -18.5 1688 672 672 1688 2182	955 CNOVOS500 1 -573.9 -111.5 2509 VIRTUAL9 1 353.4 39.6 2510 VIRTUAL10 1 347.1 39.0 976 GRAVATAI-500 1 503.6 155.5 995 ITA500 1 -630.1 -122.7
965 230 0 CAXIAS230 3.5% MVA/Vd 3.5% MVA/Vd	1.000 -20.9 9999 9999	> 700.0MW 49.0Mvar 2509 VIRTUAL9 1 -353.2 -24.7 2510 VIRTUAL10 1 -346.8 -24.3
976 500 0 GRAVATAI-500 33.1% MVA/Vd 37.9% MVA/Vd 57.9% MVA/Vd 62.0% MVA/Vd 58.2% MVA/Vd	0.996 -21.0 1688 1688 672 672 672	964 CAXIAS500 1 -501.5 -242.8 995 ITA500 1 -600.2 -212.7 2511 VIRTUAL11 1 357.3 149.8 2512 VIRTUAL12 1 384.1 156.8 2513 VIRTUAL13 1 360.2 148.9
995 500 0 ITA500 26.7% MVA/Vd 29.0% MVA/Vd 36.3% MVA/Vd 10.9% MVA/Vd 50.2% MVA/Vd	1.027 -7.9 1625 2182 1688 2182 2110	904 ITA3GR 1 -399.8 197.5 1.000F 964 CAXIAS500 1 636.5 -131.0 976 GRAVATAI-500 1 610.4 -152.3 1030 MACHADIN-500 1 227.4 -87.9 1060 SSANTIAG-500 1 -1074.6 173.7 002
1030 500 0 MACHADIN-500 32.0% MVA/Vd 28.2% MVA/Vd 10.2% MVA/Vd	1.028 -9.1 1254 2182 2182	915 MACHADIN-1GR 1 -400.0 103.2 1.000F 955 CNOVOS500 1 627.0 -77.1 995 ITA500 1 -227.0 -26.1
2501 1 0 VIRTUAL1 34.4% MVA/Vd 5.8% MVA/Vd	0.997 -1.8 1676 9999	800 GBMUNHOZ-3GR 1 -572.5 -49.7 1.000F 824 GBMUNHOZ-500 1 572.5 49.7
2502 1 0 VIRTUAL2 3.5% MVA/Vd 58.4% MVA/Vd	1.001 -19.2 9999 600	814 BATEIAS230 1 343.0 72.3 895 BATEIAS500 1 -343.0 -72.3 1.053*
2503 1 0 VIRTUAL3 3.4% MVA/Vd 57.4% MVA/Vd	1.001 -19.2 9999 600	814 BATEIAS230 1 337.3 71.6 895 BATEIAS500 1 -337.3 -71.6 1.053*
2504 1 0 VIRTUAL4 63.7% MVA/Vd 4.3% MVA/Vd	1.016 -19.8 672 9999	959 CURITIBA-500 1 -398.6 -173.9 1.083* 960 CURITIBA-230 1 398.7 174.0
2505 1 0 VIRTUAL5 63.7% MVA/Vd 4.3% MVA/Vd	1.016 -19.8 672 9999	959 CURITIBA-500 1 -397.0 -177.3 1.083* 960 CURITIBA-230 1 397.1 177.4
2506 1 0 VIRTUAL6 48.4% MVA/Vd 3.3% MVA/Vd	1.002 -22.8 672 9999	938 BLUMENAU-500 1 -325.2 -20.7 1.018* 939 BLUMENAU-230 1 325.2 20.7
2507 1 0 VIRTUAL7 47.9% MVA/Vd 3.2% MVA/Vd	1.002 -22.8 672 9999	938 BLUMENAU-500 1 -321.6 -20.3 1.018* 939 BLUMENAU-230 1 321.6 20.3
2508 1 0 VIRTUAL8 43.8% MVA/Vd 2.9% MVA/Vd	1.002 -22.8 672 9999	938 BLUMENAU-500 1 -293.5 -26.6 1.018* 939 BLUMENAU-230 1 293.5 26.6
2509 1 0 VIRTUAL9 52.7% MVA/Vd 3.5% MVA/Vd	1.002 -19.7 672 9999	964 CAXIA5500 1 -353.3 -32.3 0.987* 965 CAXIA5230 1 353.3 32.3
2510 1 0 VIRTUAL10 51.7% MVA/Vd 3.5% MVA/Vd	1.002 -19.7 672 9999	964 CAXIA5500 1 -347.0 -31.8 0.987* 965 CAXIA5230 1 347.0 31.8

