Dano em dutos causados por interferência externa

Os danos em dutos, que ocorrem por interferência externa, chamados comumente também de danos mecânicos, são causados por objetos estranhos, como por exemplo, equipamentos de remoção de solo e equipamentos agrícolas. Os danos causados pela ação destes equipamentos podem resultar em: uma mossa (*dent*), um sulco (*gouge*), uma mossa com sulco, ou ainda, uma perfuração da parede do duto [42].

Na análise de confiabilidade estrutural por dano mecânico é considerada que a falha é de efeito imediato. Ou seja, ela independe do tempo, ao contrário de dutos com defeitos de corrosão. A falha no duto será dada por uma perda de contenção que permite a liberação do fluido. A falha pode ocorrer como resultado de uma ruptura (*rupture*) ou um vazamento (*leak*).

As consequências de uma ruptura são mais severas que as de um vazamento (o critério de *"leak before rupture"*). Portanto, as probabilidades de falha tanto por vazamento, quanto por ruptura, são ambas de interesse.

5.1

Função de estado limite mossa-sulco

O dano por interferência externa é comumente considerado como um duto que tem uma mossa e um sulco localizado no fundo da mossa e na parede externa do duto, figura 5.1.

Na figura 5.1, H é a profundidade da mossa, a é a profundidade do sulco, $L_s=2c$ é o comprimento do sulco e t é a espessura da parede do duto. Pode-se ver que o modelo de dano é caracterizado, basicamente, pela profundidade da mossa, a profundidade do sulco e pelo comprimento do sulco.

5

Figura 5.1 – Dano mecânico Mossa-Sulco

A presença de um dano tipo mossa-sulco em um duto sob pressão interna pode ter três conseqüências [69]:

- A profundidade do sulco pode ser o suficientemente grande para crescer rapidamente e atingir a espessura da parede do duto, o qual provocará um vazamento do fluido do duto.

 O comprimento do sulco pode ser maior que um valor crítico que levará o duto à ruptura.

 Caso a profundidade e o comprimento do sulco não sejam maiores que seus respectivos valores críticos, nenhuma das duas falhas mencionadas nos dois pontos anteriores ocorrerão.

É evidente que a falha por um dano tipo mossa-sulco é controlada pela profundidade do sulco e o comprimento do sulco. A profundidade da mossa só atua como um modificador do campo de tensões no local do dano, dando origem a uma tensão de flexão e a uma tensão de membrana, em função da profundidade da mossa (as equações serão descritas mais adiante) [44].

O estado limite usado para este tipo de dano foi determinado a partir do modelo da mecânica da fratura elasto-plástica do procedimento R6 [70-72], o qual avalia o dano através do diagrama de falha (*FAD – Failure Assessment Diagram*), figura 5.2. Cabe lembrar aqui, que para a aplicação do modelo, o sulco está orientado na direção axial e é considerado como uma trinca (conservador).

Figura 5.2 – Diagrama de Falha (FAD – Failure Assessment Diagram)

A avaliação do defeito é do tipo "passa ou não passa", onde, se o defeito (no gráfico um ponto S_r , K_r), está na região de segurança do FAD o mesmo é aprovado. Se fica na região de falha do FAD o duto ou a estrutura avaliada é rejeitada.

Existem dois modos de falha básicos, avaliados pelo R6: colapso plástico e fratura rápida (frágil). O colapso plástico é controlado pela plasticidade global na seção com defeito e a fratura rápida pelos campos de tensão-deformação locais na ponta da trinca [43].

O eixo vertical do $FAD(K_r)$ é uma razão das condições que levam à fratura da estrutura. Este eixo é chamado de razão de fratura. O eixo horizontal do FAD

 (S_r) é uma razão da carga aplicada que pode levar a colapso plástico, este eixo é chamado de razão de carga [73].

