

Rodrigo Fernandes Magalhães de Souza

Ustulação seletiva de um concentrado sulfetado com baixo teor de cobre

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pósgraduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio.

Orientador: Prof. Eduardo de Albuquerque Brocchi

Rio de Janeiro Setembro 2012

Rodrigo Fernandes Magalhães de Souza

Ustulação seletiva de um concentrado sulfetado com baixo teor de cobre

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pósgraduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos do Departamento de Engenharia de Materiais do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Eduardo de Albuquerque Brocchi Orientador e Presidente Departamento de Engenharia de Materiais – PUC-Rio

Prof. Francisco José Moura Departamento de Engenharia de Materiais – PUC-Rio

Prof. Luis Gonzaga Santos Sobral

Centro de Tecnologia Mineral

Prof. José Eugênio Leal

Coordenador Setorial de Pós-Graduação do Centro Técnico Científico da PUC-Rio

Rio de Janeiro, 17 de setembro 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rodrigo Fernandes Magalhães de Souza

Graduou-se em Engenharia de Materiais na PUC-Rio em 2010.

Ficha Catalográfica

Souza, Rodrigo Fernandes Magalhães de

Ustulação seletiva de um concentrado sulfetado com baixo teor de cobre / Rodrigo Fernandes Magalhães de Souza ; orientador: Eduardo de Albuquerque Brocchi. – 2012.

119 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2012. Inclui bibliografia

 Engenharia de materiais – Teses. 2.
Ustulação. 3. Sulfetos metálicos. 4. Concentrados de baixo teor. 5. Sulfato de cobre. I. Brocchi, Eduardo de Albuquerque. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. III. Título.

CDD: 620.11

PUC-Rio - Certificação Digital Nº 1111813/CB

Aos meus pais, Nei e Angela, e à minha irmã Priscila.

Agradecimentos

Ao meu orientador e amigo, professor Eduardo Brocchi, pela constante dedicação, confiança, incentivo e apoio, não só durante a realização do trabalho, como também durante toda a minha vida na universidade.

Aos demais professores do Departamento de Engenharia de Materiais. Em especial os professores Francisco Moura, Roberto de Carvalho e Maurício Torem pelo estímulo ao longo dos anos.

Ao professor José Brant, da UERJ e do CBPF, pela colaboração durante as análises por meio de Difração de Raios-X. À Ana Cristina Vidal, do ITUC, pelo suporte na análise de inúmeras amostras feitas no Microscópio Eletrônico de Varredura. Ao colega de pós-graduação, Felipe Sombra, pela amizade e auxílio na caracterização da matéria-prima por Espectroscopia de Massa. À Amanda Lemette, colega de laboratório, pela contribuição no início do estudo experimental.

Ao Victor Hugo e ao Carlos Augusto pela assistência na solução de problemas técnicos nas linhas experimentais. Aos funcionários do Departamento de Engenharia de Materiais, Leonardo Rabello, Carmem Façanha e Rosely Castro por toda atenção dada.

Às empresas Produquímica e GiroMetais, pela amostra de concentrado.

Aos meus queridos pais, Nei e Angela, e irmã, Priscila, pelo carinho, incentivo e paciência assim como por sempre acreditarem no meu potencial.

Aos meus prezados amigos e demais familiares, pelo apoio e incentivo nos momentos mais difíceis.

À Pontifícia Universidade Católica do Rio de Janeiro pela oportunidade de estudar e me desenvolver, como homem e cidadão, em um ambiente cultural singular e de ensino de excelência.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico, pelo apoio financeiro concedido, que tornou viável a execução deste trabalho de pesquisa.

Resumo

Souza, Rodrigo Fernandes Magalhães de; Brocchi, Eduardo de Albuquerque. **Ustulação seletiva de um concentrado sulfetado com baixo teor de cobre.** Rio de Janeiro, 2012. 119p. Dissertação de Mestrado - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

