

Rafael Salomão Ach

Influência da taxa de deformação nas curvas tensão x deformação de um aço 1020 pré-encruado

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC-Rio.

> Orientador: Prof. Jaime Tupiassú Pinho de Castro

Rio de Janeiro Agosto de 2012

Rafael Salomão Ach

Influência da taxa de deformação nas curvas tensão x deformação de um aço 1020 pré-encruado

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Jaime Tupiassú Pinho de Castro Orientador Departamento de Engenharia de Mecânica – PUC-Rio

Prof. Marco Antônio Meggiolaro Departamento de Engenharia de Mecânica – PUC-Rio

Prof. José Luiz de França Freire Departamento de Engenharia de Mecânica – PUC-Rio

> Prof. Paulo Pedro Kenedi CEFET/RJ

Prof. José Eugenio Leal Coordenador Setorial do Centro Científico – PUC-Rio

PUC-Rio - Certificação Digital Nº 1021774/CA

Rio de Janeiro, 09 de agosto de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rafael Salomão Ach

É Primeiro Tenente (EN) da Marinha do Brasil desde 2011 atuando como coordenador de reparo e projetos de submarinos. Graduado em Engenheiro Mecânico pelo CEFET-RJ, em 2004 e Pós-Graduado em Engenharia de Dutos pela PUC RJ em 2006. Especializado em Análise de Falha pela ABM e certificado pela Instituição INDG em Green Belt, ambos em 2007.

Ficha Catalográfica

Ach, Rafael Salomão

Influência da taxa de deformação nas curvas tensão x deformação de um aço 1020 pré-encruado. / Rafael Salomão Ach; orientador: Jaime Tupiassú Pinho de Castro – Rio de Janeiro: PUC, Departamento de Engenharia Mecânica, 2012.

v.,105 f,; il. ; 29,7 cm

1. Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Dissertação. 2. Influência da Taxa de Deformação. 3. Ensaio de Tração. 4. Comportamento Mecânico Dinâmico. 5 Ajuste Ótimo de Dados.I. Castro, Jaime Tupiassú Pinho de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III Título. PUC-Rio - Certificação Digital Nº 1021774/CA

Para minha família.

Agradecimentos

À Deus, que me concede bênçãos, dentre elas, a de poder estudar.

A Alice Salomão de Freitas, pelo incentivo na minha formação acadêmica (*in memorian*)

Aos meus pais e irmãos, que sempre me incentivaram aos estudos e são o alicerce da minha formação pessoal.

A Liz Villacorta, por ser especial e importante para mim.

Ao Professor Jaime Tupiassú Pinho de Castro - Ph.D., pela ajuda, rigor acadêmico, orientação, amizade e confiança.

Ao Professor Marco Antonio Meggiolaro - Ph.D., pela compreensão no reingresso ao curso de Mestrado.

Ao amigo que chamo carinhosamente de Jaiminho, engenheiro civil e mestrando na PUC -RJ, que muito me ajudou na parte experimental durante meses de testes no laboratório de fadiga – Departamento de Engenharia Mecânica da PUC RJ.

Resumo

Ach, Rafael Salomão; Castro, Jaime Tupiassú Pinho de. **Influência da taxa de deformação nas curvas tensão x deformação de um aço 1020 pré-encruado**. Rio de Janeiro, 2012. 105p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Curvas tensão × deformação $\sigma \times \varepsilon$ de um aço 1020 trabalhado a frio foram obtidas sob controle da taxa de deformação imposta no corpo de prova (e não da velocidade do pistão ou do travessão da máquina de testes), no intervalo $10^{-5} \leq \dot{\varepsilon} \leq 3 \text{ s}^{-1}$. Este amplo conjunto de dados, tratado por um versátil programa desenvolvido para adquiri-los, filtrá-los e apresentá-los em tempo real, foi usado para verificar a adequação de diversos modelos propostos para descrever o efeito desta taxa, aplicando um algoritmo de otimização de Levenberg-Marquardt para ajustar os vários modelos estudados ao conjunto dos dados medidos. Este procedimento relativamente simples elimina os erros sistemáticos inerentes à prática tradicional de medir o efeito da taxa de deformação nas curvas $\sigma \times \varepsilon$ controlando a velocidade da carga, que podem ser particularmente relevantes nos corpos de prova de aço, cuja rigidez muitas vezes é pelo menos uma ordem de grandeza maior do que a da máquina de testes.