A curva que separa a região de segurança e de falha do *FAD* da figura 5.2, é definida como:

$$K_r = S_r \left[\frac{8}{\pi^2} Ln \left(Sec\left(\frac{\pi}{2}S_r\right) \right) \right]^{-0.5}$$
(5.1)

Rearranjando a equação (5.1), é possível definir uma função limite para avaliar o dano mossa-sulco:

$$K_{r} - S_{r} \left[\frac{8}{\pi^{2}} Ln \left(Sec\left(\frac{\pi}{2}S_{r}\right) \right) \right]^{-0.5} \leq 0$$

$$Cos\left(\frac{\pi}{2}S_{r}\right) - \exp\left(-\frac{\pi^{2}}{8}\frac{S_{r}^{2}}{K_{r}^{2}}\right) \leq 0$$
(5.2)

Se a equação (5.2) for menor ou igual que zero, o dano encontrar-se-á dentro da região de segurança e será, portanto, aceito. A seguir são apresentadas as equações para calcular os valores de K_r e S_r da função limite (5.2). O valor de Kr, chamado acima razão de fratura é definido como:

$$K_r = \frac{K_I}{K_{IC}} \tag{5.3}$$

Onde, K_{IC} ou K_{mat} é a tenacidade a fratura do material e K_I é o fator de intensificação de tensões em modo I, e definido por:

$$K_I = (Y_{\sigma})\sqrt{\pi a} \tag{5.4}$$

Na equação (5.4), *a* é a profundidade do sulco em [m] e o parâmetro Y_{σ} contém as tensões atuantes e os fatores de ampliação da intensidade de tensões. Este parâmetro é definido como [73]:

$$Y_{\sigma} = \sigma_m Y_m + \sigma_b Y_b \tag{5.5}$$

Como pode ser visto na equação (5.5), existem duas tensões atuantes na região do defeito resultantes da pressão interna do duto e à presença da mossa. Tais tensões são a tensão de membrana, σ_m , e a tensão de flexão, σ_b , que são definidas por [74,75]:

$$\sigma_m = \sigma_H \left(1 - 1.8 \frac{H}{D} \right) \tag{5.6}$$

$$\sigma_b = 10.2\sigma_H \frac{H}{2t} \tag{5.7}$$

$$\sigma_{H} = \frac{PD}{2t} \tag{5.8}$$

Nas equações acima, σ_H , é a tensão circunferencial em [*MPa*], *H* é a profundidade da mossa em [*mm*], *D* é o diâmetro do duto em [*mm*], *P* é a pressão interna em [*MPa*] e *t* é a espessura da parede do duto em [*mm*].

Os fatores Y_m e Y_b correspondem aos valores de uma placa com trinca longa na superfície em tensão e flexão respectivamente, valida para relações de $(a/t) \le$ 0.6, e são dados por [69,73]:

$$Y_m = 1.12 - 0.23 \left(\frac{a}{t}\right) + 10.6 \left(\frac{a}{t}\right)^2 - 21.7 \left(\frac{a}{t}\right)^3 + 30.4 \left(\frac{a}{t}\right)^4$$
(5.9)

$$Y_b = 1.12 - 1.39 \left(\frac{a}{t}\right) + 7.32 \left(\frac{a}{t}\right)^2 - 13.1 \left(\frac{a}{t}\right)^3 + 14.0 \left(\frac{a}{t}\right)^4$$
(5.10)

A tenacidade a fratura do material, K_{IC} ou K_{mat} , é calculada a partir de correlações com o valor da energia de Charpy do material, *CVN*, a BS7910 [73] fornece uma expressão para uma ampla gama de aços e pode ser considerada para este tipo de análises, a BS7910 usa o limite inferior da curva ajustada para os testes de Charpy, e o valor do K_{mat} é dado por:

$$K_{mat} = \left[12\sqrt{CVN} - 20\right] \left(\frac{25}{t}\right)^{0.25} + 20$$
(5.11)

As unidades do valor de K_{mat} são [$MPa\sqrt{m}$], as unidades da CVN devem estar em [J] e a espessura t em [mm]. A equação (5.11) também é recomendada pelo trabalho de JANDU ET. AL [75]. Outras expressões para K_{mat} podem ser encontradas em: [5,69,73-77].

Com as equações (5.3) até (5.11) é calculado o valor de K_r da função limite (5.2). Abaixo serão apresentadas as equações necessárias para definir o valor de S_r . Este é definido como:

$$S_r = \frac{\sigma_{ref}}{\sigma_f} \tag{5.12}$$

Onde, σ_{ref} é a tensão de referencia em [*MPa*], devido à presença do defeito mossa-sulco e é dada por [5,69,77]:

$$\sigma_{ref} = \sigma_m \frac{\left(1 - \frac{a}{Mt}\right)}{\left(1 - \frac{a}{t}\right)}$$
(5.13)

Na equação (5.13), M é o fator de Folias e é definido como [5,77]:

$$M = \left[1 + 0.26 \frac{(2c)^2}{\frac{D}{2}t}\right]^{0.5}$$
(5.14)

Na equação (5.14), 2c é o cumprimento do sulco em [mm].

