

Daniel de Albuquerque Simões

Entalhes melhorados e otimizados

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Jaime Tupiassú Pinho de Castro

Rio de Janeiro Agosto de 2012

Daniel de Albuquerque Simões

Entalhes melhorados e otimizados

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Jaime Tupiassú Pinho de Castro Orientador Pontifícia Universidade Católica do Rio de Janeiro

> Prof. Marco Antônio Meggiolaro Pontifícia Universidade Católica do Rio de Janeiro

> Prof. Luiz Fernando Martha Pontifícia Universidade Católica do Rio de Janeiro

> > Prof. Timothy H. Topper University of Waterloo

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 23 de agosto de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Daniel de Albuquerque Simões

Graduou-se em Engenheira Mecânica em 2004, na Universidade Estadual Paulista, campus de Guaratinguetá.

Ficha Catalográfica

Simões, Daniel de Albuquerque

Entalhes melhorados e otimizados / Daniel de Albuquerque Simões; orientador: Jaime Tupiassú Pinho de Castro. – 2012.

108 f. : il. (color.) ; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2012.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Otimização estrutural. 3. Concentradores de tensão. 4. Raio de curvatura variável. 5. Melhora na vida à fadiga. I. Castro, Jaime Tupiassú Pinho de. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

PUC-Rio - Certificação Digital Nº 0921500/CA

Aos meus incríveis pais Jorge e Alice e minha linda irmã Mariana

Agradecimentos

Em primeiro lugar, louvo a Deus, o autor da vida e da salvação, por esta oportunidade de estudar e concluir meu mestrado.

Agradeço aos meus carinhosos pais Jorge e Alice pelo amor incondicional e por fornecer um bom exemplo em casa, sempre mostrando que o verdadeiro sucesso vem a partir do temor do Senhor, estudo, trabalho e sendo honesto em todos os meus projetos. Agradeço especialmente a eles porque eu sei que eles tiveram que abrir mão de muitas coisas para que eu e minha irmã pudéssemos ter acesso à melhor educação disponível. Eu não poderia escrever este agradecimento sem mencionar minha irmã. Mariana é, sem sombra de dúvida, minha melhor amiga e um presente de Deus. Eu sou grato pela oportunidade de crescer ao lado de uma pessoa tão incrível, que me inspirou com sua ternura.

Gostaria de expressar minha profunda gratidão a minha ex-chefe ABS Group, Viviane Krzonkalla, que sempre me incentivou a estudar e me aperfeiçoar.

Agradeço muito ao meu orientador, Professor Jaime, por acreditar em mim e por seu constante apoio. Agradeço as incontáveis respostas de e-mail mesmo nos fins de semana e por muitas oportunidades que eu tive durante o tempo que eu trabalhei com ele.

Gostaria de agradecer ao meu colega Cristian Mejia, que forneceu dados importantes e executou a análise de elementos finitos para a célula de carga, apresentada no capítulo três.

Também sou muito grato a Universidade PUC-Rio, a bolsa de ensino gratuito e ao o pessoal do Departamento de Engenharia Mecânica.

Resumo

Simões, Daniel de Albuquerque; Castro, Jaime Tupiassú Pinho de. **Entalhes melhorados e otimizados.** Rio de Janeiro, 2012. 108p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A maioria dos componentes estruturais possui entalhes ou detalhes geométricos de transição, tais como furos e ombros, que são necessários para montar e/ou para operá-los. Estes entalhes aumentam localmente as tensões nominais que atuariam em sua localização, caso eles não existissem. Efeitos da concentração de tensão são importantes em muitos mecanismos de falha, como por exemplo, na iniciação de trincas por fadiga. No entanto, os tradicionais raios circulares, usados na maioria dos elementos estruturais para aliviar os efeitos da concentração de tensão, não são os mais adequados para minimizá-los. Elementos estruturais naturais, tais como galhos de árvores, depois de milhões de anos de evolução aprenderam a usar raio de curvatura variável em vez do raio constante. Mas apesar deste problema ter sido reconhecido há muito tempo, raios variáveis ainda não são muito usados em projeto mecânico. A prática usual é especificar entalhes com os maiores raios possíveis, uma vez que eles podem ser facilmente fabricados em máquinas-ferramentas tradicionais. Entretanto, entalhes de raios variáveis corretamente especificados podem ter fatores de concentração de tensão muito mais baixos do que aqueles obtidos por raios constantes. Logo, eles podem ser uma boa opção para aumentar a vida à fadiga, sem afetar significativamente as dimensões globais e o peso dos componentes estruturais. Além disso, hoje em dia eles podem ser facilmente fabricados com precisão, devido à disponibilidade de máquinasferramentas CNC. Esta dissertação tem como objetivo quantificar a melhoria da concentração de tensão que pode ser obtidas através de receitas tradicionais de raios variáveis, e apresenta uma rotina numérica desenvolvida em ANSYS APDL para otimizar geometria de entalhes tais como ombro de placas submetidas a tensão ou flexão, placa com furo submetido a um campo biaxial de tensões e corpos de prova de fadiga da ASTM.