Palavras-chave

Influência da taxa de deformação; comportamento mecânico dinâmico; ajuste ótimo de dados. Ach, Rafael Salomão; Castro, Jaime Tupiassú Pinho de (Advisor). **Strain** rate influence on the stress x strain behavior of a cold worked 1020 steel. Rio de Janeiro, 2012. 105p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Stress×strain $\sigma \times \varepsilon$ curves of a cold worked 1020 steel were measured controlling the strain-rate imposed on the test specimens (and not the testing machine piston or load bean speed), in the range $10^{-5} \le \dot{\varepsilon} \le 3 \text{ s}^{-1}$. This ample data set, properly treated by a versatile software developed to acquire, filter and present the data in real time, was used to verify the adequacy of several models proposed to describe the strain-rate influence, using an Levenberg-Marquardt optimization algorithm to fit the models to the ensemble of the measured data. This relatively simple procedure avoids the intrinsic systematic errors associated to the traditional practice of measuring the strain-rate effect on the $\sigma \times \varepsilon$ curves controlling the load speed, which may be particularly relevant when testing steel specimens, as their stiffness is many times at least an order of magnitude greater than those of the testing machines.

Keywords

Strain rate effect; dynamic mechanical behavior; optimal data fitting.

Sumário

1. Introdução	17
1.1. Motivação	20
1.2. Revisão da Literatura	21
1.2.1. Influência da Máquina de Teste nas Propriedades	
Mecânicas	29

2. Procedimento para Teste e Procedimentos para Ajuste	30
2.1. Procedimento para Teste	30
2.1.1. Determinação do Número de Corpos de Prova	30
2.1.2. Caracterização do Material e Rastreabilidade	31
2.1.3. Descrição da Máquina de Ensaio e Corpo de Prova	31
2.1.4. Parametrização dos Ensaios de tração	33
2.1.5. Razões para Ensaio de Tração Real e suas	
Propriedades Mecânicas	35
2.2. Metodologia de Ajuste de Dados Experimentais	37
2.3. Metodologia para Determinação de S _E	40
3. Analise dos Modelos Matemáticos	42
3.1. Introdução	42
3.1.1. Modelos de Johnson–Cook	42
3.1.2. Modelos de Meyers	43
3.1.3. Modelos de Zerilli-Armstrong	44
3.1.4. Modelos de Cowper-Symonds	44
4. Resultados Experimentais	46
4.1. Introdução	46

4.2. Resultados Gerais dos Ensaios de Tração por Controle de	
Deformação	46
4.2.1.Propriedades Mecânicas em Função do Efeito	
da Taxa de Deformação	49
4.2.2. Valores das Propriedades Mecânicas $S_E e S_R$	
para os Aços 1020 Pré encruado e Recozido	50
4.3 Considerações dos Modelos Matemáticos quanto ao	
Ajuste dos Resultados Experimentais	51
4.3.1. Resultados do Modelo de Johnson Cook	52
4.3.2. Resultados do Modelo de Meyers	56
4.3.3. Resultados do Modelo de Zerilli-Armstrong	60
4.3.4. Resultados do Modelo Cowper-Symonds	64
4.3.5. Comparação dos Resultados dos Modelos Matemáticos	68
5. Conclusões e Sugestões para Trabalhos Futuros	72
5.1. Conclusão das Propriedades Mecânicas	72
5.2. Conclusões do Efeito da Taxa de Deformação nos valores	
de S _E e S _R	74
5.3. Conclusões dos Modelos Matemáticos	76
5.4. Considerações Finais Sobre o Efeito de Taxa de	
Deformação em Projeto Mecânico de Dutos	84
5.5. Sugestões para Trabalhos Futuros	89

