5 Simulação da cimentação do poço em zona de sal

A principal preocupação no projeto do revestimento é garantir o isolamento e a integridade do poço (Nelson, 1990). Isto se consegue através do trabalho e iteração de 3 elementos: revestimento, cimento e formação rochosa do poço.

Neste caso específico o material que define a formação rochosa do poço é o sal. A integridade do poço induz ao entendimento de como as tensões nos materiais se comportam antes e depois da perfuração do poço. Com este propósito foi realizada uma análise numérica da simulação do endurecimento do cimento, bem como foi analisada a interação entre o sal-cimento e cimentorevestimento.

Assim neste trabalho focaliza-se num procedimento passo a passo de carregamento e descarregamento, desde a perfuração do poço até o endurecimento do cimento no poço. Para aproximar os resultados a uma situação mais real, o revestimento foi simulado como um material elasto-plástico com uma superfície de escoamento do critério de von Mises, e o cimento foi simulado como um material elástico.

Finalmente o sal foi definido através da lei constitutiva de fluência do duplo mecanismo de deformação. Os principais parâmetros levados em consideração nesta simulação foram o tempo, pressões e temperaturas elevadas.

Como parte do processo de simulação deste caso foram simuladas as seguintes situações: tensões in-situ do sal, tensões induzidas pela perfuração e pela pressão do fluido de perfuração, pela cimentação, e o processo de endurecimento do cimento.

5.1. Modelagem dos materiais usados na simulação

Na presente simulação três materiais foram usados para simular este problema: revestimento, cimento e sal. Cada um destes materiais apresentam diferentes propriedades e são apresentados nos itens a seguir:

5.1.1. Modelo para o revestimento

O revestimento foi simulado como um material elasto-plástico considerando o critério de von Mises, que pode ser descrito pelas seguintes equações:

$$F = f(J_{2D}) - \sigma_{y}(\overline{\varepsilon}^{p})$$
(5.1)

$$f(J_{2D}) \to \sigma_{eqvMises} = \sqrt{3} \cdot J_{2D}$$
(5.2)

$$J_{2D} = \frac{1}{2} S_{ij} S_{ij}$$
(5.3)

Onde:

 $f(J_{2D})$ é uma função que depende do estado de tensões, $\sigma_{eqvMises}$ é a tensão equivalente de von Mises, J_{2D} é o segundo invariante do tensor desviador, S_{ij} é o tensor desviador, $\sigma_y(\bar{\varepsilon}^p)$ é a tensão de escoamento em função da deformação plástica equivalente, $\bar{\varepsilon}^p$ é a deformação plástica equivalente.

Os parâmetros elasto-plástico do revestimento são apresentados na Tabela 5.1 (Bourgoyne et al., 1986).

Tabela 5.1: Parâmetros elasto-plásticos usados na simulação do revestimento.

E (MPa)	2,0·10 ⁵
ν	0,30
Tensão escoamento (MPa)	517,11

Estes parâmetros do revestimento (Bourgoyne et al., 1986) estão baseados na resistência de escoamento mínimo de 517,11 MPa (75000 psi) para

um revestimento do tipo *API Grade C-75*. O diâmetro externo é de 0,24 m (aprox. 9 5/8"), a espessura do revestimento é de 0,015 m (aprox. 0,545") e o peso nominal é de 79,62 kg/m (aprox. 53,50 lbm/ft).

5.1.2. Modelo para o cimento

Segundo Pfeifle et al. (2001), as propriedades elásticas do cimento mudam significativamente durante o endurecimento. Neste trabalho o cimento foi modelado com as propriedades elásticas dependentes do tempo, de forma a representar o ganho de resistência ao longo do tempo (Tabela 5.2).

Tabela 5.2: Propriedades elásticas dependentes do tempo para o cimento, (modificado - Pfeifle et al., 2001).

Intervalo de tempo (dias)	Módulo de Young (MPa)	Coeficiente de Poisson
0-0,6	1504,98	0,286
0,6 - 1	2850,62	0,286
1,0-2,0	4514,96	0,286
2,0-3,0	5957,98	0,286
3,0-4,0	7179,67	0,286
4,0-5,0	8197,76	0,286
5,0-6,0	9029,92	0,286
6,0-7,0	9693,89	0,286
7,0-9,0	10818,20	0,286
9,0 - 11,0	11030,67	0,286
>11,0	13500,00	0,286

Como demonstrado por Pfeifle et al. (2001), através de ensaios de compressão uniaxial, o cimento apresenta o valor final do módulo de Young após 11 dias.