2511 1 0 1.009 VIRTUAL11 -22.3 -22.3 56.6% MVA/Vd 672 3.8% MVA/Vd 9999 976 GRAVATAI-500 1 -357.1 -140.6 1.023* 1210 GRAVATAI-230 1 357.1 140.6 002 2512 1 0 1.009 VIRTUAL12 -22.3 60.6% MVA/Vd 672 976 GRAVATAI-500 1 -383.8 -146.9 1.023* 4.1% MVA/Vd 9999 1210 GRAVATAI-230 1 383.8 146.9 002 2513 1 0 1.009 -22.3 VIRTUAL13 56.9% MVA/Vd 672 3.8% MVA/Vd 9999 976 GRAVATAI-500 1 -359.9 -139.6 1.023* 1210 GRAVATAI-230 1 359.9 139.6 56.9% MVA/Vd 002 2514 1 0 VIRTUAL14 1.001 RTUAL14 8.9 57.1% MVA/Vd 1402 7.1% MVA/Vd 1402 925 S5ANTIAG-3GR 1 -799.6 8.0% MVA/Vd 9999 1060 S5ANTIAG-500 1 799.6 47.0 1.000F 002 -47.0 002 AREA - B 808 14 1 1.000 > 1000 SCAXIAS--4GR 18.1 74.4% MVA/Vd 1344 2515 VIRTUAL15 1 1000.0 13.8 1000.0MW 13.8Mvar 810 14 1 1.000 1000.0MW 55.2Mvar SSEGREDO-4GR EGREDO-4GR 8.6 79.5% MVA/Vd 1260 856 SEGREDO--500 1 1000.0 55.2 839 230 0 0.996 CASCAVEL-230 0.8% MVA/Vd 0.8% MVA/Vd 44.3% MVA/Vd 50.7% MVA/Vd 12.9% MVA/Vd 12.6
 12.6
 9999
 2517
 VIRTUAL17
 1

 9999
 2518
 VIRTUAL18
 1

 189
 898
 FCHOPIM--230
 1

 189
 1047
 SOSORIO--230
 1

 319
 2458
 CASCAVEL-230
 1

 356
 2458
 CASCAVEL-230
 2
73.0 77.0 -80.6 -93.3 10.9 19.3 20.4 21.6 20.2 -39.7 9999 12.4% MVA/Vd 13.1 -41.8 840 138 0 CASCAVEL-138 49.7% MVA/Vd 52.5% MVA/Vd 0 1.000 > 150.0MW 32.0Mvar 9.9 150 9.9 150 2517 VIRTUAL17 1 -73.0 -15.6 150 2518 VIRTUAL18 1 -77.0 -16.4 848 138 0 1.000 > 90.0MW 17.0Mvar FCHOPIM--138 12.8 61.1% MVA/Vd 150 2519 VIRTUAL19 1 -90.0 -17.0 856 500 0 1.000 SEGREDO--500 2.6 79.5% MVA/Vd 1260 75.6% MVA/Vd 2273
 NKE00--500
 12.60
 810
 SSEGREDO-4GR
 1
 -1000.0
 50.1

 79.5%
 MVA/Vd
 1260
 810
 SSEGREDO-4GR
 1
 -1000.0
 50.1

 75.6%
 MVA/Vd
 2273
 933
 AREIA----500
 1
 1717.3
 10.2

 33.0%
 MVA/Vd
 2182
 1060
 SSANTIAG-500
 1
 -717.3
 -60.2
50.1 1.000F 001 896 500 0 1.001 CASCAVELO500 12.4 5.0% MVA/Vd 1637 13.7% MVA/Vd 600 897 SCAXIAS--500 1 23.9 2516 VIRTUAL16 1 -23.9 -78.8 78.8 1.004 12.2 9999 1637 897 500 0 SCAXIAS--500 10.0% MVA/Vd 1.5% MVA/Vd
 9999
 2515
 VIRTUAL15
 1
 -1000.0