Palavras-chave

Otimização Estrutural; Concentradores de Tensão; Raio de Curvatura Variável; Melhora na Vida à Fadiga.

Abstract

Simões, Daniel de Albuqueque; Castro, Jaime Tupiassú Pinho de (Advisor). **On the improved and the optimum notch shape.** Rio de Janeiro, 2012. 108p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Most structural components have notches, or geometric transition details such as holes and corners which are required to assemble and/or to operate them. These notches locally increase the nominal stresses that would act in their location, if they were not there. Stress concentration effects are very important in many failure mechanisms, such as fatigue crack initiation. However, the usual constant radius notch tip roots, used in most structural members to alleviate their stress concentration effects, do not minimize them. In fact, natural structural members, such as tree branches, after many million years of evolution have learned to use variable tip radii instead of the fixed radius typical of engineering notches. This problem has been recognized for a long time, but variable radii notches optimized to minimize their deleterious influence on fatigue strength still are not widely used in mechanical design. The usual practice is to specify notches with as large as possible constant radius roots, since they can be easily fabricated in traditional machine tools. However, notches with properly specified variable radius can have much lower stress concentration factors than those obtainable by fixed notch root radii. Therefore, such improved notches can be a good design option to augment fatigue lives without significantly affecting structural components global dimensions and weight. Moreover, these improved notches are certainly more useful than ever, as nowadays they can be manufactured in many structural components, due to the wide availability of CNC machine tools. This dissertation aims to quantify the stress concentration improvements achievable by traditional variable radii notches receipts, and presents a numerical routine, developed in ANSYS APDL to optimize notch shapes of mechanical components such as shoulders in plates subjected to tension or bending, plates with a hole subjected to a biaxial stress field, and standard ASTM fatigue test specimens.

Keywords

Structural Optimizations; Stress Concentration; Variable Radius Notches; Fatigue Life Improvement.

Sumário

1 Introdução	16
1.1. Motivação – Um pano de fundo histórico sobre fadiga e	
concentradores de tensão	16
1.2. Organização dessa dissertação	21
2 Fadiga dos materiais metálicos e concentradores de tensão	23
2.1. Fadiga: quando os aviões se cansam	23
2.2. Quantificação do fator de concentração de tensão	33
2.3. Entalhes melhorados – O entalhe de raio variável	37
2.4. Outra técnica para redução do fator de concentração de tensão	51
3 Otimização de forma para minimizar a concentração de tensão	55
3.1. Introdução	55
3.2. Revisão da literatura	55
3.3. Implementação de um processo de optimização sem gradiente	
combinado com o programa de elementos finitos ANSYS	64
3.3.1. ANSYS e sua linguagem paramétrica	64
3.3.2. Otimização de forma de filetes	66
3.3.3. Otimização de furos em placas submetidas a um campo biaxial	de
tensão	75
4 Corpos-de-prova melhorados com mínima concentração de tensão	84
4.1. Introdução	84
4.2. Corpos de prova de fadiga	84
4.3. Resultados	85
5 Conclusões	91
6 Referências	93

7 Apêndice

Lista de figuras

Figura 1.1 – Acidente de Meudon retratado por A. Provost	16
Figura 1.2 – Eixo de uma locomotiva do século XIX [3]	20
Figura 1.3 – Representação de um eixo fraturado feito por Glynn [10]	20
Figura 2.1 – Avião <i>Comet</i> da BOAC [14]	23
Figura 2.2 - Fragmento do teto da fuselagem do Comet mostrando as	
escotilhas superiores [14]	24
Figura 2.3 – Ensaio de fadiga do Comet (a) [12]. Ciclos de pressurização	
do teste de fadiga (b) [15]	24
Figura 2.4 – Estrutura do <i>Comet</i> utilizada no ensaio de fadiga [15]	25
Figura 2.5 – Tensões no revestimento no canto superior (a) e inferior (b)	
de uma escotilha de fuga para uma pressão interna de 8.25 psi [15]	26
Figura 2.6 - Crescimento de uma trinca em uma janela do lado esquerdo	
[15]	26
Figura 2.7 – Aloha 243 depois de seu incrível pouso no aeroporto de	
Kahului [12]	27
Figura 2.8 – Estrutura do Boeing 737-297 [16]	28
Figura 2.9 – Tensão cilíndrica da fuselagem	29
Figura 2.10 – Exemplo de uma trinca em um furo escareado	29
Figura 2.11 - Teste de fadiga feito com clipe de papel (modificado de	
[12])	30
Figura 2.12 – Dados de um teste de fadiga típico de um clipe de papel (a).	
Resultado de um ensaio de fadiga de uma junta da fuselagem de um DC-	
10 (b) [12]	30
Figura 2.13 – Fases diferentes da vida à fadiga e seus fatores relevantes	
[19]	31
Figura 2.14 - Bandas de deslizamento que levam a nucleação da trinca	
[19]	31
Figura 2.15 – Processo de fadiga típico (modificado de [11])	32
Figura 2.16 – Exemplos de fraturas por fadiga iniciadas devido a	
concentração de tensão [20-21]	32

