4 Estimadores Numéricos de Curvatura

Chamamos uma coleção finita de pontos $\mathcal{P} = \{p_1, p_2, ..., p_m\}$ que representa a discretização de uma curva \mathbf{r} no \mathbb{R}^4 de *curva discreta*.

Neste capítulo, vamos apresentar extensões do \mathbb{R}^3 para o \mathbb{R}^4 de dois estimadores numéricos das propriedades geométricas nos pontos da curva discreta \mathcal{P} . O primeiro extende o algoritmo proposto em (6) definido como Coordenadas Independentes e o segundo extende o algoritmo proposto em (2) definido como Método das Derivadas Discretas.

4.1 Cálculo das Curvaturas: Coordenadas Independentes

Dada uma curva $\mathcal{P} = \{p_1, p_2, ..., p_m\}$ que representa a discretização de uma curva \mathbf{r} no \mathbb{R}^4 . Vamos admitir que \mathbf{r} está parametrizada pelo comprimento de arco s e também a existência de ruído na amostragem. Precisamos estimar as derivadas até a quarta ordem das coordenadas (x(s), y(s), z(s), w(s)) de um ponto $p \in \mathcal{P}$ e utilizar as informações das derivadas obtidas para calcular as três curvaturas em p com o uso do Teorema 2.2.

A extensão do algoritmo proposto em (6) consiste em aproximar os q vizinhos de um ponto por uma curva quártica utilizando o Método dos Mínimos Quadrados com Peso (ver Figura 4.1). No artigo original esses q vizinhos eram aproximados por uma cúbica.

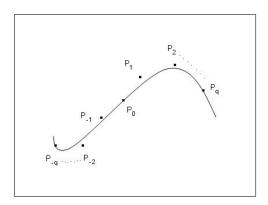


Figura 4.1: Ajuste de Curva

Vamos fixar um ponto $p_0 \in \mathcal{P}$ conforme a Figura 4.1 considerando que p_0 possui q vizinhos para frente e q para trás, definindo assim uma janela com 2q + 1 pontos em torno de p_0 : $\{p_{-q}, p_{-q+1}, ..., p_q\}$. Daí, supondo que $p_0 = \mathbf{r}(0)$

seja a origem da parametrização por comprimento de arco, podemos escrever as expressões das derivadas de \mathbf{r} em p_0 utilizando expansão em Taylor. As aproximações de quarta ordem, por exemplo, são escritas da seguinte forma com $(g_i(s) \to 0$ quando $s \to 0)$:

$$\begin{cases} x_{i} = x'(0) + \frac{1}{2}x''(0)s_{i}^{2} + \frac{1}{6}x'''(0)s_{i}^{3} + \frac{1}{24}x^{(iv)}(0)s_{i}^{4} + g_{1}(s)s_{i}^{5} + \eta_{x,i} \\ y_{i} = y'(0) + \frac{1}{2}y''(0)s_{i}^{2} + \frac{1}{6}y'''(0)s_{i}^{3} + \frac{1}{24}y^{(iv)}(0)s_{i}^{4} + g_{2}(s)s_{i}^{5} + \eta_{y,i} \\ z_{i} = z'(0) + \frac{1}{2}z''(0)s_{i}^{2} + \frac{1}{6}z'''(0)s_{i}^{3} + \frac{1}{24}z^{(iv)}(0)s_{i}^{4} + g_{3}(s)s_{i}^{5} + \eta_{z,i} \\ w_{i} = w'(0) + \frac{1}{2}w''(0)s_{i}^{2} + \frac{1}{6}w'''(0)s_{i}^{3} + \frac{1}{24}w^{(iv)}(0)s_{i}^{4} + g_{4}(s)s_{i}^{5} + \eta_{w,i} \end{cases}$$

$$(4-1)$$

Considere $p_i = (x_i, y_i, z_i, w_i)$ um ponto da amostra, s_i o comprimento de arco da curva \mathbf{r} de p_0 a p_i e η_i um ruído onde cada coordenada constitui uma variável aleatória independente com média zero e variância σ^2 .