Na equação (5.12), σ_f é a tensão de escoamento continuado (*flow stress*) em [*MPa*], e seu valor é calculado por [5,75,77]:

$$\sigma_f = \frac{\sigma_y + \sigma_u}{2} \tag{5.15}$$

Onde, $\sigma_y \in \sigma_u \acute{e}$ a tensão de escoamento e de ruptura do material em [*MPa*] respectivamente. Segundo a BS7910 [73] a σ_f não pode ser maior que $1.2\sigma_y$.

5.2 Probabilidade de falha do dano mossa-sulco

A *POF* do dano mossa-sulco no duto é calculada usando a função limite para avaliar o dano mossa-sulco (equação 5.2) e é definida como:

$$POF_{mossa-sulco} = P\left[g(x)_{mossa-sulco} \le 0\right] = P\left[Cos\left(\frac{\pi}{2}S_r\right) - \exp\left(-\frac{\pi^2}{8}\frac{S_r^2}{K_r^2}\right) \le 0\right] \quad (5.16)$$

A seguir será apresentado um estudo de caso para o cálculo da *POF* de um duto com defeito mossa-sulco. A tabela 5.1 apresenta as variáveis consideradas para a análise do problema, indicando as distribuições estatísticas e seus parâmetros [69].

A probabilidade de falha para o exemplo foi calculada usando o novo algoritmo *FORM* proposto por Low e Tang, e usou-se a linguagem *VBA for EXCEL* para o desenvolvimento de esta metodologia. A probabilidade de falha devido ao dano mossa-sulco foi calculada usando a equação (5.16).

A figura 5.3 mostra a planilha do *EXCEL* com os dados de entrada e os resultados obtidos. Foi feita também uma análise de sensibilidade para determinar quais são as variáveis que têm mais influência na *POF*.

Tabela 5.1 Variáveis usadas no cálculo da POF

Variáveis		Distribuição	Parâmetros ¹				
D	mm	Determinístico	457	7.2			
t	mm	Normal	μ = 12.8	$\sigma = 0.3$			
σ_y	MPa	Lognormal	μ = 445.9	$\sigma = 12.8$			
σ_u	MPa	Normal	μ = 593.4	$\sigma = 14.5$			
Pop	MPa	Determinístico	7.	0			
CVN	J	Lognormal	μ = 55.2	$\sigma = 11.1$			
а	mm	Weibull	$\lambda = 0.98$	$\xi = 0.73$			
$L_s=2c$	mm	Weibull	$\lambda = 140.75$	$\xi = 0.813$			
Η	mm	Weibull	$\lambda = 4.49$	$\xi = 0.9$			

	А	В	С	D	Е	F	G	Η	- I	J	K	L	М	N	0
1	Cada distribuição ter associados caracterí P. ex.: A dsitribuição parâmetros, a média padrão (Para2=o), p	m parâmetros isticos que a definem. o normal tem 2 @ (Para1=µ) e o desvio para a dist. de	ò	<mark>ONFIABILIC</mark>	ADE ES	STRUTI	JRAL DI E FALH/	e C A N	DUTOS POF	ND ND	ANO MEC Ponto ponto de fall	CÂNICO de projeto ou mais provável	<u> </u>		
2	Weibull=1-exp(-x / F	Para1=λ) ^Para2=ξ					_			4	uc rui				
3	Variável	Distribuição		Para1	Para2	Para3	Para4		x,*		n	g1 (<u>x</u>)	β	POF	a _i
4	D [mm]	Normal		457.2	0				457.2		-5E-08	2E-09	2.5830	4.90E-03	-2E-08
5	t [mm]	Normal		12.8	0.3				12.794698		-0.0177				-0.007
6	σy [Mpa]	Lognormal		445.9	12.8				445.62908		-0.0068				-0.003
7	σu [Mpa]	Normal		593.4	14.5				593.28778		-0.0077		Calcular		-0.003
8	Pop [Mpa]	Normal		7	0				7		-5E-08		Jaiculai		-2E-08
9	CVN [J]	Lognormal		55.2	11.1				49.168226		-0.4817				-0.186
10	a [mm]	Weibull		0.98	0.73				9.1885455		2.5161				0.974
11	2c [mm]	Weibull		140.75	0.84				139.39549		0.3296				0.128
12	H [mm]	Weibull		4.49	0.9				2.956097		-0.0084				-0.003