Figura 2.17 – Furo em uma placa concentra linhas de fluxo imaginárias	33
Figura 2.18 – Dimensões características utilizadas na estimativa de	
McClintock e entalhe duplo em "U" para estimativa de Neuber [11]	34
Figura 2.19 – Coordenadas utilizadas no modelo de Creager & Paris [10]	35
Figura 2.20 – Corpo-de-prova C(T) com um entalhe cego de comprimento	
a = 10mm e ponta com raio ρ = 1mm [11]	36
Figura 2.21 – Franjas fotoelásticas de uma placa sob tensão [26]	38
Figura 2.22 – Jato livre de água (modificado de [19])	39
Figura 2.23 – Curva de Baud plotada a partir das equações 2.7 e 2.8	39
Figura 2.24 – Otimização da geometria da árvore observada por Mattheck:	
a natureza adiciona material onde a tensão é alta e remove onde a tensão é	
baixa (a). As árvores gostam de reforços estruturais de formato triangular	
(b). (modificado de [29])	40
Figura 2.25 – Método dos triângulos de Mattheck	40
Figura 2.26 – Curva de raio variável de Grodzinski [11]	41
Figura 2.27 – Perfis geométricos circular, Baud, Mattheck e Grodzinski.	41
Figura 2.28 – Placa submetida a um carregamento remoto de tração	42
Figura 2.29 – Tensão de von Mises para o filete circular	42
Figura 2.30 – Fator de concentração de tensão para uma placa com um	
entalhe circular submetida a tração [22]	43
Figura 2.31 – Tensão de von Mises para curva de Baud	44
Figura 2.32 – Tensão de von Mises para curva de Mattheck	44
Figura 2.33 – Tensão de von Mises para curva de Grodzinski	44
Figura 2.34 – Comparação do K_t para entalhes de raio circular, Baud,	
Mattheck e Grodzinski para uma placa sob tração pura	45
Figura 2.35 – Placa submetida a um carregamento remoto de flexão	45
Figura 2.36 – Tensão de von Mises para filete circular	45
Figura 2.37 – Fator de concentração de tensão para uma placa com um	
entalhe circular submetida a uma carga de flexão [22]	46
Figura 2.38 – Tensão de von Mises para curva de Baud	47
Figura 2.39 – Tensão de von Mises para curva de Mattheck	47
Figura 2.40 – Tensão de von Mises para curva de Grodzinski	47

Figura 2.41 – Comparação do K_t para entalhes de raio circular, Baud,	
Mattheck e Grodzinski para uma placa sob flexão pura no plano	48
Figura 2.42 – Exemplo de uma placa com um recorte submetida a uma	
carga de tração pura	48
Figura 2.44 – Tensão de von Mises para o raio circular (a) e para a curva	
de raio variável do Mattheck (b) para uma placa com recorte submetida a	
tensão pura	49
Figura 2.45 – Tensão de von Mises ao longo da janela para o raio	
constante e para a curva com raio variável de Mattheck	50
Figura 2.46 - A remoção de material modifica a direção das linhas de	
tensão [30]	51
Figura 2.47 – Tensão de von Mises para a geometria da figura 2.46(a)	52
Figura 2.48 – Tensão de von Mises para a geometria da figura 2.46(b)	52
Figura 2.49 – Furos adicionais modificam as linhas de tensão [30]	52
Figura 2.50 – Tensão de von Mises para as geometrias 2.49(a) e 2.49(b)	53
Figura 2.51 – Tensão de von Mises para uma placa com um furo	53
Figura 2.52 – Tensão de von Mises para uma placa com três furos	54
Figura 2.53 – Tensão de von Mises para uma placa com três furos	54
Figura 3.1 – O processo geral da otimização de forma [34]	56
Figura 3.2 – Franjas fotoelásticas de geometrias otimizadas [36]	57
Figura 3.3 – Representação polinomial do filete (modificado de [40])	58
Figura 3.4 – Fronteira definidas por nós [34]	58
Figura 3.5 – B-spline [44]	59
Figura 3.6 – Método de otimização sem gradiente em uma placa carregada	
(a). Tensão tangencial ao longo do contorno do filete (b).(Modificado de	
[46])	60
Figura 3.7 – Fluxograma do processo de otimização (modificado de [43])	63
Figura 3.8 – Coordenadas dos pontos de controle da spline	64
Figura 3.9 – Janela do ANSYS ADPL	65
Figura 3.10 – Exemplo de modelo de elementos finitos paramétrico obtido	
com a entrada de diferentes parâmetros	66
Figura 3.11 – Modelo de elementos finitos paramétrico submetido a tração	
uniaxial	66