Para o modelo elástico do cimento foram usados os parâmetros apresentados na Tabela 5.3 (Pfeifle et al., 2001; Pattillo & Kristiansen, 2002; Gray et al. 2007):

Tabela 5.3. Parâmetros elásticos, para a simulação do cimento (modificado - Pfeifle et al., 2001; Pattillo & Kristiansen, 2002; Gray et al., 2007).

Parâmetros elásticos		
E (MPa)	13500,00	
V	0,286	

A lei usada na modelagem do sal é baseada na lei constitutiva do duplo mecanismo de deformação (Costa et al., 2005) e é apresentada na Equação 5.7 e 5.8.

Esta lei foi aprimorada a partir de testes de fluência em rocha de sal no IPT (Instituto de Pesquisas Tecnológicas do Estado de SP). Esta lei é derivada da lei constitutiva de fluência baseada no modelo de deformação por vários mecanismos (*multimechanism deformation model*, M-D) de Munson e Dawson (1984) em 1979.

Existem dois mecanismos micro mecânicos que levam em conta esta lei: deslocamento por deslizamento (*dislocation glide = dislocation slip*) e o mecanismo indefinido segundo Munson e Dawson (1984). Mas, segundo Costa et al. (2010), este mecanismo indefinido é devido à fluência no contato dos grãos de sal, isto é, a fluência provocada pela dissolução do sal que é função do aumento da solubilidade sobre pressões elevadas nos contatos dos grãos de sal.

$$\dot{\varepsilon} = \dot{\varepsilon}_{o} \cdot \left(\frac{\sigma_{eq}}{\sigma_{o}}\right)^{n} \cdot e^{\left(\frac{Q}{R \cdot T_{o}} - \frac{Q}{R \cdot T}\right)}$$
(5.7)

 $\sigma_{eqTresca} = \sigma_1 - \sigma_3 \tag{5.8}$

Em que $\dot{\varepsilon}$ é a taxa de deformação por fluência na condição de regime permanente (*steady-state*), $\dot{\varepsilon}_o$ é a taxa de deformação por fluência de referência, σ_{eq} é a tensão equivalente de Tresca, $\sigma_{eqTresca} = \sigma_1 - \sigma_3$, onde σ_1 é tensão principal maior e σ_3 é tensão principal menor, σ_o é a tensão efetiva de referência, Q é a energia de ativação para a halita (kcal/mol), Q=12 kcal/mol (Costa et al. 2005), R é a constante universal dos gases (kcal/mol.K), R= 1,9858·10⁻³, T_o é a temperatura de referência (K) no qual a rocha foi testada no laboratório $T_o =$ 86 °C = 359,15 *K*, *T* é a temperatura da rocha na profundidade em estudo (K), n é o coeficiente que depende do nível das tensões aplicadas.

A Tabela 5.4 apresenta os parâmetros usados para simulação da camada de sal.

Parâmetros elásticos			
E (MPa)	20400,0		
V	0,36		
Parâmetros para a lei de fluência			
Q (kcal/mol)	12,0		
R (kcal/mol.K)	1,9858·10 ⁻³		
T _o (K)	359,15		
T (K)	315,15		
E _o (1/h)	1,88·10⁻ ⁶		
σ _o (MPa)	10		
para σ₀<10 MPa	n ₁ = 3,36		
para σ₀>10 MPa	n ₂ = 7,55		

Tabela 5.4. Parâmetros elásticos e de fluência usados no programa de EF (modificado - Costa et al., 2010; Mackay et al., 2008).

Para poder usar esta lei de fluência no programa Abaqus, foram necessárias 3 sub-rotinas do Fortran: uma para definição da lei (CREEP) e as outras duas para obter a variável de estado - tensão equivalente de Tresca (USDFLD e GETVRM).

5.2. Estudo de caso

As análises consideravam um caso sintético de estudo, não real. A profundidade e características dos estratos até a seção do poço de sal. São apresentadas na Tabela 5.5, para uma profundidade igual a 3000 m (9842,52 ft).

Tabela 5.5. Características dos principais estratos para o estudo de caso (Mackay et al., 2008).