As estimativas para as derivadas até a quarta ordem em p_i serão descritas a seguir. Antes, precisamos de uma estimativa l_i para os comprimentos de arco s_i . Defina Δl_k o comprimento do vetor $p_k p_{k+1}$, onde k varia de -q até (q-1). O estimador para o comprimento de arco de p_0 a p_i é definido então da seguinte forma:

$$\begin{cases} l_i = \sum_{k=0}^{i-1} \Delta l_k, \text{ se } i > 0 \\ l_i = -\sum_{k=i}^{-1} \Delta l_k, \text{ se } i < 0 \end{cases}$$

Para estimar as curvaturas, devemos obter uma curva quártica da forma 4-1. De uma maneira geral, o método consiste em minimizar o quadrado do erro de cada coordenada de p_i de forma independente. Para isso, basta determinar os valores de x'_0, x''_0, x'''_0 e $x_0^{(iv)}$ que minimizam:

$$E_x(x_0', x_0'', x_0''', x_0^{(iv)}) = \sum_{i=-q}^q u_i (x_i - x_0' l_i - \frac{1}{2} x_0'' l_i^2 - \frac{1}{6} x_0''' l_i^3 - \frac{1}{24} x_0^{(iv)} l_i^4)^2$$
 (4-2)

Mais precisamente, desejamos obter $min \parallel Ax - b \parallel^2$, onde:

$$A = \begin{pmatrix} l_{-q} & \frac{1}{2}l_{-q}^{2} & \frac{1}{6}l_{-q}^{3} & \frac{1}{24}l_{-q}^{4} \\ \vdots & \vdots & \vdots & \vdots \\ l_{0} & \frac{1}{2}l_{0}^{2} & \frac{1}{6}l_{0}^{3} & \frac{1}{24}l_{0}^{4} \\ \vdots & \vdots & \vdots & \vdots \\ l_{q} & \frac{1}{2}l_{q}^{2} & \frac{1}{6}l_{q}^{3} & \frac{1}{24}l_{q}^{4} \end{pmatrix}, x = \begin{pmatrix} x'_{0} \\ x'_{0} \\ x''_{0} \\ x''_{0} \\ x''_{0} \\ x''_{0} \end{pmatrix} e b = \begin{pmatrix} x_{-q} \\ \vdots \\ x_{0} \\ \vdots \\ x_{q} \end{pmatrix}$$

Note que a matriz A em questão possui 2q+1 linhas e 4 colunas. Usando

mínimos quadrados, buscamos a solução do sistema $A^TAx = A^Tb$ onde:

$$A^{T}A = \begin{pmatrix} a_{1} & a_{2} & a_{4} & a_{7} \\ a_{2} & a_{3} & a_{5} & a_{8} \\ a_{4} & a_{5} & a_{6} & a_{9} \\ a_{7} & a_{8} & a_{9} & a_{10} \end{pmatrix} = \begin{pmatrix} l_{-q} & \cdots & l_{0} & \cdots & l_{q} \\ \frac{1}{2}l_{-q}^{2} & \cdots & \frac{1}{2}l_{0}^{2} & \cdots & \frac{1}{2}l_{q}^{2} \\ \frac{1}{6}l_{-q}^{3} & \cdots & \frac{1}{6}l_{0}^{3} & \cdots & \frac{1}{6}l_{q}^{3} \\ \frac{1}{24}l_{-q}^{4} & \cdots & \frac{1}{24}l_{0}^{4} & \cdots & \frac{1}{24}l_{q}^{4} \end{pmatrix} \begin{pmatrix} l_{-q} & \frac{1}{2}l_{-q}^{2} & \frac{1}{6}l_{-q}^{3} & \frac{1}{24}l_{-q}^{4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{0} & \frac{1}{2}l_{0}^{2} & \frac{1}{6}l_{0}^{3} & \frac{1}{24}l_{0}^{4} \\ \vdots & \vdots & \vdots & \vdots \\ l_{q} & \frac{1}{2}l_{q}^{2} & \frac{1}{6}l_{q}^{3} & \frac{1}{24}l_{q}^{4} \end{pmatrix}$$