Figura 5.3 – Planilha EXCEL para o cálculo da POF devido ao dano mossa-sulco

A probabilidade de falha para um duto com defeito mossa-sulco calculada na análise foi de 4.90E-03. Segundo a tabela 4.7 o valor é maior que o valor de *POF* admissível de 1E-04, para um duto com classe de segurança normal, portanto, tem-se uma probabilidade alta de o duto falhar e uma medida corretiva deveria ser aplicada. Na figura 5.4 pode ser observado que a falha estaria controlada tanto por fratura como por colapso plástico.

¹ Ver numeral 2.2.3

Figura 5.4 – Diagrama de falha para o dano mossa-sulco com o ponto mais provável de falha

A seguir é realizada uma análise de sensibilidade, através do cálculo do fator de importância I_i . Na figura 5.5 pode ser observada a contribuição de cada variável na determinação da probabilidade de falha do duto devido ao dano mossa-sulco.

Figura 5.5 – Fator de importância de cada variável na POF por ruptura.

De acordo com a figura 5.5, as variáveis de profundidade do sulco (*a*), valor da energia de Charpy do material (*CVN*) e comprimento do sulco ($L_s=2c$) são as que mais aportam na *POF* do duto e são as mais estatisticamente sensíveis. As outras variáveis poderiam ser consideradas como determinísticas na análise. Os estudos de confiabilidade por dano mecânico também podem ser usados para análises preditivas usando análises de risco, isto é, para que se possa determinar a freqüência de falha a partir de uma apropriada freqüência de impacto dos equipamentos de remoção de solo (escavadoras) ou equipamentos agrícolas, em uma população de dutos, e a probabilidade de falha de um único defeito mossa-sulco [44,45]. Está freqüência de falha é definida por:

$Freqüência de Falha = Freqüência de Impacto x POF_{mossa-sulco}$ (5.17)

As freqüências de impacto podem ser obtidas através de dados históricos, estes dados podem ser obtidos de fontes como: EGIG (*European Gas Pipeline Incident Data Group*) [5,48], CONCAWE (*Conservation of Clean Air and Water in Europe*), PHMSA (*Pipeline and Hazardous Materials Safety Administration - US Department of Transportation- DOT*) [5,49], UKOPA (*United Kingdom Onshore Pipeline Association*) [46,47,50,51].

É claro que o valor da freqüência de impacto depende do local onde o duto se encontra ou vai ser instalado, portanto, para valores mais reais devem ser procurados os históricos e as fontes relacionadas à região e ao operador do duto.

Continuando com o estudo de caso, e observando, que os valores das variáveis do defeito mossa-sulco (a, 2c, H) são típicos aos dados históricos de freqüência de impacto [46,47], a freqüência de falha é calculada usando a equação (5.17) e seus valores são listados na tabela 5.2.

POF mossa-sulco	Freq. Impa	cto /km.ano	Freq. Falha /km.ano			
4.92E-03	EGIG	3.70E-04	1.82E-06			
4.92E-03	UKOPA	8.49E-04	4.17E-06			

Tabela 5.2 Freqüência de Falha usando confiabilidade estrutural

A metodologia de cálculo da freqüência falha apresentada (resultados tabela 5.2) usa uma combinação de dados históricos com análises de confiabilidade estrutural, a qual pode ser comparada com as freqüências de falhas de bases de dados fornecidas pelas mesmas fontes citadas acima no caso da freqüência de impacto. Estes valores são determinados usando dados históricos de falha e modelos de predição [46,47,51]. A tabela 5.3 lista alguns valores comuns da freqüência de falha.