Material	Densidade	Profundidade	
Lâmina d'água	1027 kg/m ³	0 m a -1000 m	
	(64,11 lb/ft ³)	(0 ft a -3280,84 ft)	
Outros	1 psi/ft = 2306,66 kg/m ³	-1000 m a -2000 m	
sedimentos	(144 lb/ft ³)	(-3280,84 a -6561,68 ft)	
Sal	2160 kg/m ³	-2000 m a -3000 m	
	(134,84 lb/ft ³)	(-6561,68 ft a – 9842,52 ft)	

Para realizar a transferência do carregamento total para a seção de estudo, na profundidade de 3000 m (9842,52 ft) abaixo do nível do mar, foi necessário separar as tensões geradas pelas três áreas (lâmina d'água, outros sedimentos e a camada do sal).

A primeira área chamada de lâmina d'água representa o carregamento causado pelo peso da coluna de água. A área denominada "outros sedimentos"

representa o maciço rochoso localizado acima do estrato de sal, com uma densidade de 2306,66 kg/m³ (1 psi/ft). Este valor é comumente usado pela indústria de petróleo para simular o sobrecarregamento da formação rochosa.

Finalmente, a camada de sal nesta simulação foi constituída de halita, a qual representa de uma forma mais geral os evaporitos. A halita é um tipo de rocha de sal com um peso especifico de 2160 kg/m³ (134,84 lb/ft³) (Costa et al., 2010).

A tensão vertical in-situ é calculada pela soma das três áreas do sobrecarregamento e tem um valor de 53,87 MPa. O coeficiente de empuxo da tensão horizontal para a tensão vertical é de 1, nos dois sentidos ortogonais horizontais.

O cálculo da temperatura, parte do leito marinho (-1000 m TVD) com uma temperatura inicial de 4ºC até a seção de estudo (-3000 m TVD) com um gradiente de temperatura de 30 ºC/km (Oliveira et al., 1985) para a formação rochosa (1000 m) e um gradiente de temperatura de 8 ºC/km para a rocha de sal (1000 m), assim a temperatura final no ponto de interesse é de 42 ºC (315,15 K).

Na equação constitutiva a temperatura de referência é de 86 °C (359,15 K), isto devido às condições de temperatura do ensaio no laboratório. O peso do fluido de perfuração foi de 10 ppg (0,5194 psi/ft), que na profundidade em estudo produz uma pressão (P_w) de 35,25 MPa (5112,20 psi), no entanto o peso do fluido do cimento (P_{wc}) (antes de endurecer) foi de 15,8 ppg (0,8206 psi/ft) produzindo uma pressão de 55,69 MPa (8076,77 psi).

5.2.1. Análise passo a passo do estudo de caso

5.2.1.1. Perfuração, revestimento e pressão do cimento no estado líquido Passo-1 a Passo-7

Para simular o comportamento de fluência do poço de sal, uma malha de elementos finitos em 2D foi construída na parte de modelagem do programa. A seção de estudo tem um comportamento estrutural de deformação plana em 2D.

A malha representa um quarto das dimensões totais do poço. O tamanho total da malha é 33 vezes o raio do poço, sendo o raio do poço de 0,18 m (aprox.

7"), e portanto, o raio é aprox. 6 m (19,68 ft), resultando nas dimensões finais da malha iguais a 6 m por 6 m.

Nesta malha apresentam-se 176 elementos lineares triangulares isoparamétricos de deformação plana (CPE3), 11718 elementos lineares quadrilaterais isoparamétricos de deformação plana e 11997 nós. Nas Figuras 5.1 e 5.2 são apresentadas a malha e o detalhe da malha de elementos finitos da simulação. Na Figura 5.2 pode-se observar os três materiais: revestimento (vermelho), cimento (azul) e sal (azul com bordas vermelhas).

Figura 5.1: Malha de comportamento estrutural de deformação plana.

No intuito de descrever a simulação numérica num procedimento passo a passo, foi desenhada uma malha, semelhante, porém não igual, no programa de desenho AutoCAD (Figuras 5.3, 5.4 e 5.5).

Figura 5.3: Malha de EF, condições de contorno da simulação.

Figura 5.4: Detalhe da malha de EF.

Figura 5.5: Dimensões dos materiais na malha de EF.

A simulação numérica envolve 28 passos; esta simulação inclui os principais procedimentos no poço ao longo do histórico de carregamento. Esta simulação começa com o estado inicial de tensões in-situ e vai até o endurecimento final do cimento.

No passo-1 o modelo inicia o carregamento das tensões no modelo, e assim procura conferir que o campo de tensões geostáticas esteja em equilíbrio com o carregamento aplicado no contorno do modelo. A tensão total do sobrecarregamento foi repassada a todos os elementos, e as tensões horizontais também foram carregadas como é apresentado no extremo direito e no extremo superior da malha da Figura 5.3. O campo das deformações iniciais é zero.