Dessa forma obtemos:

$$\begin{cases} a_1 = \sum_{i=-q}^q u_i l_i^2 \\ a_2 = \frac{1}{2} \sum_{i=-q}^q u_i l_i^3 \\ a_3 = \frac{1}{4} \sum_{i=-q}^q u_i l_i^4 \\ a_4 = \frac{1}{6} \sum_{i=-q}^q u_i l_i^4 \\ a_5 = \frac{1}{12} \sum_{i=-q}^q u_i l_i^5 \\ a_6 = \frac{1}{36} \sum_{i=-q}^q u_i l_i^6 \\ a_7 = \frac{1}{24} \sum_{i=-q}^q u_i l_i^5 \\ a_8 = \frac{1}{48} \sum_{i=-q}^q u_i l_i^6 \\ a_9 = \frac{1}{144} \sum_{i=-q}^q u_i l_i^7 \\ a_{10} = \frac{1}{(24)^2} \sum_{i=-q}^q u_i l_i^8 \end{cases}$$

Por outro lado,

$$A^{T}b_{x} = \begin{pmatrix} b_{x,1} \\ b_{x,2} \\ b_{x,3} \\ b_{x,4} \end{pmatrix} = \begin{pmatrix} l_{-q} & \cdots & l_{0} & \cdots & l_{q} \\ \frac{1}{2}l_{-q}^{2} & \cdots & \frac{1}{2}l_{0}^{2} & \cdots & \frac{1}{2}l_{q}^{2} \\ \frac{1}{6}l_{-q}^{3} & \cdots & \frac{1}{6}l_{0}^{3} & \cdots & \frac{1}{6}l_{q}^{3} \\ \frac{1}{24}l_{-q}^{4} & \cdots & \frac{1}{24}l_{0}^{4} & \cdots & \frac{1}{24}l_{q}^{4} \end{pmatrix} \begin{pmatrix} x_{-q} \\ \vdots \\ x_{0} \\ \vdots \\ x_{q} \end{pmatrix}$$

Daí, obtemos que

$$\begin{cases} b_{x,1} = \sum_{i=-q}^{q} u_i l_i x_i \\ b_{x,2} = \frac{1}{2} \sum_{i=-q}^{q} u_i l_i^2 x_i \\ b_{x,3} = \frac{1}{6} \sum_{i=-q}^{q} u_i l_i^3 x_i \\ b_{x,4} = \frac{1}{24} \sum_{i=-q}^{q} u_i l_i^4 x_i \end{cases}$$

Da mesma forma que calculamos as aproximações para as derivadas até a quarta ordem para a componente x, devemos fazer o mesmo procedimento para as outras coordenadas y, z e w, solucionando os problemas de minimização E_y , E_z e E_w perfazendo um total de quatro sistemas lineares 4×4 . Para a

coordenada y, por exemplo, precisamos resolver o sistema:

$$\begin{pmatrix}
a_1 & a_2 & a_4 & a_7 \\
a_2 & a_3 & a_5 & a_8 \\
a_4 & a_5 & a_6 & a_9 \\
a_7 & a_8 & a_9 & a_{10}
\end{pmatrix}
\begin{pmatrix}
y'_0 \\
y''_0 \\
y''_0$$

$$\begin{cases} b_{y,1} = \sum_{i=-q}^{q} u_i l_i y_i \\ b_{y,2} = \frac{1}{2} \sum_{i=-q}^{q} u_i l_i^2 y_i \\ b_{y,3} = \frac{1}{6} \sum_{i=-q}^{q} u_i l_i^3 y_i \\ b_{y,4} = \frac{1}{24} \sum_{i=-q}^{q} u_i l_i^4 y_i \end{cases}$$

Analogamente, este procedimento é realizado para as coordenadas $z \in w$.

Estabelecido um procedimento discreto de determinação das derivadas até a quarta ordem em um ponto p_i de uma amostragem, basta utilizar as expressões do teorema 2.2 para determinar as 3 curvaturas numéricas k_1, k_2 e k_3 do ponto em questão.

O peso u_i no ponto p_i que aparece em expressões anteriores deve ser positivo, relativamente grande para $|s_i|$ pequeno e relativamente pequeno para $|s_i|$ grande. Consideramos neste trabalho que $u_i = 1$ e fizemos alguns testes com $u_i = e^{-s_i^2}$.

Os algoritmos a seguir resumem os passos para montar a matriz A^TA e os vetores b_x, b_y, b_z e b_w .