 1637
 896
 CASCAVEL0500
 1
 -23.9

 2370
 1060
 SSANTIAG-500
 1
 1023.9
88.2 0.5 43.2% MVA/Vd 898 230 0 FCHOPIM--230 46.3% MVA/Vd 0.9% MVA/Vd 0.987 16.1 189 839 CASCAVEL-230 1 81.4 2519 VIRTUAL19 1 90.0 1047 SOSORIO--230 1 -171.4 -28.9 9999 53.6% MVA/Vd 324 6.4 919 14 1 1.000 > SOSOR1A4-4GR 23.9 88.8% MVA/Vd 788 2520 VIRTUAL20 1 700.0 700.0MW > 4.4Mvar 4.4 800.0MW 1.5Mvar 14 1 1.000 > 925 SSANTIAG-3GR GANTIAG-3GR 12.3 57.1% MVA/Vd 1402 2514 VIRTUAL14 1 800.0 1.5 001 _____ 934 230 0 1.000 > 235.0MW 57.0Mvar AREIA----230 -2.8 2.5% MVA/Vd 9999 65.3% MVA/Vd 319 -2.8 9999 2521 VIRTUAL21 1 159.0 -193.7 319 1047 SOSORIO--230 1 -196.9 68.3 319 1047 SOSORIO--230 2 -197.1 68.4 65.4% MVA/Vd

VEL-230 1 94.5 -26.4 IM230 1 171.9 -5.3 AL20 1 -688.1 79.0 230 1 210.7 -23.6 230 2 211.0 -23.6	839 CASCAVEL-230 898 FCHOPIM230 2520 VIRTUAL20 934 AREIA230 934 AREIA230	1047 230 0 0.989 SOSORIO230 17.0 52.5% MVA/Vd 189 53.6% MVA/Vd 324 7.0% MVA/Vd 9999 67.2% MVA/Vd 319 67.3% MVA/Vd 319
DO500 1 720.2 9.9 A5500 1 -1016.0 84.8 AL14 1 -799.3 95.5 001 500 1 1095.0 -190.2 001	856 SEGREDO500 897 SCAXIA5500 2514 VIRTUAL14 995 ITA500	1060 500 0 1.006 SSANTIAG-500 5.4 32.8% MVA/Vd 2182 42.8% MVA/Vd 2370 8.0% MVA/Vd 9999 52.3% MVA/Vd 2110
.0MW 400.0Mvar AL11 1 -356.9 -131.8 001 AL12 1 -383.5 -137.4 001 AL13 1 -359.7 -130.8 001	> 1100.0MW 4(2511 VIRTUAL11 2512 VIRTUAL12 2513 VIRTUAL13	1210 230 0 1.000 GRAVATAI-230 -23.5 3.8% MVA/Vd 9999 4.1% MVA/Vd 9999 3.8% MVA/Vd 9999
VEL-230 1 -10.9 38.0 VEL-230 2 -13.0 40.0 AL16 1 23.9 -78.0	839 CASCAVEL-230 839 CASCAVEL-230 2516 VIRTUAL16	2458 230 0 1.000 CASCAVEL-230 12.5 12.4% MVA/Vd 319 11.8% MVA/Vd 356 0.8% MVA/Vd 9999
AS4GR 1 -1000.0 37.2 1.000F AS500 1 1000.0 -37.2	808 SCAXIAS4GR 897 SCAXIAS500	2515 1 0 1.001 VIRTUAL15 15.2 74.4% MVA/Vd 1344 10.0% MVA/Vd 9999
VELO500 1 23.9 -78.4 1.009* VEL-230 1 -23.9 78.4	896 CA5CAVEL0500 2458 CA5CAVEL-230	2516 1 0 1.005 VIRTUAL16 12.4 13.6% MVA/Vd 600 0.8% MVA/Vd 9999
VEL-230 1 -73.0 -17.4 VEL-138 1 73.0 17.4 0.984*	839 CA5CAVEL-230 840 CA5CAVEL-138	2517 1 0 0.990 VIRTUAL17 11.2 0.8% MVA/Vd 9999 50.5% MVA/Vd 150
EL-230 1 -77.0 -18.4 EL-138 1 77.0 18.4 0.984*	839 CASCAVEL-230 840 CASCAVEL-138	2518 1 0 0.990 /IRTUAL18 11.2 0.8% MVA/Vd 9999 53.3% MVA/Vd 150
M138 1 90.0 19.7 0.975* M230 1 -90.0 -19.7	848 FCHOPIM138 898 FCHOPIM230	2519 1 0 0.981 /IRTUAL19 14.4 62.6% MVA/Vd 150 0.9% MVA/Vd 9999
A4-4GR 1 -694.1 37.3 1.000F 0230 1 694.1 -37.3	919 SOSOR1A4-4GR 1047 SOSORIO230	2520 1 0 0.993 /IRTUAL20 20.5 88.8% MVA/Vd 788 7.0% MVA/Vd 9999
500 1 158.9 -197.5 1.030* 001 230 1 -158.9 197.5	933 AREIA500 934 AREIA230	2521 1 0 1.011 /IRTUAL21 -3.3 37.3% MVA/Vd 672 2.5% MVA/Vd 9999