As condições de contorno do modelo estão apresentadas nas Figuras 5.3 e 5.4. Nestas Figuras pode-se observar que os nós localizados na parte esquerda e os nós da parte inferior do modelo foram impedidos os deslocamentos no sentido normal a estes, e que os nós localizados na face do poço foram impedidos nos sentidos vertical e horizontal.

No passo-2 foi simulado o procedimento de fluência para verificar que as tensões equivalentes no sal são iguais a 0.

No passo-3 o procedimento de perfuração foi simulado eliminando os impedimentos dos deslocamentos dos nós da face do poço e logo aplicando a pressão do fluido de perfuração (P_w) sobre esta face. No passo-3 e passo-4 foram simuladas as respostas elásticas e de fluência, respectivamente (Figura 5.6).

Há ainda uma outra forma de simular a perfuração do poço, na qual elimina-se os elementos do poço (Figura 4.2) e, simultaneamente, aplica-se pressão do fluido de perfuração na face do poço. A fluência do poço de sal antes da descida do revestimento foi simulada para um tempo máximo de 1 mês (720 h).

Figura 5.6: Resposta elástica e de fluência, passo-3 e passo-4.

No passo-5 o revestimento aparece inicialmente recebendo a pressão do fluido de perfuração que atua da parte interna do revestimento, na parte externa do revestimento e na face do poço (Figura 5.7 e 5.8). Os nós do lado extremo esquerdo e os nós do lado inferior do revestimento estão impedidos de se deslocar no sentido normal a estes extremos.

Figura 5.7: Seção transversal no passo-5.

Figura 5.8: Seção longitudinal no passo-5.

No passo-6 (Figura 5.9 e 5.10), a pressão do fluido de cimento (P_{wc}) foi calculada em função do valor obtido na literatura, 15,8 ppg (Gray et al., 2007), e atua no interior e exterior do revestimento.

Figura 5.9: Seção transversal no passo-6.

Figura 5.10: Seção longitudinal no passo-6.

No passo-7 (Figura 5.11 e 5.12), a pressão de fluido do cimento atua na parte externa do revestimento e por dentro do revestimento atua a pressão do fluido de perfuração.

Figura 5.11: Seção transversal no passo-7.

Figura 5.12: Seção longitudinal no passo-7.

5.2.1.2. Análise do endurecimento do cimento, passo-8 a passo-27

No passo-8 a malha representada pelo cimento é adicionada ao total do resto da malha (Figura 5.13 e 5.14). Esta é introduzida num estado inicial de compressão hidrostática igual à tensão de compressão produzida pela coluna do peso do fluido do cimento ($\rho_{wc} = 15,8$ ppg), e das colunas dos pesos do fluido de perfuração e da lâmina de água, tudo isto equivalente a 55,68 MPa na seção de estudo.

Figura 5.13: Seção transversal no passo-8.

Figura 5.14: Seção longitudinal no passo-8.

A geometria da malha completa (revestimento, cimento e sal) foi inicialmente criada como não deformada, na parte de modelagem do programa. Através do histórico de carregamento do modelo, cada parte da malha é inserida conforme o processo "passo a passo".

No passo-1, o revestimento e cimento (partes do modelo) foram retirados, pois segundo o processo de simulação não exigia sua presença já que inicialmente só o poço de sal é de interesse. Nos passos 5 e 8 as malhas do revestimento e cimento, respectivamente, são inseridas no modelo para completar a análise.

Antes do passo-8 houve uma deformação na malha do poço pelo efeito da fluência do sal. Devido a esta ocorrência, a malha do cimento não ocupa mais as posições originais no modelo (Figura 5.3 e Figura 5.4) e assim teve que se adaptar esta malha a um novo ambiente provocado pela deformação do sal (malha deformada).

Para isto foi usado um parâmetro na linha de comandos do ABAQUS, no qual define a "conexão" ou "união" dos nós que se encontram na fronteira do revestimento - cimento e da fronteira cimento - sal. Este parâmetro une a malha do cimento com as malhas do revestimento e do sal respectivamente.

Ele permite que os graus ativos dos nós, ou seja, os deslocamentos e rotações globais sejam iguais nos nós da fronteira destes, assim como qualquer outro grau de liberdade ativo presente nos dois nós. Isto com o objetivo de que os nós que estarão na fronteira destes materiais (nós do revestimento - cimento e nós do cimento - sal) coincidam em posição e não se tenha espaço de separação destas duas superfícies, e assim possa se analisar de forma correta esta simulação. Em outras palavras este procedimento permite manter a continuidade na análise.