Os concentrados de sulfetos minerais são importantes fontes de matériaprima para extração de metais não-ferrosos. O presente trabalho tem por objetivo avaliar o processamento químico de um concentrado de calcopirita com um teor de cobre relativamente baixo, que o inviabiliza de ser utilizado nos processos metalúrgicos estabelecidos (ustulação / fusão mática / conversão / refino). A motivação para tal tem origem em uma parceria com uma empresa do setor de produtos químicos com interesse na obtenção seletiva de CuSO₄ e Fe₂O₃ a partir de um concentrado com esta característica. Para atender a esse objetivo, foi inicialmente conduzido um estudo de fundamentação teórica (termodinâmico) tendo em vista identificar a viabilidade da seletividade desejada, seguido de uma apreciação do comportamento termoquímico desse sistema reacional. O estudo experimental foi realizado através da avaliação do efeito de variáveis relevantes, tais como temperatura e composição química da atmosfera reacional, e um estudo cinético. A matéria-prima e os produtos obtidos foram caracterizados através de Difração de Raios-X, Microscopia Eletrônica de Varredura e Espectroscopia de Raios-X por Dispersão de Energia. Por fim, foram realizados testes de solubilização em água de amostras selecionadas dos produtos da ustulação a fim de se constatar, de forma prática, a conversão seletiva da calcopirita em CuSO₄ e Fe₂O₃. Tal fato pôde ser observado através da formação de um licor azulado, típico do sulfato de cobre, e um resíduo sólido acastanhado desprovido de Cu, conforme verificado pelos métodos de caracterização.

Palavras-chave

Ustulação; sulfetos metálicos; concentrados de baixo teor; sulfato de cobre

Abstract

Souza, Rodrigo Fernandes Magalhães; Brocchi, Eduardo de Albuquerque (Advisor). **Selective roasting of a sulphide concentrate with low copper content.** Rio de Janeiro, 2012. 119p. MSc. Dissertation - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

The sulphide minerals concentrates are an important source of raw material in extractive processes of nonferrous metals. This study aims to evaluate the chemical processing of a chalcopyrite concentrate with a relatively low copper content. The motivation for the research comes from a partnership with a chemicals production company with interest in obtaining, selectively, CuSO₄ and Fe₂O₃ from this kind of concentrate. For the purpose of meet this objective, it was performed a thermodynamic study, as well as an appreciation of the thermochemical behavior of the reaction system, in order to identify the conditions under which the mentioned selectivity could be fulfilled. Thereafter, it was conducted an experimental study evaluating variables such as temperature and chemical composition of the atmosphere over the reaction time. The obtained products as well as the raw materials were characterized using X-Ray Diffraction, Scanning Electron Microscopy and X-Ray Spectroscopy Energy Dispersive. Finally, some water-solubilizing tests were performed on selected roasted products samples in order to verify, in practice, the selective conversion of chalcopyrite into CuSO₄ and Fe₂O₃. Such fact could be observed through the formation of a blue liquor, typical copper sulfate, and a brown solid residue deprived of Cu, as verified by the characterization methods.

Keywords

Roasting; metallic sulphides; low grade concentrate; copper sulphate

Sumário

1 Introdução	18
2 Fundamentação teórica	22
2.1. Exotermicidade das reações de ustulação	23
2.1.1. Balanço térmico da ustulação da calcopirita	24
2.2. Temperatura de ignição dos sulfetos em reações de ustulação	29
2.3. Apreciação termodinâmica do sistema reacional	32
2.3.1. Avaliação da energia livre	33
2.3.1.1. Formação e estabilidade de sulfetos metálicos	34
2.3.1.2. Estudo da reação de ustulação da calcopirita	35
2.3.1.2.1. Ustulação do Sulfeto de Cobre (CuS)	35
2.3.1.2.2. Ustulação do Sulfeto de Ferro (FeS)	36
2.3.1.2.3. Avaliação do sistema fora das condições de equilíbrio	37
2.3.2. Diagramas de predominância	40
2.3.2.1. Avaliação do sistema reacional de ustulação da Calcopirita	42
2.3.2.1.1. Sistema Cu-S-O	42
2.3.2.1.2. Sistema Fe-S-O	44
2.3.2.1.3. Obtenção seletiva de $CuSO_4$ e Fe_2O_3	46
2.3.3. Diagrama de distribuição de espécies no equilíbrio	46
3 Materiais e métodos	52
3.1. Matéria-prima	52
3.2. Metodologia de caracterização dos materiais	52
3.2.1. Análise granulométrica	53
3.2.2. Difração de Raios-X (DR-X)	53
3.2.3. Microscopia eletrônica de varredura/Espectroscopia de Raios-X por	
dispersão em energia (MEV/EDS)	53
3.2.4. Espectroscopia de massa por ionização acoplada por plasma (ICP-MS)	54
3.3. Metodologia experimental	54
3.3.1. Escala de bancada	55