6. Bibliografia	90
Apêndice A	93

Lista de Figuras

Figura 1 - Esquema básico do sistema de controle de uma máquina	
servo-hidráulica	18
Figura 2 - Deslocamento do pistão y e deformação (de engenharia)	
ϵ atuante no CP durante um ensaio feito sob taxa de deformação	
Constante	19
Figura 3 - Deslocamento do pistão e deformação atuante num CP	
idêntico ao da figura 2, durante um ensaio feito sob velocidade do	
pistão fixa	19
Figura 4 - Relação de tipos de máquinas de tração com a faixa de	
taxa de deformação	21
Figura 5 - Gráfico tensão x deformação nas taxas de deformação	
suscetíveis a colisões veiculares segundo Chen (2004)	22
Figura 6 - Comportamento do aço HSLA em ensaio de tração	
submetidos a diversas temperaturas de ensaio. Thompson (2006)	23
Figura 7 - Dificuldade em ajustar a resposta gráfica para altas	
taxas no estudo da Arcelor Mittal	23
Figura 8 - Comportamento do aço EDDS, DP 590 CR	
e DP 780 EG da ArcelorMittal	24
Figura 9 - Adequação do modelo de Johnson e Cook para	
Alumínio 5083	24
Figura 10 - Adequação do modelo de Zerilli e Armstrong para	
Alumínio 5083	25
Figura 11 - Comportamento dinâmico de diferentes ligas de aço	
de aplicação balística	26
Figura 12 - Componentes de incerteza independentes do	
material 1	28

Figura 13 - Componentes de incerteza independentes do	
material 2	28
Figura 14 - Conjunto garra, corpo de prova e clip gage	32
Figura 15 – Painel de Controle da Instron modelo 8501	33
Figura 16 - Corpo de prova segundo norma ABNT 6152	33
Figura 17 - Tela de acompanhamento dos ensaios de	
tração em tempo real	35
Figura 18 - Ajuste de dados para o aço 300M e API 5L-X60	39
Figura 19 - Determinação de S_E para os ensaios	
experimentais e modelos matemáticos	41
Figura 20 - As 13 curvas $\sigma \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	
nas várias. $\dot{\varepsilon}$	47
Figura 21 - Detalhe da região plástica das curvas	
$\sigma \times \epsilon$ reais (até a estricção)	47
Figura 22 - Relação de S_R dos aços 1020 pré encruado	
e recozido com \mathcal{E}	51
Figura 23 - Relação de JC modificado com dados experimentais	55
Figura 24 - Erro de S _E para a equação de JC	53
Figura 25 - Erro de S _R para a equação de JC	54
Figura 26 - Relação de Meyers modificado com dados experimentais	59
Figura 27 - Erro de S _E para a equação de Meyers	57
Figura 28 - Erro de S _R para a equação de Meyers	57
Figura 29 - Relação de ZA modificado com dados experimentais	63
Figura 30 - Erro de S _E para a equação de ZA	61
Figura 31 - Erro de S _R para a equação de ZA	61
Figura 32 - Relação de CS modificado com dados experimentais	67
Figura 33 - Erro de S _E para a equação de CS	65
Figura 34 - Erro de S _R para a equação de CS	65
Figura 35 - Erro percentual de S _E para os modelos matemáticos	69

Figura 36 - Erro percentual de S _R para os modelos matemáticos	70
Figura 37 - Patamar de encruamento de JC	81
Figura 38 - Patamar de encruamento de MEYERS Figura 39 - Patamar de encruamento de ZA	81 82
Figura 40 - Patamar de encruamento de CS	82
Figura 41 - Valor de S _E para aço API 5L X52	87

Lista de Tabelas

Tabela 1 – Comparação entre aço SAE 1020 recozido versus pré-encruado na taxa de referência	31
Tabela 2 – Taxas de deformação real usadas nos ensaios de tração	34
Tabela 3 – Constantes ajustadas por LM	39
Tabela 4 – Resistências ao escoamento e resistência máxima em função da taxa <i>ċ</i>	46
Tabela 5. Resistências ao escoamento e resistência máxima	
validados em função $\dot{\varepsilon}$	48
Tabela 6 - Sensibilidade de S _E e S _R em função $\dot{\mathcal{E}}$	49
Tabela 7 - Propriedades Mecânicas em função das	
taxas de deformação	49
Tabela 8 - Variação das Propriedades Mecânicas em função	
das taxas de deformação	50
Tabela 9 - Comparação entre o Aço SAE 1020 Pré Encruado	
e Recozido	50
Tabela 10 - Resultado de ERRO e R ² para JC modificado	52
Tabela 11 - Comparação de S _E e S _R de JC modificado	
com resultados experimentais	53
Tabela 12 - Resultado de ERRO e R ² para Meyers modificado	56
Tabela 13 - Comparação de S_{E} e S_{R} de Meyers modificad	
com resultados experimentais	56
Tabela 14 - Resultado de ERRO e R ² para ZA modificado	60