Nos passos 8 a 27, a sequência do endurecimento do cimento foi dividida em 10 pares de passos. Cada par é composto por dois passos, um relativo à resposta elástica e o outro relativo à resposta da fluência do sal. No processo de endurecimento do cimento se coloca em evidência o ganho de rigidez do cimento e a fluência do sal para cada tempo segundo a Tabela 5.2. No último passo, passo-28 o cimento adquiriu seu valor final de rigidez.

5.3. Tensões e deslocamentos resultantes após cada passo de simulação

A Figura 5.15 mostra a localização dos nós estudados (#9 e #12003), que indicam os deslocamentos após cada passo de simulação no revestimento (lado externo) e os deslocamentos no poço de sal (face do poço).

Figura 5.15: Posição dos nós na malha para o análise dos deslocamentos.

As Figuras 5.16 a 5.46 apresentam as tensões radiais e tangenciais obtidas através da simulação numérica nos passos do passo-1 até o passo-28.

As Figuras de 5.16 a 5.46 apresentam os deslocamentos no sentido do eixo x (horizontal) no nó 9 e no nó 12003 obtidos através da simulação numérica nos passos do passo-1 até o passo-28.

Figura 5.16: Simulação da cimentação do poço passo-1. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.17: Simulação da cimentação do poço passo-2. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.18: Simulação da cimentação do poço passo-3. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.19: Simulação da cimentação do poço passo-4. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.20: Simulação da cimentação do poço passo-5. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção longitudinal.

Figura 5.21: Validação de resultado para o revestimento. i) tensão radial e tangencial passo-5 ii) detalhe da seção transversal do revestimento iii) comparação de resultados para o revestimento iv) formulação da solução analítica para o revestimento.

Figura 5.22: Simulação da cimentação do poço passo-6. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção longitudinal.

Figura 5.23: Validação de resultado para o revestimento. i) tensão radial e tangencial passo-6 ii) detalhe da seção transversal do revestimento iii) comparação de resultados para o revestimento iv) formulação da solução analítica para o revestimento.

Figura 5.24: Simulação da cimentação do poço passo-7. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção longitudinal.

Figura 5.25: Validação de resultado para o revestimento. i) tensão radial e tangencial passo-7 ii) detalhe da seção transversal do revestimento iii) comparação de resultados para o revestimento iv) formulação da solução analítica para o revestimento.

Figura 5.26: Simulação da cimentação do poço passo-8. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção longitudinal.

Figura 5.27: Simulação da cimentação do poço passo-9. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.28: Simulação da cimentação do poço passo-10. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.29: Simulação da cimentação do poço passo-11. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.30: Simulação da cimentação do poço passo-12. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.31: Simulação da cimentação do poço passo-13. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.32: Simulação da cimentação do poço passo-14. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.33: Simulação da cimentação do poço passo-15. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.34: Simulação da cimentação do poço passo-16. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.35: Simulação da cimentação do poço passo-17. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.36: Simulação da cimentação do poço passo-18. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.37: Simulação da cimentação do poço passo-19. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.38: Simulação da cimentação do poço passo-20. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.39: Simulação da cimentação do poço passo-21. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.40: Simulação da cimentação do poço passo-22. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.41: Simulação da cimentação do poço passo-23. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.42: Simulação da cimentação do poço passo-24. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.43: Simulação da cimentação do poço passo-25. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.44: Simulação da cimentação do poço passo-26. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.45: Simulação da cimentação do poço passo-27. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

Figura 5.46: Simulação da cimentação do poço passo-28. i) tensão radial e tangencial ii) detalhe da seção transversal iii) deslocamento nodal no sentido do eixo x iv) seção transversal.

5.4. Análise dos resultados

Nas seções seguintes apresentam-se algumas considerações e comentários que serão importantes na análise dos resultados.

5.4.1. Considerações sobre os resultados

5.4.1.1. Comparação da solução analítica e numérica para o revestimento quando submetido à pressão de fluido

O comportamento conjunto do endurecimento do cimento e da fluência do sal não tem uma solução analítica a qual se possam comparar os resultados numéricos gerados pelo programa.