Algoritmo 1: Coeficientes Mínimos Quadrados

```
V[n][4] \rightarrow \text{lista de n pontos da curva no } \mathbb{R}^4
l[n] \rightarrow \text{acumuladas dos comprimentos}
k \rightarrow \text{indice do ponto}
q \rightarrow quantidade de vizinhos
a_1 = a_2 = a_3 = \ldots = a_{10} = 0;
bx1 = bx2 = bx3 = bx4 = by1 = by2 = by3 = by4 = bz1 = bz2 = bz3 = bz4 =
bw1 = bw2 = bw3 = bw4 = 0;
m \leftarrow l[k]
for(i = -q; i \le q; i + +){
         l[i+k] \leftarrow l[i+k] - m;
         a1 \leftarrow a1 + u \left( l[i+k] \right)^2;
         a2 \leftarrow a2 + \frac{u}{2} (l[i+k])^3;
        a3 \leftarrow a3 + \frac{\overline{u}}{4} \left( l[i+k] \right)^4;
        a4 \leftarrow a4 + \frac{u}{6} (l[i+k])^4;
        a5 \leftarrow a5 + \frac{u}{12} (l[i+k])^5;
a6 \leftarrow a6 + \frac{u}{36} (l[i+k])^6;
a7 \leftarrow a7 + \frac{u}{24} (l[i+k])^5;
        a8 \leftarrow a8 + \frac{u}{48} (l[i+k])^6;

a9 \leftarrow a9 + \frac{u}{144} (l[i+k])^7;
        a10 \leftarrow a10 + \frac{u}{576} (l[i+k])^8;
         bx1 = bx1 + u \ l[i+k] \ (V[k+i][0] - V[k][0]);
         by1 = by1 + u \ l[i + k] \ (V[k + i][1] - V[k][1]);
         bz1 = bz1 + u \ l[i + k] \ (V[k + i][2] - V[k][2]);
         bw1 = bw1 + u \ l[i+k] \ (V[k+i][3] - V[k][3]);
         bx2 = bx2 + \frac{u}{2} (l[(i+k])^2 (V[k+i][0] - V[k][0]);
        by2 = by2 + \frac{\tilde{u}}{2} (l[i+k])^2 (V[k+i][1] - V[k][1]);
         bz2 = bz2 + \frac{u}{2}([i+k])^2(V[k+i][2] - V[k][2]);
        bw2 = bw2 + \frac{u}{2}(l[i+k])^2(V[k+i][3] - V[k][3]);
        bx3 = bx3 + \frac{u}{6}(l[i+k])^3 (V[k+i][0] - V[k][0]);
        by3 = by3 + \frac{u}{6} (l[i+k])^3 (V[k+i][1] - V[k][1]);
        bz3 = bz3 + \frac{\tilde{u}}{6} (l[i+k])^3 (V[k+i][2] - V[k][2]);
        bw3 = bw3 + \frac{u}{6} (l[i+k])^3 (V[k+i][3] - V[k][3]);
bx4 = bx4 + \frac{u}{24} (l[i+k])^4 (V[k+i][0] - V[k][0])
by4 = by4 + \frac{u}{24} (l[i+k])^4 (V[k+i][1] - V[k][1]);
bz4 = bz4 + \frac{u}{24} (l[i+k])^4 (V[k+i][2] - V[k][2]);
bw4 = bw4 + \frac{u}{24} (l[i+k])^4 (V[k+i][3] - V[k][3]);
Calcula Curvatura (A, bx, by, bz, bw, k)
```

Algoritmo 2: Calcula Curvatura (A,bx, by, bz,bw,k) Resolver sistema $Ax = b_x$; $// x = (x'_k, x''_k, x''_k, x''_k, x''_k)$ Resolver sistema $Ay = b_y$; $// y = (y'_k, y''_k, y''_k, y''_k, y''_k)$ Resolver sistema $Az = b_z$; $// z = (z_k, z''_k, z''_k, z''_k)$ Resolver sistema $Aw = b_w$; $// w = (w'_k, w''_k, w'''_k, z''_k)$ // juntar as respostas dos sistemas nos vetores r', r'', r''', r''', $r^{(iv)}$ $t = \frac{r'}{\parallel r' \parallel}$; // vetor tangente: $b_2 = \frac{r' \times r'' \times r'''}{\parallel r' \times r'' \times r''' \times r''' \parallel}$; // vetor binormal: $b_1 = \frac{b_2 \times r' \times r''}{\parallel b_2 \times r' \times r'' \times r'' \times r'' \times r'' \times r''}$; // vetor binormal: $n = \frac{b_1 \times b_2 \times r'}{\parallel b_1 \times b_2 \times r' \times r' \times r'' \times r'' \times r''}$; // vetor normal: // Obtendo as curvaturas: $k_1 = \frac{\langle n, r'' \rangle}{\parallel r' \parallel^2}$; $k_2 = \frac{\langle b_1, r''' \rangle}{\parallel r' \parallel^3 k_1}$; $k_3 = \frac{\langle b_2, r^{(iv)} \rangle}{\parallel r' \parallel^4 k_1 k_2}$;