Assim como no modelo usual, as tensões de todas as barras foram controladas (em 1 p.u.), considerando que os limites dos *taps* dos transformadores não foram atingidos.

Comparando-se as Tabelas 6.16 e 6.17, observa-se diferenças em todas as grandezas apresentadas. Verifica-se, como exemplo, que o módulo da tensão da barra 896, tem valor de 0,982 p.u., utilizando-se o modelo usual, e 1,001, utilizando-se o modelo proposto. Com relação ao ângulo das tensões, ainda para a

barra 896, tem-se o valor de $4,9^{\circ}$, utilizando-se o modelo usual, e $12,4^{\circ}$, utilizando-se o modelo proposto.

Com relação aos fluxos nas linhas de transmissão, diferenças consideráveis são observadas. Como exemplo, o fluxo de potência ativa da barra 896 para a barra 2458, vale 279,6 MW, utilizando-se o modelo usual, e 23,9 MW com sentido inverso, utilizando-se o modelo proposto. O fluxo de potência reativa vale 217,5 MVAr, utilizando-se o modelo usual, e 78,8 MVAr, utilizando-se o modelo proposto. Neste ponto observa-se diferença qualitativa entre os modelos, uma vez que, além de os valores dos fluxos de potência ativa terem valores consideravelmente diferentes, apresentam, também, sentidos opostos.

Além dos modelos diferentes, as consideráveis diferenças observadas são devidas ao número acentuado de transformadores com *taps* variáveis desse sistema, como apresentado na Figura 6.43.

6.2.4.4 Índices de Estabilidade de Tensão

A seguir serão apresentados relatórios com índices de estabilidade de tensão, para cada barra dos sistemas-teste brasileiros de 16 e de 33 barras, utilizando-se os modelos usual e proposto de transformador com *tap* variável. Os relatórios foram obtidos através do programa EstabTen [48]. Cada índice apresentado no relatório é detalhado em [19]. Nas simulações realizadas referentes a cada modelo, foi considerado controle de tensão através de variação do *tap* de transformadores.

6.2.4.4.1

Sistema-Teste Brasileiro de 16 Barras

Na Tabela 6.18 apresenta-se relatório com índices de estabilidade de tensão, para cada barra do sistema-teste brasileiro de 16 barras, utilizando-se o modelo usual de transformador com *tap* variável. O controle de tensão através de variação do *tap* de transformadores é detalhado na Seção 6.2.4.3.2.

Tabela 6.18: Relatório com Índices de Estabilidade de Tensão / Sistema-Teste Brasileiro de 16 Barras / Modelo Usual