Porém, separando-se as componentes do problema e só analisando o comportamento do revestimento devido às pressões do fluido de perfuração e pressão do fluido do cimento (passos-*5,6,7*), pode se comparar a solução analítica elástica com a solução numérica. A solução analítica pode ser expressa pelas seguintes equações (Bourgoyne et al., 1986):

$$\sigma_r = \frac{-p_i \cdot r_i^2 \cdot (r_o^2 - r_i^2) - p_e \cdot r_o^2 \cdot (r^2 - r_i^2)}{r^2 \cdot (r_o^2 - r_i^2)}$$
(5.9)

$$\sigma_t = \frac{p_i \cdot r_i^2 \cdot (r_o^2 + r^2) - p_e \cdot r_o^2 \cdot (r^2 + r_i^2)}{r^2 \cdot (r_o^2 - r_i^2)}$$
(5.10)

Onde:

 σ_r é a tensão radial, σ_t é a tensão tangencial, p_i é a pressão do fluido localizada no interior do revestimento, p_e é a pressão do fluido localizada no exterior do revestimento, r_i é o raio interno do revestimento, r_o é o raio externo do revestimento e r é a distância medida desde o centro do revestimento.

Para os casos dos passos-*5,6,7* foi confirmado que os resultados da solução analítica coincidem com os resultados numéricos. As Figuras 5.47, 5.49 e 5.51 apresentam o detalhe da malha do revestimento em cada passo da simulação. Os resultados estão apresentados nas Figuras 5.48, 5.50, 5.52.

Figura 5.47: Detalhe do revestimento para o passo-5.

Figura 5.48: Resultados analíticos e numéricos para o revestimento para o passo-5.

Figura 5.49: Detalhe do revestimento para o passo-6.

Figura 5.50: Resultados analíticos e numéricos para o revestimento para o passo-6.

Figura 5.51: Detalhe do revestimento para o passo-7.

Figura 5.52: Resultados analíticos e numéricos para o revestimento para o passo-7.

Com estes resultados pode-se garantir que os resultados do ABAQUS coincidem com os resultados analíticos para o comportamento do revestimento submetido à pressão do fluido, isto antes da simulação do ganho de rigidez do cimento (conexão da malha do cimento com as malhas do revestimento e do sal, passo-8).

5.4.1.2. Capacidade de mudança dos parâmetros elásticos ao longo dos passos

O programa numérico tem a capacidade de mudar os parâmetros elásticos após cada passo de simulação. Para um melhor entendimento, foi considerado um corpo com comportamento estrutural de deformação plana (CPE4) e material do tipo linear elástico.

Este corpo tem 4 elementos com integração completa e 10 nós, dos quais 5 nós localizados na base tem impedimento de deslocamentos no sentido vertical. Este corpo está submetido a um carregamento de 0,1 Pa na parte superior da estrutura (Figura 5.53).

Figura 5.53: Corpo usado na simulação de mudança das propriedades elásticas ao longo dos passos.

Para a análise utilizou-se a mesma estrutura com as mesmas condições de contorno, sendo realizada várias simulações com mudança nos parâmetros elásticos do material. Para os 4 tipos de materiais, somente o módulo de elasticidade foi variado, mantendo-se o coeficiente de Poisson constante.

As propriedades elásticas estão apresentadas na Tabela 5.6.

Tabela 5.6. Propriedades elásticas dos materiais, simulação da mudança das propriedades elásticas.

Material	Passo	Módulo de	Coeficiente de
		Young (Pa)	Poisson
A	1,2,3	3	0,25
В	1,2,3	2	0,25
С	1,2,3	1	0,25
D	1	1	0,25
	2	2	0,25
	3	3	0,25

Nota-se na Tabela 5.6 que o material D é diferente dos outros materiais, visto que suas propriedades elásticas variam nos diversos passos.

Após a simulação dos 4 materiais, os resultados obtidos para os deslocamentos verticais do nó analisado são apresentados na Figura 5.54.

Figura 5.54: Resultados da simulação de mudança das propriedades elásticas ao longo dos passos.

A Figura 5.54 representa os deslocamentos verticais no sentido negativo do eixo vertical no nó de estudo (Figura 5.53). Para o material A apresenta-se o menor deslocamento vertical já que este é mais rígido e o material C apresenta o maior deslocamento devido ao menor valor de módulo de Young. Também foi verificado que através do comportamento do material D é possível mudar os parâmetros elásticos ao longo dos passos, já que se mostrou concordância com aqueles materiais que mantiveram os parâmetros elásticos constantes ao longo dos passos.

A técnica de manter o módulo de elasticidade constante nos outros materiais (A,B,C) foi com o intuito de ter um comparativo na mudança do módulo de elasticidade do material D.