-				
DOT	EGIG	FFREQ [46]	UKOPA	
Freq. Falha	Freq. Falha	Freq. Falha	Freq. Falha	
/km.ano	/km.ano	/km.ano	/km.ano	
2.1E-04	2.2E-04	2.40E-05	4.34E-05	

Tabela 5.3 Freqüência de Falha de base de dados

As freqüências de falha de *FFREQ* e *UKOPA* podem ser determinadas a partir de curvas em função do diâmetro do duto. O valor da tabela 5.3 corresponde ao diâmetro (457.2 *mm*) usado no exemplo. Na figura 5.6 podem ser observadas as curvas das freqüências de falha em função dos diâmetros dos tubos. Já para *DOT* e *EGIG* se apresenta um único valor de freqüência de falha e este é considerado pela ISO/CD 16708 [5] como um valor admissível.

Figura 5.6 – Freqüência de falha em função do diâmetro do duto

Na figura 5.6 pode ser observada uma tendência em se ter uma freqüência de falha mais alta na medida em que se diminui o diâmetro. Ao comparar o valor calculado de freqüência de falha de *UKOPA* da tabela 5.2 com o valor da tabela 5.3, este valor é menor e, porém menos conservativo.

Cabe ressaltar aqui que os valores de bases de dados consideram e incluem outras falhas como perfurações, falhas em locais diferentes ao corpo do duto (flanges). Por tal razão os valores de freqüência de falha podem ser maiores aos calculados usando a equação (5.17), além de que, em vários casos as curvas de freqüência de falha não estão em função de todas as variáveis do duto e do dano.

A metodologia apresentada usando o cálculo da probabilidade de falha e a freqüência de impacto pode oferecer resultados mais realísticos já que considera todas as variáveis envoltas no problema.

5.2.1

Influência do comprimento do sulco na probabilidade de falha do dano mossa-sulco

A seguir será feita uma análise da influência do comprimento do sulco na *POF* para um defeito mossa-sulco, para isto, será usado o exemplo analisado em 5.2 e variações no valor de L_s . Na figura 5.7 pode ser observado que quando se aumenta o valor de L_s tem-se pouco incremento na *POF*.

A explicação para o fato de não se ter grandes aumentos na *POF*, quando o valor de L_s é incrementado, deve-se a que o valor de K_I não está em função de L_s . Assim, melhorias poderiam ser obtidas usando um modelo de trinca bidimensional. Uma melhor visualização deste problema pode ser observada no diagrama de falha, segundo a análise determinística (considerando só os pontos que estão dentro do *FAD* da figura 5.8), os valores de *Kr* permanecem constantes (não está em função de L_s), enquanto, que os valores de *Sr* apresentam pequenas variações.

Já na análise probabilística é possível observar uma melhor influência do tamanho do comprimento do sulco quando é calculado o ponto mais provável de falha (x_i^*). O aumento de L_s faz com que o defeito tenda a ter uma ruptura mais controlada pelo colapso plástico. A figura 5.8 apresenta este comportamento do defeito, fato que não é possível ver na figura 5.7.

Figura 5.8 – Influência de L_s na avaliação do dano mossa-sulco usando o FAD

Da mesma forma como foi tratado nas análises de dutos corroídos (ver capítulo 4), o comprimento do defeito determina se a ruptura será de caráter estável ou instável. Lembrando que se o valor de $L_s = 2c$ quando comparado com um valor de comprimento do sulco crítico, Lc, for menor que Lc, a ruptura será estável e dada por um grande vazamento (este evento será chamado de só de vazamento); do contrário será uma ruptura propriamente dita (este evento será chamado de ruptura).

Segundo Shannon (1974) [28] o limite entre vazamento e ruptura é definido pelo fator de Folias. Existem vários modelos na literatura [26], mas segundo Miller (1987) [29, 30], o valor definido a seguir é o que apresenta melhores resultados, este fator de Folias também tem sido usado por Hopkins [46]:

$$\frac{1.15\sigma_y}{\sigma_h} = M_c = \sqrt{1 + 0.52\frac{L_c^2}{Dt}}$$
(5.18)

Rearranjando a equação (5.18) tem-se o valor de Lc:

$$L_c = \sqrt{\frac{Dt}{0.52} \left(\frac{1.15\sigma_y}{\sigma_h}\right) - 1}$$
(5.19)

O estado limite que define se a falha será vazamento ou uma ruptura é definido por:

$$g(x)_{v \vee r} = L_c - L_s \tag{5.20}$$

Segundo os resultados obtidos na figura 5.8 e o estado limite da equação (5.20), é possível estabelecer dentro do diagrama de falha uma região de vazamento e de ruptura.