CEPEL - CENTRO DE	PESQUISAS	DE EN	ERGIA	ELETRICA	- PROGRAMA	DE ANAL	ISE DE REDES	; - <mark>v09.06.00</mark>
RELATORIO - ESTABI	LIDADE DE	TENSA	NO					
AREA = 1 ****	** AREA 1	****	***					
Barra Numero-Nome	Tensao E	quip T	ipo	sinj	Smax	Beta	Margem%	
1 GERADOR-1 2 BARRA-2 3 BARRA-3 10 BARRA-10 11 BARRA-11 12 BARRA-12 13 BARRA-13 14 BARRA-14 15 BARRA-15	1.000 1.007 0.995 0.956 0.971 0.986 0.983 1.030 1.014	G P LR LC LR L R L P	1 0 0 0 0 0 0 0 0 0 0	3.520 0.000 0.563 0.516 0.488 1.155 0.681 0.691 0.000	3.5 19.8 13.4 8.6 8.7 10.2 8.8 6.0 10.8	0.6 76.7 87.4 97.9 96.8 94.2 94.4 94.4 91.1	0.3 95.8 94.0 94.4 88.7 92.3 88.5	
RELATORIO - ESTABI AREA = 2 ****	LIDADE DE	TENSA	0 ***					
Barra Numero-Nome	Tensao E	quip T	ipo	sinj	Smax	Beta	Margem%	
4 BARRA-4 5 BARRA-5 6 BARRA-6 7 BARRA-7 8 BARRA-8 9 C.SINCRONO 16 GERADOR-2	0.923 0.952 0.991 1.003 1.012 1.000 1.000	LLLLQG	0 0 0 0 0 0 1 2	1.270 0.369 0.208 0.205 0.458 0.097 2.141	11.1 14.4 42.7 14.6 12.3 4.2 2.1	98.9 97.9 95.7 96.3 96.6 95.3 180.0	88.5 97.4 99.5 98.6 96.3 97.7 0.0	

Na Tabela 6.19, apresenta-se relatório com índices de estabilidade de tensão, para cada barra do sistema-teste brasileiro de 16 barras, utilizando-se o modelo proposto de transformador com *tap* variável.

Tabela 6.19: Relatório com Índices de Estabilidade de Tensão / Sistema-Teste Brasileiro de 16 Barras / Modelo Proposto

RELATORIO - ESTABILIDADE DE TENSAO AREA = 1 ****** Barra Numero-Nome Tensao Equip Tipo Sinj Smax Beta Margem% 1 GERADOR-1 1.000 G 1 3.512 3.9 20.6 11.0 2 BARRA-2 1.006 P 0 0.000 20.0 75.9 3 BARRA-3 0.992 LR 0 0.563 13.6 86.5 95.9 10 BARRA-10 0.945 LC 0 0.516 9.5 97.7 94.6 11 BARRA-11 0.962 LR 0 0.488 9.3 96.3 94.7 12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	00
AREA = 1 ****** AREA 1 ****** Barra Numero-Nome Tensao Equip Tipo Sinj Smax Beta Margem% 1 GERADOR-1 1.000 G 1 3.512 3.9 20.6 11.0 2 BARRA-2 1.006 P 0 0.000 20.0 75.9 3 BARRA-3 0.992 LR 0 0.563 13.6 86.5 95.9 10 BARRA-10 0.945 LC 0 0.516 9.5 97.7 94.6 11 BARRA-11 0.962 LR 0 0.488 9.3 96.3 94.7 12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	
Barra Numero-NomeTensao Equip TipoSinjSmaxBeta Margem%1GERADOR-11.000G13.5123.920.611.02BARRA-21.006P00.00020.075.93BARRA-30.992LR00.56313.686.595.910BARRA-100.945LC00.5169.597.794.611BARRA-110.962LR00.4889.396.394.712BARRA-120.981L01.15510.693.589.1	
1 GERADOR-1 1.000 G 1 3.512 3.9 20.6 11.0 2 BARRA-2 1.006 P 0 0.000 20.0 75.9 3 BARRA-3 0.992 LR 0 0.563 13.6 86.5 95.9 10 BARRA-10 0.945 LC 0 0.516 9.5 97.7 94.6 11 BARRA-11 0.962 LR 0 0.488 9.3 96.3 94.7 12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	
2 BARRA-2 1.006 P 0 0.000 20.0 75.9 3 BARRA-3 0.992 LR 0 0.563 13.6 86.5 95.9 10 BARRA-10 0.945 LC 0 0.516 9.5 97.7 94.6 11 BARRA-11 0.962 LR 0 0.488 9.3 96.3 94.7 12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	
3 BARRA-3 0.992 LR 0 0.563 13.6 86.5 95.9 10 BARRA-10 0.945 LC 0 0.516 9.5 97.7 94.6 11 BARRA-11 0.962 LR 0 0.488 9.3 96.3 94.7 12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	
10 BARRA-10 0.945 LC 0 0.516 9.5 97.7 94.6 11 BARRA-11 0.962 LR 0 0.488 9.3 96.3 94.7 12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	
11 BARRA-11 0.962 LR 0 0.488 9.3 96.3 94.7 12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	
12 BARRA-12 0.981 L 0 1.155 10.6 93.5 89.1	
13 BARRA-13 0.977 LR 0 0.681 9.1 93.9 92.5	
14 BARRA-14 1.030 L 0 0.691 5.8 94.5 88.2	
15 BARRA-15 1.011 P 0 0.000 10.7 90.4	
17 VIRTUAL1 0.974 P 0 0.000 7.9 91.5	
RELATORIO - ESTABILIDADE DE TENSAO	
AREA = 2 ***** AREA 2 *****	
Barra Numero-Nome Tensao Equip Tipo Sinj Smax Beta Margem%	
4 BARRA-4 0.922 L 0 1.270 11.0 99.0 88.4	
5 BARRA-5 0.952 L 0 0.369 14.4 97.9 97.4	
6 BARRA-6 0.991 L 0 0.208 42.6 95.7 99.5	
7 BARRA-7 1.005 L 0 0.205 14.8 96.5 98.6	
8 BARRA-8 1.016 L 0 0.458 12.6 97.1 96.4	
9 C. SINCRONO 1,000 0 1 0,124 4.2 95.5 97.1	
16 GERADOR-2 1.000 G 2 2.141 2.1 180.0 0.0	
18 VIRTUAL2 0.915 P 0 0.000 10.3 93.6	
19 VTRTUAL 3 0.914 P 0 0.000 12.5 96.8	