5.4.1.3. Resposta do revestimento quando a pressão externa é menor

Quando a pressão externa (P_e) no revestimento for menor que a pressão interna (P_i) as tensões no revestimento são apresentados na Figura 5.55:

Figura 5.55: Resultados quando a pressão exterior (P_e) é menor a pressão interior (P_i).

Estes resultados foram calculados a partir da solução analítica para poder mostrar assim que quando a pressão externa no revestimento é menor que a pressão interna no revestimento aparece tensões de tração maiores na parte interior do revestimento. Este mesmo comportamento será analisado com mais atenção na seção a seguir.

5.4.1.4. Análise do ganho de rigidez no cimento considerando todos os materiais como elásticos

Com o intuito de entender a simulação da cimentação do poço em zona de sal foi realizada uma modelagem elástica do problema. Esta modelagem elástica foi realizada a partir do endurecimento do cimento, isto é, a partir do passo-8, com a particularidade de que tanto o revestimento, cimento e sal sejam considerados como materiais elásticos. Isto se conseguiu só levando em conta as propriedades elásticas destes materiais.

Assim foi simulado o ganho de rigidez no cimento em 11 passos (ver Tabela 5.2). Quer dizer, a partir do passo-8 até o passo-28. Estes resultados estão apresentados nas Figuras 5.56-5.66. A numeração dos passos deste exercício tem como objetivo fazer uma referência à simulação do caso de estudo, quando se analisa a resposta elástica. A simulação do caso de estudo contém 28 passos.

O que se visa através desta modelagem é entender como se afeta o estado de tensões no sistema quando se tem o ganho de rigidez no cimento a través dos diferentes tempos apresentados na Tabela 5.2.

Com este exercício foi demostrado que no revestimento, na análise do passo-8 até o passo-16 há um ganho de tensão tangencial e radial. Continuando a análise no revestimento, a partir do passo-18 até o passo-28, produto do ganho de rigidez no cimento, se tem uma diminuição notável na tensão tangencial em quanto que a tensão radial se mantem quase constante. Com isto pode-se se explicar no caso de estudo porque o revestimento diminui a tensão tangencial que inicialmente se encontra num estado de compressão chega a um estado de tração no final da simulação.

No cimento, na análise de tensões do passo-8 até o passo-28 há um aumento nas magnitudes da tensão radial e tangencial, as duas estão no estado de compressão. Em todos os passos, na interface revestimento-cimento a tensão tangencial é maior que na interface cimento-sal. Respeito à tensão radial, também em todos os passos, acontece o oposto: o maior valor de tensão esta encontrado na interface cimento-sal e os menores valores na interface revestimento-cimento.

No sal só levando em conta o comportamento elástico como já antes dito, na análise da tensão tangencial, na interface cimento-sal pode se ver que há uma diminuição significativa da tensão tangencial inclusive entrando num estado de tração, no entanto que a tensão radial tem um aumento progressivo em sua magnitude ao longo dos passos de simulação.

Figura 5.56: Comportamento elástico dos materiais para t=0-0,6 dias.

Figura 5.57: Comportamento elástico dos materiais t=0,6-1,0 dias.

Figura 5.58: Comportamento elástico dos materiais t=1,0-2,0 dias.

Figura 5.59: Comportamento elástico dos materiais t=2,0-3,0 dias.

Figura 5.60: Comportamento elástico dos materiais t=3,0-4,0 dias.

Figura 5.61: Comportamento elástico dos materiais t=4,0-5,0 dias.

Figura 5.62: Comportamento elástico dos materiais t=5,0-6,0 dias.

Figura 5.63: Comportamento elástico dos materiais t=6,0-7,0 dias.

Figura 5.64: Comportamento elástico dos materiais t=7,0-9,0 dias.

Figura 5.65: Comportamento elástico dos materiais t=9,0-11,0 dias.

Figura 5.66: Comportamento elástico dos materiais t=>11 dias.

5.4.2. Análise dos resultados

O ABAQUS assume que as tensões em compressão são negativas e que as tensões em tração são positivas. Nesta tese e em geomecânica a consideração que se adota é que as tensões de compressão são positivas e as tensões de tração são negativas.

Os valores das tensões principais são baseados nos resultados do programa, desta forma, respeita-se o conceito de tensões principais do programa na análise de tensões principais desta tese.

Nas seções a seguir apresenta-se uma análise das tensões atuantes no revestimento, cimento e sal.