Os limites da região de vazamento serão definidos por um hipotético valor de L=0 e o valor de Lc. A figura 5.9 mostra as regiões para o exemplo tratado nesta seção. A forma e o tamanho desta região deverão ser influenciados pelas variáveis do problema, p. ex. Lc, a, H, Pop.

Figura 5.9 - Região de vazamento e de ruptura no FAD

Uma probabilidade de falha que defina se ocorrerá um vazamento ou uma ruptura pode ser calculada a partir da equação (5.20). O vazamento se dará se:

$$POF_{L_c \to v} = P[L_c - L_s > 0] \tag{5.21}$$

E a falha resultará em uma ruptura se:

$$POF_{L_s \to r} = P[L_c - L_s \le 0] \tag{5.22}$$

As equações (5.21) e (5.22) podem ser acopladas com a equação (5.16) e, assim, calcular uma *POF* devido ao vazamento e à ruptura.

A *POF* por vazamento será dada se $g(x)_{mossa-sulco} \le 0$ e $g(x)_{L_s \to v} > 0$ acontecerem. Conforme com as leis de probabilidade a ocorrência de dois eventos é definida como a interseção deles, assim:

$$POF_{v} = P\left[g(x)_{mossa-sulco} \cap g(x)_{L_{s} \to v}\right]$$
(5.23)

$$POF_{\nu} = \mathbb{P}\left[Cos\left(\frac{\pi}{2}S_{r}\right) - \exp\left(-\frac{\pi^{2}}{8}\frac{S_{r}^{2}}{K_{r}^{2}}\right) \le 0 \quad \bigcap L_{c} - L_{s} > 0\right]$$
(5.24)

E a *POF* por ruptura será dada se $g(x)_{mossa-sulco} \le 0$ e $g(x)_{L_s \to r} \le 0$ acontecerem, assim:

$$POF_r = P\left[g(x)_{mossa-sulco} \cap g(x)_{L_s \to r}\right]$$
(5.25)

$$POF_r = \mathbb{P}\left[Cos\left(\frac{\pi}{2}S_r\right) - \exp\left(-\frac{\pi^2}{8}\frac{S_r^2}{K_r^2}\right) \le 0 \quad \bigcap L_c - L_s \le 0\right]$$
(5.26)

A probabilidade de falha total para um defeito mossa-sulco, tanto, pela ocorrência do evento de vazamento, **ou** quanto pelo evento de ruptura, pode ser avaliada conforme as leis de probabilidade como uma união de eventos. Usando as equações (5.24) e (5.26), esta probabilidade é definida por:

$$POF_{T} = \mathbf{P} \begin{bmatrix} \left(Cos\left(\frac{\pi}{2}S_{r}\right) - \exp\left(-\frac{\pi^{2}}{8}\frac{S_{r}^{2}}{K_{r}^{2}}\right) \le 0 \quad \bigcap L_{c} - L_{s} > 0 \right) \\ \bigcup \left(Cos\left(\frac{\pi}{2}S_{r}\right) - \exp\left(-\frac{\pi^{2}}{8}\frac{S_{r}^{2}}{K_{r}^{2}}\right) \le 0 \quad \bigcap L_{c} - L_{s} \le 0 \right) \end{bmatrix}$$
(5.27)

As equações (5.24), (5.26) e (5.27) podem ser calculadas usando os conceitos de confiabilidade em sistemas e o cálculo da integral multinormal, expostos nos capítulos anteriores.

A seguir é apresentado um estudo de caso com a aplicação dos conceitos descritos acima. O exemplo corresponde ao mesmo caso tratado na seção 5.2. A avaliação da probabilidade da equação (5.21) e (5.22) foi calculada com o algoritmo *FORM* proposto por Low e Tang, a linguagem *VBA for EXCEL* foi utilizada para este cálculo.

A figura 5.10 mostra a planilha do *EXCEL* com os dados de entrada e os resultados obtidos. Foi realizada também uma análise de sensibilidade para este estado limite, com o fim de determinar quais são as variáveis que apresentam maior influência no cálculo da probabilidade.