3.3.2. Ensaios em maior escala	57
3.3.3. Ensaios de solubilização em água	58
3.4. Metodologia analítica	59
4 Resultados e discussões	60
4.1. Caracterização da matéria-prima	60
4.1.1. Análise granulométrica	60
4.1.2. Difração de Raios-X (DR-X)	61
4.1.3. Microscopia eletrônica de varredura/Espectroscopia de Raios-X por	
dispersão em energia (MEV/EDS)	62
4.1.4. Espectroscopia de massa por ionização acoplada por plasma (ICP-MS)	68
4.2. Ensaios de ustulação	69
4.2.1. Escala de Bancada	69
4.2.1.1. Estudo do comportamento do sistema em função da temperatura	
ao longo do tempo	69
4.2.1.1.1. Ensaios de solubilização de amostras específicas	73
4.2.1.1.2. Caracterização dos produtos reacionais	75
4.2.1.1.2.1. Difração de Raios-X (DR-X)	75
4.2.1.1.2.2. Microscopia eletrônica de varredura/Espectroscopia de Raios-X	
por dispersão em energia (MEV/EDS)	77
4.2.1.2. Estudo do comportamento do sistema em função da composição	
química da atmosfera reacional	86
4.2.1.2.1. Ustulação com ar atmosférico	86
4.2.1.2.2. Ustulação com oxigênio puro	87
4.2.1.2.3. Ustulação com oxigênio puro e reciclo de parte dos produtos	
gasosos da reação	89
4.2.1.3. Estudo cinético conciso do processo de ustulação seletiva	91
4.2.1.4. Ensaios de solubilização de amostras específicas	92
4.2.1.5. Caracterização dos produtos reacionais	93
4.2.1.5.1. Difração de Raios-X (DR-X)	94
4.2.1.5.2. Microscopia eletrônica de varredura/Espectroscopia de Raios-X	
por dispersão em energia (MEV/EDS)	94
4.2.1.5.2.1. Material ustulado	95
4.2.1.5.2.2. Resíduo sólido retido na membrana de nitrato de celulose	98

4.2.2. Ensaios em maior escala	101
4.2.2.1. Ensaio em forno rotativo	101
4.2.2.2. Ensaios em câmara reacional aquecida em forno de mufla	102
4.2.2.3. Ensaios de solubilização de amostras específicas	106
4.2.2.4. Caracterização dos produtos reacionais	108
4.2.2.4.1. Difração de Raios-X (DR-X)	108
4.2.2.4.2. Microscopia eletrônica de varredura/Espectroscopia de Raios-X	
por dispersão em energia (MEV/EDS)	109
5 Conclusões	113
6 Sugestões para trabalhos futuros	116
7 Referências Bibliográficas	117

Lista de figuras

Figura 1 – Histograma da exotermicidade das reações de ustulação de	
alguns sulfetos metálicos ^[11]	23
Figura 2 – Avaliação do excesso de ar disponibilizado sobre a temperatura	25
Figura 3 – Avaliação do efeito do enriquecimento da mistura gasosa	
$com O_2(g)$ sobre a temperatura	26
Figura 4 – Avaliação das implicações do pré-aquecimento do	
concentrado alimentado no forno sobre a temperatura	27
Figura 5 – Avaliação das consequências do pré-aquecimento da mistura	
gasosa contida no sopro do forno de ustulação sobre a temperatura	29
Figura 6 – Efeito da granulometria na temperatura de ignição ^[13]	31
Figura 7 – Efeito da estequiometria na temperatura de ignição ^[14]	32
Figura 8 – Diagrama de Ellingham para a formação de sulfetos ^[18]	34
Figura 9 – ΔG° das reações de ustulação de CuS na presença de O ₂ (g)	36
Figura $10 - \Delta G^{\circ}$ das reações de ustulação de FeS na presença de $O_2(g)$	37
Figura $11 - \Delta G^{\circ}$ das reações de dissociação dos sulfatos de cobre e ferro.	38
Figura $12 - \Delta G$ das reações de dissociação dos sulfatos de cobre e ferro	40
Figura 13 – Diagrama de Predominância do Sistema Ca-S-O	
variando a temperatura entre 1100 e 1300K ^[19]	41
Figura 14 – Diagrama de predominância a 200°C do sistema Cu-S-O	42
Figura 15 – Diagrama de predominância a 600°C do sistema Cu-S-O	43
Figura 16 – Diagrama de predominância a 1000°C do sistema Cu-S-O	43
Figura 17 – Diagrama de predominância a 200°C do sistema Fe-S-O	44
Figura 18 – Diagrama de predominância a 600°C do sistema Fe-S-O	45
Figura 19 – Diagrama de predominância a 1000°C do sistema Fe-S-O	45
Figura 20 – Comparação entre duas regiões dos diagramas produzidos	
para os sistemas Cu-S-O e Fe-S-O a 600°C.	46
Figura 21 – Distribuição equilíbrio no equilíbrio para a reação na	
estequiometria da calcopirita com oxigênio	47