5.4.2.1. Revestimento

As tensões principais no revestimento são iguais às tensões radiais e tangenciais como é apresentado nas Figuras 5.67 e 5.68, e ao longo dos passos da simulação mudam de magnitude acompanhando o endurecimento do cimento.

A tensão principal maior no plano do revestimento é a tensão radial, é uma tensão de compressão que diminui em magnitude e que a partir do penúltimo passo não é mais a tensão radial, e passa a ser a tensão tangencial, também de compressão. No último passo continua a tensão tangencial só que no estado de tração.

A tensão principal menor no plano do revestimento em contrapartida é a tensão tangencial, também de compressão e que diminui em magnitude até o penúltimo passo. No penúltimo e último passo a tensão principal menor já não é mais a tensão tangencial e sim a tensão radial também em estado de compressão.

Resumindo, no penúltimo e ultimo passo de simulação as tensões principais mudam de sentido. E a tensão tangencial no último passo vira de compressão para tração. Isto é devido ao fato do cimento adquirir o maior valor de rigidez, no último passo.

Figura 5.67: Sentido da tensão principal máxima no plano do revestimento: tensão radial. Passo-5 ao passo-26.

Figura 5.68: Sentido da tensão principal mínima no plano do revestimento: tensão tangencial. De o passo-5 ao passo-26.

5.4.2.2. Cimento

No cimento as tensões principais também estão representadas pelas tensões radiais e tangencias na maior parte da simulação.

No momento que a malha do cimento é acoplada ao resto do modelo no passo-8 o sentido das tensões principais não coincidem com as tensões radiais

e tangenciais, mas encontram-se muito próximos a convergir. Isto pode ser verificado nas Figuras 5.69 e 5.70.

No passo-10 as tensões principais coincidem com as tensões radiais e tangenciais, isto se mantém até o último passo. Sendo que a tensão principal maior é a tensão radial em compressão e a tensão principal menor é a tensão tangencial também em compressão ao longo de todos os passos.

Figura 5.69: Mudança no sentido da tensão principal máxima, no plano, do cimento (bordas vermelhas).

Figura 5.70: Mudança no sentido da tensão principal mínima, no plano, do cimento (bordas vermelhas).

5.4.2.3. Sal

O modelo constitutivo do sal nesta tese é função da tensão equivalente de Tresca e de outros parâmetros como a temperatura, tensão de sobrecarga (devido à profundidade do poço), micromecanismo de deformação, etc.

No passo-4, a deformação por fluência do sal acontece para um tempo máximo de 30 dias, este tempo foi estimado em razão a qualquer eventualidade que possa acontecer antes da descida do revestimento. Trata-se do tempo em que a coluna de perfuração acaba de perfurar esta seção e começa a ser a puxada até a colocação do revestimento no poço. Neste mesmo passo a deformação por fluência não é tão significativa gerando 0,02 cm de deslocamento na fase do poço.

Nos passos-5,6,7 o sal simplesmente responde ao comportamento elástico, o tempo não é significativo já que é durante a colocação da pasta de cimento. Assim sendo, o desempenho do material em função do tempo (fluência) não é analisado.

A partir do passo-8, o comportamento do endurecimento do cimento, influencia notavelmente nas deformações do sal. No procedimento de endurecimento do cimento que é composto da resposta elástica e da resposta de fluência, se analisa o ganho de rigidez do cimento e a resposta elástica e de fluência do sal ao longo dos 10 pares de passos (um de simulação elástica e outro de simulação de fluência).

Dentro deste mesmo comportamento de ganho de rigidez do cimento, quando se simula a resposta elástica (aumento do módulo de elasticidade) faz com que as tensões desviadoras no sal aumentem e se tenha assim um desequilíbrio de tensões no sal. Na parte da resposta por fluência do sal, as tensões desviadoras tendem ao equilíbrio. O comportamento de fluência faz com que as desviadoras se equilibrem e tenham uma tendência a ser iguais a 0. Já na parte de simulação elástica onde se coloca em evidência o aumento do módulo de elasticidade no cimento as tensões desviadoras no sal aumentam.

O cimento é materializado como malha de elementos finitos a partir do passo-8 dando assim continuidade ao comportamento do sal-cimento-

revestimento. A resposta elástica e de fluência do sal interatuam com estes materiais, mas principalmente com o cimento.

As tensões radiais e tangencias no sal, bem distantes do centro poço, convergem em suas magnitudes, em todos os passos (a partir do passo-8). No entanto perto da fronteira do sal e cimento estes tem valores de magnitudes desiguais, isto devido ao endurecimento do cimento.