Tabela 15 - Comparação de S_E e S_R de ZA modificado	
com resultados experimentais	60
Tabela 16 - Resultado de ERRO e R ² para CS modificado	64
Tabela 17 - Comparação de S_E e S_R de CS modificado	
com resultados experimentais	64
Tabela 18 - Reunião de S_E e S_R para os modelos matemáticos (MPa)	68
Tabela 19 - Diferença percentual entre de S_E e S_R dos modelos	
matemáticos e experimentais (%)	68
Tabela 20 – Comparação das propriedades mecânicas em função	
das taxas de deformação	73
Tabela 21 – Comparação das propriedades mecânicas em função	
das taxas de deformação	73
Tabela 22 - Comparação da sensibilidade de S_{E} e S_{R} em função	
^è dos aços 1020 recozido e pré-encruado	75
Tabela 23 - Desempenho em vários aspectos dos modelos	
Matemáticos	78
Tabela 24 - Avaliação da região conservativa dos modelos	
Matemáticos	80
Tabela 25 - Variação dos coeficientes de segurança de	
TRESCA e MISES	89

Lista de Símbolos

- ε_{e} Taxa de deformação na região elástica (s⁻¹)
- $\dot{\varepsilon}$ Taxa de deformação (%/s)
- ε_0 Taxa de deformação de referência (s⁻¹)
- ε_m Taxa de deformação média (s⁻¹)
- ε_p Taxa de deformação na região plástica (s⁻¹)
- Ω Margem de erro

- A Área da seção resistente (m²)
- A_R Alongamento Real (%)
- A_R Ductilidade real
- B,N,C Constantes dos modelos matemáticos
- D Diâmetro (mm)
- e Espessura (mm)
- E Módulo de elasticidade (GPa)
- F Fator de construção
- k Rigidez da máquina (N/m)
- K- Coeficiente de resistência plástica (MPa)
- K' Constante do material (MPa/s)
- L₀ Comprimento efetivo do CP (m)
- m Fator de sensibilidade da taxa de deformação
- N Número de corpo de prova
- P Carga aplicada(N)
- P_d Pressão de projeto (MPa)
- Pt-Pressão de teste (MPa)
- R² Coeficiente de determinação

- S Desvio padrão
- S' Fator da classe do tubo
- S_E Resistência ao escoamento da curva real (MPa)
- Se-Resistência ao escoamento da curva convencional (MPa)
- SE0 Resistência ao escoamento medida na taxa de referência (MPa)
- S_R Resistência máxima da curva real (MPa)
- S_R Resistência máxima (MPa)
- Sr Resistência máxima da curva convencional (MPa)
- T Fator de temperatura
- t Tempo (s)
- U_T Tenacidade real (Pa)
- v Velocidade do travessão (m/s)
- X Número filtrado de pontos obtidos pelo experimento
- $Z\alpha/2$ Grau de confiabilidade
- ε Deformação (mm/mm)
- ε_A Deformação real no ponto A
- ε_B Deformação real no ponto B
- ϵ_{E} Deformação associada a resitência ao escoamento (m/m)
- ε_{p} Deformação plástica (m/m)
- ε_R Deformação real (m/m)

ε_{uts} - Alongamento até a resistência máxima da curva tensão deformação convencional (%)

- σ Tensão (MPa)
- σ₁ Tensão na direção 1(MPa)
- σ₂- Tensão na direção 2(MPa)
- σ₃ Tensão na direção 3(MPa)
- σ_A Tensão real no ponto A
- $σ_B$ Tensão real no ponto B
- $\sigma_{calculado}$ Tensão calculada pelos modelos matemáticos (MPa)
- σ eq MISES Tensão equivalente de MISES (MPa)
- $\sigma_{eq TRESCA}$ Tensão equivalente de TRESCA (MPa)
- $\sigma_{experimental}$ Tensão obtida pelos ensaios experimentais (MPa)
- σ_R -Tensão real (MPa)