Figura 3.12 – Janela do ANSYS APDL – Dimensões da placa	67
Figura 3.13 – Janela do ANSYS APDL – Dados do modelo de elementos	
finitos	67
Figura 3.14 – Janela do ANSYS APDL – Tensão aplicada	67
Figura 3.15 – Tensão de von Mises para o raio circular	68
Figura 3.16 – Filete circular – Modelo de elementos finitos	68
Figura 3.17 – Tensão de von Mises para o filete circular otimizado	69
Figura 3.18 – FCT vs. Iterações – Otimização do filete circular	69
Figura 3.19 - Filete circular - Comparação ente o FCT ao longo da curva	
do filete	70
Figura 3.20 – Filete de chanfro – Modelo de elementos finitos	70
Figura 3.21 – Tensão de von Mises para filete com chanfro 45°	71
Figura 3.22 – Tensão de von Mises para filete com chanfro 45º otimizado	71
Figura 3.23 – FCT vs. Iterações – Filete com chanfro 45°	71
Figura 3.24 – Chanfro de 45° – Comparação do FCT ao longo do filete	72
Figura 3.25 – Janela do ANSYS APDL – Dimensões da placa	72
Figura 3.26 – Janela do ANSYS APDL – Dimensões da curva de	
Grodzinski	73
Figura 3.27 – Filete de Grodzinski – Modelo de elementos finitos	73
Figura 3.28 – Janela do ANSYS APDL – Tensão aplicada	73
Figura 3.29 – Tensão de von Mises para o filete de Grodzinski	74
Figura 3.30 – Tensão de von Mises para o filete optimized de Grodzinski	74
Figura 3.31 – SCF vs. Iterações – Filete de Grodzinski	74
Figura 3.32 - Curva de Grodzinski - Comparação do FCT ao longo do	
filete	75
Figura 3.33 – Placa com furo submetida a um campo biaxial de tensão	76
Figura 3.34 – Janela do ANSYS APDL – Dimensões da placa	76
Figura 3.35 – Janela do ANSYS APDL – Dados do modelo	77
Figura 3.36 – Placa com furo – Modelo de elementos finitos	77
Figura 3.37 – Janela do ANSYS APDL – Campo biaxial de tensão	78
Figura 3.38 – Tensão de von Mises para a geometria original	78
Figura 3.39 - Geometria otimizada I - Peak Stress vs Iterations (a) and	
FCT vs Iteration (b)	79

Figura 3.40 – Tensão de von Mises para geometria otimizada I	79
Figura 3.41 – Geometria otimizada II – Tensão de pico vs Iterações (a) e	
FCT vs Iterações	79
Figura 3.42 – Tensão de von Mises para geometria otimizada II	80
Figura 3.43– Placa com furo – Comparação entre o FCT ao longo do furo	80
Figura 3.44 – Célula de carga original	81
Figura 3.45 – FCT de tração e torção da célula de carga original	81
Figura 3.46 – Modelo de elementos finitos axissimétrico	82
Figura 3.47 – FCT de tração e torção da célula de carga otimizada.	82
Figura 3.48 – Filetes originais e otimizados da célula de carga.	83
Figura 4.1 – Corpos-de-prova [49, 50, 51]	85
Figura 4.2 – Modelo de elementos finitos dos corpos-de-prova padrão	86
Figura 4.3 – FCT para os corpos-deprova padrão	86
Figura 4.4 – FCT para os corpos-de-prova melhorados	87
Figura 4.5 – FCT ao longo do filete	87
Figura 4.6 – Influência da relação R/W no FCT	88
Figura 4.7 – Redução do FCT em relação a <i>R/W</i>	89
Figura 4.8 – Redução do FCT para as geometrias originais e otimizadas	89

Lista de tabelas

Tabela 1.1 – Dados estatísticos de acidentes de trem em Paris e seus	
arredores [2]	17
Tabela 1.2 – Eixos quebrados em serviço entre os anos de 1878 e 1885	
[2]	17
Tabela 1.3 – Dados sobre acidentes de trem [4]	18
Tabela 3.1 – Influência da tensão limite (σ_{th})	61
Tabela 4.1 – Dimensões dos corpos-de prova	85