4	А	В	С	D	E	F	G	Η		J	K	L	М	Ν	0	Р	Q	R	
32	MODELO DE FALHA PARA O COMPRIMENTO DO SULCO																		
33	Variável	Distribuição		Para1	Para2	Para3	Para4		x ,*		n,	g2(<u>x</u>)	β	POF	a	Falha	I L → ru	otura	01
34	D [mm]	Normal		457.2	0				457.2		-5E-08	-8.2E-11	1.3968	8.12E-02	-4E-08	Falha	L → vaz	amento	ן
35	t [mm]	Normal		12.8	0.3				12.78252		-0.0583			9.19E-01	-0.042		0	1	
36	σy [Mpa]	Lognormal		445.9	12.8				445.09681		-0.0485				-0.035		0	0	
37	Pop [Mpa]	Normal		7	0				7		-5E-08		Calcular		-4E-08		0	0	
38	Ls=2c [mm]	Weibull		140.75	0.84				420.30139		1.3948				0.999		0	0	
39					_														
40	Lc	[mm]		422.01															

Figura 5.10 – Planilha EXCEL para o cálculo da probabilidade de $L_c-L_s \leq 0$ e $L_c-L_s > 0$

Na figura 5.11 pode ser observada a contribuição de cada variável na determinação da probabilidade de $L_c - L_s \le 0$ e $L_c - L_s > 0$. Conforme observado

na figura, a variável comprimento do sulco $(L_s=2c)$ é a que apresenta maior influência no cálculo da *POF* e, portanto, é estatisticamente mais sensível, as outras variáveis consideradas nesta análise poderiam ser tratadas como determinísticas. Os resultados das análises de probabilidade são apresentados na tabela 5.4.

Figura 5.11 – Fator de importância de cada variável na POF por ruptura.

Tabela 5.4 Cálculo da p	robabilidade de $L_c - L_s \leq 0$ e	$L_c - L_s > 0$
	POF	
	$POF_{L_s \to r} = P[L_c - L_s \le 0]$	8.12E-02
	$POF_{L_s \to v} = P[L_c - L_s > 0]$	9.19E-01

De acordo como os resultados obtidos, a probabilidade que o tamanho do comprimento do sulco possa levar a uma ruptura estável (vazamento) é maior que o caso contrário, dito de outra forma, o valor de L_s ser menor que Lc é o mais provável de acontecer.

A seguir é calculada a probabilidade do defeito mossa-sulco possa ter uma falha por vazamento ou por ruptura; são usadas aqui as equações (5.23) e (5.25) e o método *PCM* para o cálculo das probabilidades (interseção dos eventos). A tabela 5.5 apresenta os resultados obtidos.

POF por ruptura e vazamento					
$POF_r = P\left[g(x)_{mossa-sulco} \cap g(x)_{L_s \to r}\right]$	7.40E-04				
$POF_{v} = P\left[g(x)_{mossa-sulco} \cap g(x)_{L_{s} \to v}\right]$	4.70E-03				

A probabilidade de falha total para um defeito mossa-sulco, devido ao evento de vazamento ou ao evento de ruptura, é calculada usando a união destes eventos (tabela 5.6) e o método *I-PCM*. O coeficiente correlação entre os limites de ruptura e vazamento é igual a 0.13. Dado que r é baixo a *POF* total pode também ser calculada considerando que os eventos são independentes, assim:

$$POF_{T} = 1 - (1 - POF_{r})(1 - POF_{v}) = 1 - (1 - 7.40E - 04)(1 - 4.70E - 03) = 5.44E - 03$$

Tabela 5.6 Cálculo da POF total

POF total	
$POF_T = \left[POF_r \bigcup POF_v \right]$	5.40E-03

Os valores encontrados nesta análise podem ser usados para a determinação de freqüências de falha por ruptura ou vazamento, de forma similar ao feito na seção 5.2.

O modo como um duto com defeito mossa-sulco falha, tanto por vazamento, ou como por ruptura também esta influenciado pela pressão interna do duto. A seguir é feita uma análise da influência da pressão de operação na probabilidade de falha do dano mossa-sulco.

5.2.2

Influência da pressão de operação na probabilidade de falha do dano mossa-sulco

Para estudar a influência da pressão de operação será usado o mesmo exemplo que tem sido utilizado neste capítulo. Variações da pressão foram

Figura 5.12 – Influência da pressão de operação da *POF* de um duto com defeito mossasulco

Na figura 5.12 pode ser visto que quando as pressões de operação são menores a falha no duto devido ao defeito mossa-sulco será uma ruptura estável $(POF_v > POF_r, vazamento)$ até uma determinada pressão, a partir da qual, a *POF* por ruptura é maior que a *POF* por vazamento.