4.2 O Método das Derivadas Discretas

 $k_1[k] = k_1$ $k_2[k] = k_2$ $k_3[k] = k_3$

O objetivo desta seção é explicar de forma resumida o método proposto por (2), e como foi realizada a extensão de tal método para o \mathbb{R}^4 . O ponto de partida para compreensão do método das *derivadas discretas* é a própria definição de derivada de uma função em um determinado ponto.

Sabe-se que a derivada de uma função y = f(x) em um ponto é igual a inclinação da reta tangente ao gráfico da função no ponto escolhido. De forma similar, a derivada de uma função discreta $y_i = f_d(x_i)$ no ponto p_k , $1 \le k \le n$ pode ser descrita pela inclinação da reta tangente ao gráfico da função discreta em p_k . A tangente discreta em p_k é definida como a reta que possui as seguintes características (Figura 4.2):

- a reta contém o ponto p_k ;
- A soma dos quadrados das distâncias entre a reta e os vizinhos $\{p_j = (x_j, y_j) \text{ tal que } k q \leq j \leq k + q\}$ de p_k ao longo do eixo y é mínima. Esta soma pode ser estendida com $p_k \in \mathbb{R}^4$.

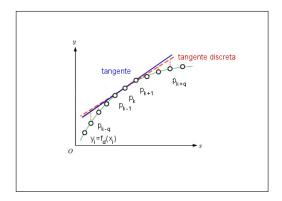


Figura 4.2: Derivadas discretas

Se a função discreta $y_i = f_d(x_i)$ é uma amostragem de uma função contínua suave, então a reta tangente discreta aproxima a reta tangente em p_k quando $x_{k-q}, x_{k-q+1}, ..., x_{k+q-1}$ estão muito próximos. Dessa forma, resolver o problema da reta tangente discreta equivale a solucionar o problema de minimização correspondente dado por:

$$\min_{(a,b)} \sum_{j=k-q}^{k+q} (y_j - ax_j - b)^2 \text{ sujeito a: } y_k - ax_k - b = 0;$$

Este problema é resolvido com a utilização dos multiplicadores de Lagrange:

$$L(a,b,\lambda) = \sum_{j=k-q}^{k+q} (y_j - ax_j - b)^2 + \lambda (y_k - ax_k - b)$$

As equações para encontrar $a, b \in \lambda$ são dadas por:

$$\frac{\partial L}{\partial a} = 0; \ \frac{\partial L}{\partial b} = 0 \ e \ \frac{\partial L}{\partial \lambda} = 0$$

Daí, a inclinação a da tangente discreta em p_k é dada por:

$$a = \frac{\sum_{j=k-q}^{k+q} (x_j - x_k)(y_j - y_k)}{\sum_{j=k-q}^{k+q} (x_j - x_k)^2}$$

Seja $y_i = f_d(x_i), x_i \in \{x_1, x_2, ..., x_n\}$ um conjunto de pares de pontos que definem uma função real discreta. O valor $y'_k = f'_d(x_k)$ dado por

$$y_k' = \frac{\sum_{j=k-q}^{k+q} (x_j - x_k)(y_j - y_k)}{\sum_{j=k-q}^{k+q} (x_j - x_k)^2}$$

é chamado derivada discreta da função f_d em p_k , $1 \le k \le n$.

A derivada discreta de segunda ordem é dada de acordo com a definição para a de primeira ordem por:

$$y_k'' = \frac{\sum_{j=k-q}^{k+q} (x_j - x_k) (y_j' - y_k')}{\sum_{j=k-q}^{k+q} (x_j - x_k)^2}$$

Este procedimento pode ser feito para determinar as derivadas discretas de ordem superiores.