Como analisado na Seção 6.2.4.3.2, os pontos de operação obtidos por cada modelo de transformador com *tap* variável são diferentes, o que pode ser observado nos diferentes valores das tensões. Consequentemente, os índices referentes a cada barra também são diferentes, como pode ser observado comparando-se as Tabelas 6.18 e 6.19. Como exemplo, os índices Beta e Margem (%) para a barra 1, valem 0,6 e 0,3, utilizando-se o modelo usual, e 20,6 e 11, utilizando-se o modelo proposto.

6.2.4.4.2

Sistema-Teste Brasileiro de 33 Barras

Na Tabela 6.20 apresenta-se relatório com índices de estabilidade de tensão, para cada barra do sistema-teste brasileiro de 33 barras, utilizando-se o modelo usual de transformador com *tap* variável. O controle de tensão através de variação do *tap* de transformadores é detalhado na Seção 6.2.4.3.3.

Tabela 6.20: Relatório com Índices de Estabilidade de Tensão / Sistema-Teste Brasileiro de 33 Barras / Modelo Usual

CEPEL - CENTRO DE	PESQUISA	S DE E	NERGIA	ELETRICA ·	- PROGRAMA	DE ANAL	ISE DE REDES	- V09.06.
RELATORIO - ESTABI	LIDADE D	E TENS	5AO					
AREA = 1 AREA	UM							
Barra Numero-Nome	Tensao	Equip	тіро	Sinj	Smax	Beta	Margem%	
800 GBMUNHOZ-3GR	1.000	G	2	9.320	9.3	180.0	0.0	
814 BATEIAS230	1.000	L	0	6.923	29.9	127.4	76.9	
824 GBMUNHOZ-500	1.000	P	0	0.000	113.3	100.9		
895 BATEIAS500	0.963	P	0	0.000	37.1	126.3		
904 ITA3GR	1.000	G	1	4.465	22.4	90.7	80.1	
915 MACHADIN-1GR	1.000	G	1	4.030	15.8	71.8	74.5	
933 AREIA500	1.000	P	0	0.000	109.2	101.4		
938 BLUMENAU-500	0.993	P	0	0.000	31.3	127.8		
939 BLUMENAU-230	1.000	L	0	9.413	28.9	130.0	67.5	
955 CNOVOS500	1.034	P	0	0.000	56.0	107.0		
959 CURITIBA-500	0.963	P	0	0.000	37.9	128.3		
960 CURITIBA-230	1.000	L	0	8.562	30.0	130.2	71.4	
964 CAXIAS500	1.024	P	0	0.000	33.6	119.6		
965 CAXIAS230	1.000	L	0	7.017	28.5	121.4	75.3	
976 GRAVATAI-500	1.002	P	0	0.000	27.7	123.8		
995 ITA500	1.032	P	0	0.000	62.7	100.4		
1030 MACHADIN-500	1.033	P	0	0.000	57.1	100.8		
RELATORIO - ESTABI	LIDADE D	E TENS	5AO					
AREA = 2 AREA	DOIS							
Barra Numero-Nome	Tensao	Equip	тіро	Sinj	Smax	Beta	Margem%	
808 SCAXIAS4GR	1.000	G	1	10.031	31.5	66.0	68.1	
810 SSEGREDO-4GR	1.000	G	1	10.001	42.5	71.9	76.5	
839 CASCAVEL-230	0.997	P	0	0.000	30.7	90.1		
840 CASCAVEL-138	1.000	L	0	1.534	15.1	97.2	89.8	
848 FCHOPIM138	1.000	L	0	0.916	9.8	93.3	90.7	
856 SEGREDO500	1.004	P	0	0.000	106.9	85.4		
896 CASCAVELO500	0.982	P	0	0.000	47.0	84.5		
897 SCAXIAS500	0.997	P	0	0.000	71.7	77.6		
898 FCHOPIM230	0.997	P	ō	0.000	29.1	75.7		
919 5050R1A4-4GR	1,000	G	1	7.005	15.3	50.2	54.1	
925 SSANTIAG-3GR	1.000	Ğ	1	8,001	34.7	71.5	76.9	
934 ARETA230	1.000	ĩ	ō	2.418	49.9	94.5	95.2	
1047 SOSORTO230	1 001	P	õ	0 000	37 7	69 3	1. A 1. A 1.	
1060 SSANTIAG-500	1 008	P	õ	0.000	95 6	81 5		
1210 GRAVATAT-230	1 000	i	õ	11 705	26.5	127 8	55 9	
2458 CASCAVEL-230	1.000	L	õ	4,191	33.1	91.7	87.3	