Figura 22 – Distribuição no equilíbrio para a reação da calcopirita	
considerando um excesso de oxigênio	48
Figura 23 – Diagrama de distribuição de espécies no equilíbrio para a	
reação de dissociação do sulfato de ferro (FeSO ₄)	49
Figura 24 – Diagrama de distribuição de espécies no equilíbrio para a	
reação de dissociação do sulfato de cobre (CuSO ₄)	49
Figura 25 – Distribuição de espécies no equilíbrio para a reação da	
calcopirita considerando um excesso de $O_2(g)$ e a presença de $SO_2(g)$	50
Figura 26 – Linha experimental de ustulação com ar atmosférico oriundo	
de um compressor	55
Figura 27 – Representação esquemática da linha experimental de	
ustulação com ar atmosférico oriundo de um compressor	56
Figura 28 – Linha experimental de ustulação com $O_2(g)$ puro e	
conexões que permitam a recirculação dos produtos reacionais gasosos	56
Figura 29 – Representação esquemática da linha experimental de	
ustulação com $O_2(g)$ puro e conexões que permitam a recirculação dos	
produtos reacionais gasosos	57
Figura 30 – Representação esquemática da linha experimental de	
ustulação constituída por câmara reacional aquecida em forno de mufla	58
Figura 31 – Espectro de difração de raios-X de uma amostra do concentrado	62
Figura 32 – Amostra do concentrado observada via elétrons secundários	63
Figura 33 – Espectro da análise por EDS de toda a região apresentada na	
imagem	64
Figura 34 – Amostra do concentrado e regiões de análise via EDS	65
Figura 35 – Espectro da análise por EDS oriundo do Spectrum 2	66
Figura 36 – Espectro da análise por EDS oriundo do Spectrum 3	67
Figura 37 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida à 300°C	70
Figura 38 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida à 400°C	71
Figura 39 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida à 500°C	72
Figura 40 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida à 600°C	73

Figura 41 – Licor oriundo da solubilização de uma amostra proveniente	
de um ensaio de ustulação com ar atmosférico a 600 °C	75
Figura 42 – Espectro de difração de raios-X da amostra gerada à 400°C	76
Figura 43 – Espectro de difração de raios-X da amostra gerada à 600°C	77
Figura 44 – Amostra ustulada a 400°C e regiões de análise via EDS	78
Figura 45 – Espectro da análise por EDS oriundo do Spectrum 1	79
Figura 46 – Espectro da análise por EDS oriundo do Spectrum 2	80
Figura 47 – Amostra ustulada a 600°C e regiões de análise via EDS	81
Figura 48 – Espectro da análise por EDS da região apresentada na imagem	82
Figura 49 – Espectro da análise por EDS oriundo do Spectrum 2	83
Figura 50 – Amostra ustulada a 600°C e regiões de análise via EDS	84
Figura 51 – Espectro da análise por EDS oriundo do Spectrum 1	85
Figura 52 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida reagida com ar atmosférico	87
Figura 53 – Ilustração do efeito do aumento da pressão parcial de	
O ₂ (g) no sistema reacional estudado	88
Figura 54 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida reagida com oxigênio puro	88
Figura 55 – Ilustração do efeito do aumento das pressões parciais de	
O ₂ (g) e de SO ₂ (g) no sistema reacional estudado	89
Figura 56 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida reagida com oxigênio puro e reciclo	
de parte dos produtos reacionais gasosos	90
Figura 57 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida à 600°C ao longo do tempo	91
Figura 58 – Acompanhamento dos resultados em termos de variação	
mássica percentual da amostra sólida à 650°C ao longo do tempo	92
Figura 59 – Espectro de difração de raios-X da amostra de material ustulado	94
Figura 60 – Amostra do material ustulado e regiões de análise via EDS	95
Figura 61 – Espectro da análise por EDS oriundo do Spectrum 1	96
Figura 62 – Espectro da análise por EDS oriundo do Spectrum 6	97
Figura 63 – Amostra do resíduo retido e regiões de análise via EDS	98
Figura 64 – Espectro da análise por EDS oriundo do Spectrum 1	99
Figura 65 – Espectro da análise por EDS oriundo do Spectrum 4	100