O valor de pressão de operação que faz com que a *POF* de vazamento seja igual que à *POF* de ruptura na figura 5.12 é representado como o ponto de intercepção entre as curvas de POF_v e POF_r , e é aproximadamente igual a 22 MPa. Na figura 5.13 pode ser observado o comportamento do defeito dentro do diagrama de falha quando a *Pop* é incrementada.

Figura 5.13 – Influência da pressão de operação no *FAD* de um duto com defeito mossasulco

À medida que a pressão de operação é incrementada, tanto *Kr* como *Sr* aumentam, mas este incremento é mais notável no valor de *Sr* (ruptura sendo mais influenciada por colapso plástico). Também é possível identificar no *FAD* a região ou o limite na qual a ruptura será estável (vazamento) e a da ruptura instável (similar a figura 5.9). Este limite é determinado a partir do instante que a curva de *POF* por ruptura em função da pressão se intercepta com a curva de *POF* por vazamento.

Na figura 5.13 pode ser observado o "crescimento" do ponto dentro do *FAD*, o aumento da pressão de operação faz com cada vez mais fique perto da curva do *FAD* diminuindo a sua distância e fazendo com que a *POF* de falha seja maior (figura 5.12). A seguir é feita uma análise variando a profundidade da mossa.

5.2.3

Influência da profundidade da mossa na probabilidade de falha do dano mossa-sulco

Para estudar a influência da profundidade da mossa será usado o mesmo exemplo que tem sido utilizado neste capítulo. Variações da profundidade da mossa foram feitas e calculou-se a *POF* por ruptura, vazamento e total. A figura 5.14 apresenta os resultados obtidos.

Figura 5.14 – Influência da profundidade da mossa na POF de um duto com defeito mossa-sulco

Segundo os resultados obtidos, variações na profundidade da mossa estas não produzem nenhum efeito na variação da probabilidade de falha.

Através do diagrama de falha é possível ver o comportamento do defeito com a variação da profundidade da mossa, os resultados obtidos são mostrados na figura 5.15.

O aumento da profundidade de mossa faz com que exista uma pequena redução no valor de Sr, devido à diminuição da tensão de membrana que atua no defeito. Já o valor de Kr, tem um incremento mais significativo por causa do aumento da tensão de flexão que atua no defeito, o que provoca com que o valor de K_I seja maior.

Figura 5.15 – Influência da profundidade da mossa no FAD de um duto com defeito mossa-sulco

Cabe lembrar aqui, que a metodologia apresentada neste capítulo, só é aplicável para profundidades de mossas não maiores que 7 - 10 % do diâmetro do duto e que se encontram localizadas no corpo do duto [77,78].

5.2.4

Influência da profundidade do sulco na probabilidade de falha do dano mossa-sulco

Para estudar a influência da profundidade do sulco será usado o mesmo exemplo que tem sido utilizado neste capitulo. Variações da profundidade do sulco foram feitas e calculou-se a *POF* por ruptura, vazamento e total. A figura 5.16 apresenta os resultados obtidos.

A variação da profundidade do sulco tem um grande efeito na *POF*, na medida em que este aumenta, tem-se um significativo aumento da *POF*. Segundo a análise de sensibilidade (figura 5.5), observou-se que a profundidade da mossa tem muita participação no cálculo da *POF*, (94.89%).

Figura 5.16 – Influência da profundidade do sulco na *POF* de um duto com defeito mossa-sulco

A seguir, é apresentada a análise no diagrama de falha, onde é possível observar o comportamento do defeito com a variação da profundidade do sulco, os resultados obtidos são mostrados na figura 5.17.

Figura 5.17 – Influência da profundidade da mossa no FAD de um duto com defeito mossa-sulco

À medida que a profundidade do sulco é incrementada, tanto Kr como Sr aumentam, sendo este incremento mais notável no valor de Kr (ruptura sendo mais influenciada pelo K_I), segundo as análises probabilísticas, a *POF* por vazamento sempre é maior que a *POF* por ruptura. Também pode ser observado no *FAD*, que o "crescimento" dos pontos dentro do diagrama não é paralelo ao eixo Kr, assim, a falha será controlada, tanto por fratura como por colapso plástico.