00

Na Tabela 6.21, apresenta-se relatório com índices de estabilidade de tensão, para cada barra do sistema-teste brasileiro de 33 barras, utilizando-se o modelo proposto de transformador com *tap* variável.

Tabela 6.21: Relatório com Índices de Estabilidade de Tensão / Sistema-Teste Brasileiro de 33 Barras / Modelo Proposto

CCEPEL - CENTRO DE PESQUISAS DE ENERGIA ELETRICA - PROGRAMA DE ANALISE DE REDES - V09.06.00 RELATORIO - ESTABILIDADE DE TENSAO

Barra	Numero-Nome	Tensao	Equip	тіро)	Sinj	Smax	Beta	Margem%	
800 814 824	GBMUNHOZ-3GR BATEIAS230 GBMUNHOZ-500	1.000 1.000 0.994	GLP	200		5.765 6.923 0.000	5.8 29.8 111.8	180.0 127.4 97.7	0.0 76.8	
895 904 915 933	BATEIAS500 ITA3GR MACHADIN-1GR AREIA500	0.955 1.000 1.000 0.994	PGGP	1 1 0		4.341 4.017 0.000	22.3 15.8 107.7	126.2 88.8 71.0 98.0	80.5 74.6	
938 939 955 959	BLUMENAU-500 BLUMENAU-230 CNOVOS500 CURTITBA-500	0.985 1.000 1.028	PLP	0000		0.000 9.413 0.000	30.8 28.6 55.3 37.3	127.8 130.1 105.4 128.3	67.1	
960 964	CURITIBA-230	1.000	LP	00		8.562	29.3	130.4	70.7	
965 976 9950 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514	CAXIAS230 GRAVATAI-500 ITA500 MACHADIN-500 VIRTUAL1 VIRTUAL2 VIRTUAL2 VIRTUAL4 VIRTUAL4 VIRTUAL5 VIRTUAL5 VIRTUAL6 VIRTUAL6 VIRTUAL6 VIRTUAL6 VIRTUAL6 VIRTUAL10 VIRTUAL10 VIRTUAL11 VIRTUAL11 VIRTUAL13 VIRTUAL14	$\begin{array}{c} 1.000\\ 0.996\\ 1.027\\ 1.028\\ 0.997\\ 1.004\\ 1.004\\ 1.016\\ 1.016\\ 1.002\\ 1.002\\ 1.002\\ 1.002\\ 1.002\\ 1.002\\ 1.009\\ 1.009\\ 1.009\\ 1.009\\ 1.001\\ \end{array}$		000000000000000000000000000000000000000		7.017 0.000	28.1 27.3 62.0 56.5 196.8 30.6 30.5 30.1 27.1 27.1 27.1 27.1 27.1 26.9 28.6 28.5 24.0 24.1 24.0 81.9	121.2 123.6 98.9 99.2 94.0 125.3 125.2 127.8 127.8 127.2 127.0 118.9 118.8 124.1 124.2 124.1 77.8	75.0	
RELAT	DRIO - ESTAE = 2 ARE	A DOIS	E DE	TENS	AO					
Barra	Numero-Nome	Tens	ao Eq	uip	тір	o <mark>Sin</mark> j		Smax	Beta	Margem%
808 810 839	SCAXIAS40 SSEGREDO-40 CASCAVEL-23	R 1.00 R 1.00	0 0 6	G G P	1 1 0	10.001 10.015 0.000		31.1 42.3 31.9	62.8 69.3 83.3	67.8 76.3
840 848 856 896 897	CASCAVEL-13 FCHOPIM13 SEGREDO50 CASCAVELO50 SCAXIAS50	8 1.00 8 1.00 0 1.00 0 1.00 0 1.00	0 0 1 4		00000	1.534 0.916 0.000 0.000 0.000		15.2 9.6 105.7 48.1 72.0	94.1 92.9 81.5 79.9 73.7	89.9 90.5
898 919	SOSOR1A4-40	R 1.00	0	G	1	7.000		28.8	48.1	54.3
925 934 1047	AREIA23 SOSORIO23	R 1.00	0	G L P	1000	2.418		49.5 37.2	92.3 66.4	95.1