4.2.1

Cálculo das propriedades geométricas pelo método das derivadas discretas

Na seção 4.1 foi realizado um procedimento para estimar o comprimento de arco de uma amostragem de pontos no \mathbb{R}^4 . Em (2) os autores utilizam o método de parametrização pelo comprimento de corda. Neste caso, as acumuladas dos comprimentos de corda, denotadas por t_i , em cada ponto p_i de uma amostragem são definidas pela expressão:

$$t_i = \frac{\sum_{j=1}^{i-1} |p_{j+1} - p_j|}{\sum_{j=1}^{n-1} |p_{j+1} - p_j|}$$
(4-3)

com $2 \le i \le n$ e $t_1 = 0$.

Utilizando o método proposto por (2), pensamos uma curva discreta como uma aplicação $\mathbf{r}_d: I_d \to \mathbb{R}^4_d$ onde $I_d = \{t_i \text{ tal que } 1 \leq i \leq n\}$ e $\mathbb{R}^4_d = \{p_i = (x_i, y_i, z_i, w_i) \text{ com } 1 \leq i \leq n\}$. Assim, $p_i = \mathbf{r}_d(t_i) = (x_d(t_i), y_d(t_i), z_d(t_i), w_d(t_i))$, $t_i \in \{t_1, t_2, ..., t_n\}$ onde $x_i = x_d(t_i), y_i = y_d(t_i), z_i = z_d(t_i)$ e $w_i = w_d(t_i)$ constituem funções discretas do parâmetro comprimento de corda t_i .

Portanto, podemos combinar as propriedades geométricas de curvas discretas parametrizadas pelo comprimento de corda t_i com as definições de derivadas discretas. Dessa forma, os estimadores para as derivadas discretas,

por exemplo, de primeira ordem são dados pelas expressões:

$$\begin{cases} x'_d = \frac{\sum_{j=i-q}^{i+q} (t_j - t_i)(x_j - x_i)}{\sum_{j=i-q}^{i+q} (t_j - t_i)^2} \\ y'_d = \frac{\sum_{j=i-q}^{i+q} (t_j - t_i)(y_j - y_i)}{\sum_{j=i-q}^{i+q} (t_j - t_i)^2} \\ z'_d = \frac{\sum_{j=i-q}^{i+q} (t_j - t_i)(z_j - z_i)}{\sum_{j=i-q}^{i+q} (t_j - t_i)^2} \\ w'_d = \frac{\sum_{j=i-q}^{i+q} (t_j - t_i)(w_j - w_i)}{\sum_{j=i-q}^{i+q} (t_j - t_i)^2} \end{cases}$$

As derivadas de segunda, terceira e quarta ordem são dadas, respectivamente, pelas expressões:

$$\begin{cases} x_d'' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(x_j'-x_i')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ y_d'' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(y_j'-y_i')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ z_d'' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(z_j-z_i')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ z_d'' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(x_j'-x_i')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ w_d'' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(x_j''-x_i')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ \end{cases}$$

$$\begin{cases} x_d''' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(x_j''-x_i')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ y_d''' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(y_j''-y_i')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ z_d''' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(x_j''-x_i'')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ \end{cases}$$

$$\begin{cases} x_d^{(iv)} = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(x_j''-x_i'')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ y_d^{(iv)} = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(y_j''-y_i'')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ z_d^{(iv)} = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(z_j''-z_i'')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ \end{cases}$$

$$\begin{cases} x_d'' = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(x_j''-x_i'')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ z_d^{(iv)} = \frac{\sum_{j=i-q}^{i+q}(t_j-t_i)(z_j''-z_i'')}{\sum_{j=i-q}^{i+q}(t_j-t_i)^2} \\ z_{j=i-q}^{(iv)}(t_j-t_i)(x_j''-x_i'')} \\ z_{j=i-q}^{i+q}(t_j-t_i)(x_j''-x_i'')} \\ z_{j=i-q}^{i+q}(t_j-t_i)(t_j''-t_i)(t_j''-x_i'')} \\ z_{j=i-q}^{i+q}(t_j-t_i)(t_j''-x_i'')} \\ z_{j=i-q}^{i+q}(t_j-t_i)(t_j''-$$

Uma vez obtidas todas as derivadas para a curva \mathbf{r}_d , basta aplicar o Teorema 2.2 para obter os vetores que definem a base móvel de Frenet-Serret, bem como as curvaturas k_1, k_2 e k_3 em cada ponto da curva discreta dada.