tado final da câmara reacional rotatória 101
tado final das resistências elétricas e do material refratário 102
rmação de uma camada reagida na superfície da amostra
rogresso da reação sobre as demais regiões da amostra 103
rmação de uma camada reagida na superfície da amostra
rogresso da reação sobre as demais regiões da amostra 104
companhamento dos resultados em termos de variação
tual da amostra sólida para testes de 60 minutos 105
ompanhamento dos resultados em termos de variação
tual da amostra sólida para testes a 500°C 106
cor oriundo da solubilização de uma amostra proveniente
e ustulação em maior escala iniciado a 500°C 107
pectro de difração de raios-X da amostra de resíduo
brana de celulose durante a filtração da solução 108
nostra do resíduo retido e regiões de análise via EDS 109
pectro da análise por EDS oriundo do Spectrum 1 110
pectro da análise por EDS oriundo do Spectrum 2 111
rogresso da reação sobre as demais regiões da amostra104ompanhamento dos resultados em termos de variação105atual da amostra sólida para testes de 60 minutos105ompanhamento dos resultados em termos de variação106atual da amostra sólida para testes a 500°C106cor oriundo da solubilização de uma amostra proveniente107e ustulação em maior escala iniciado a 500°C107pectro de difração de raios-X da amostra de resíduo108orana de celulose durante a filtração da solução108nostra do resíduo retido e regiões de análise via EDS109pectro da análise por EDS oriundo do Spectrum 1110pectro da análise por EDS oriundo do Spectrum 2111

Lista de tabelas

Tabela 1 – Condições operacionais empregadas na avaliação do excesso de ar	25
Tabela 2 – Condições operacionais empregadas na avaliação	
efeito do enriquecimento da mistura gasosa com O ₂ (g)	26
Tabela 3 – Condições operacionais empregadas na avaliação das	
implicações do pré-aquecimento do concentrado alimentado no forno	27
Tabela 4 – Condições operacionais empregadas na avaliação das	
consequências do pré-aquecimento da mistura gasosa contida no sopro do	
forno de ustulação	28
Tabela 5 – Temperaturas de ignição de alguns sulfetos	30
Tabela 6 - Constantes de equilíbrio das dissociações do CuSO ₄ e FeSO ₄	39
Tabela 7 – Variação mássica comparativa entre os possíveis produtos da	
ustulação oxidante da calcopirita	59
Tabela 8 – Resultados do ensaio de análise granulométrica do concentrado	61
Tabela 9 – Resultado da análise por EDS de toda a região apresentada na	
imagem	64
Tabela 10 – Resultado da análise por EDS oriundo do Spectrum 2	66
Tabela 11 – Resultado da análise por EDS oriundo do Spectrum 3	67
Tabela 12 – Resultado da especiação via ICP-MS do concentrado recebido	68
Tabela 13 – Condições do estudo experimental realizado para o	
comportamento em função da temperatura ao longo do tempo	69
Tabela 14 – Resultados dos ensaios de solubilização de amostras específicas	74
Tabela 15 – Resultado da análise por EDS oriundo do Spectrum 1	79
Tabela 16 – Resultado da análise por EDS oriundo do Spectrum 2	80
Tabela 17 – Resultado da análise por EDS da região apresentada na imagem	82
Tabela 18 – Resultado da análise por EDS oriundo do Spectrum 2	83
Tabela 19 – Resultado da análise por EDS oriundo do Spectrum 1	85
Tabela 20 – Temperaturas empregadas no estudo do comportamento	
do sistema em função da composição química da atmosfera reacional	86

Tabela 21 – Resultados dos ensaios de solubilização de amostras específicas	93
Tabela 22 – Resultado da análise por EDS oriundo do Spectrum 1	96
Tabela 23 – Resultado da análise por EDS oriundo do Spectrum 6	97
Tabela 24 – Resultado da análise por EDS oriundo do Spectrum 1	99
Tabela 25 – Resultado da análise por EDS oriundo do Spectrum 4	100
Tabela 26 – Temperaturas iniciais empregadas nos ensaios conduzidos	
em câmara reacional aquecida em forno de mufla	104
Tabela 27 – Resultados dos ensaios de solubilização de amostras específicas	107
Tabela 28 – Resultado da análise por EDS oriundo do Spectrum 1	110
Tabela 29 – Resultado da análise por EDS oriundo do Spectrum 2	111