1210 2458 2515 2516 2517 2518 2519 2520 2521	GRAVATAI-23 CASCAVEL-23 VIRTUAL15 VIRTUAL16 VIRTUAL16 VIRTUAL17 VIRTUAL18 VIRTUAL20 VIRTUAL21	0 1.00 0 1.00 1.00 1.00 0.99 0.99 0.98 0.99 1.01	0 0 1 5 0 0 1 3 1		000000000000000000000000000000000000000	0.000 11.705 0.000 0.000 0.000 0.000 0.000 0.000 0.000		26.3 34.5 81.6 39.4 17.3 17.5 14.1 45.2 66.3	127.7 83.4 72.6 82.3 90.0 90.0 87.2 63.6 93.8	55.5

AREA = 1

AREA UM

Como analisado na Seção 6.2.4.3.3, os pontos de operação obtidos por cada modelo de transformador com *tap* variável são diferentes, o que pode ser observado nos diferentes valores das tensões obtidas. Consequentemente, os índices referentes a cada barra também são diferentes, como pode ser observado nos relatórios nas Tabelas 6.20 e 6.21. Como exemplo, os índices Beta e Margem (%) para a barra 904, valem 90,7 e 80,1, utilizando-se o modelo usual, e 88,8 e 80,5, utilizando-se o modelo proposto.

6.3

Conclusões

Os resultados apresentados neste capítulo mostraram os diferentes resultados obtidos utilizando-se os modelos usual e proposto em testes laboratoriais e em simulações computacionais, tanto em situações em que os *taps* variaram para controlar tensões, quanto em situações em que os *taps* não variaram para controlar as tensões.

Em alguns resultados foram observadas diferenças quantitativas pouco consideráveis, como na comparação entre as curvas com fator de potência constante. Em outros resultados, diferenças mais significativas foram observadas, como na comparação dos fluxos de potência ativa e reativa nas linhas de transmissão e mesmo nos valores das tensões e potências geradas para os sistemas-teste brasileiros.

As diferenças quantitativas já seriam justificativas para a utilização do modelo proposto de transformador com *tap* variável, considerando-se o baixo custo para sua implementação computacional. Todavia, merece maior destaque nesta tese as diferenças qualitativas entre os resultados fornecidos pelos dois modelos com relação: i) à variação do ponto de máximo carregamento com o *tap*; ii) aos efeitos de ações de controle de tensão na região anormal, dependendo do modelo da carga; iii) aos efeitos de ações de controle de tensão na região anormal, dependendo do modelo da carga; iii) aos efeitos de ações de controle de tensão se tensões controladas por um modelo e não controladas por outro; iv) às diferenças no sentido do fluxo de potência em linha de transmissão.