7. Bibliografía

A. BABICH, D. S. (2009). Effect of coke reactivity and nut coke on blast. Iron making and Steelmaking , 222-229.

A. D. BABICH, S. H. (2008). IronMaking textbook. Aachen: University Aachen.

A. S. MACHADO, J. G. (2006). Comparação da Estrutura e Reatividade de Chars obtidos em fornos DTF e simulador da zona de combustão do Alto Forno. PPGEM-UFRGS.

ABM. (2011). Introdução a Siderurgia. 59-64.

ABRAF. (2010). Anuário estatistico da ABRAF ano base 2009. Brasilia: Associacao Brasileira de Produtores de Florestas.

ARAÚJO L. A. (1997). **Manual de Siderurgia 1° Volumen**. Sao Paulo: Discubra.

ASRI GANI, I. N. (2007). Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, 649-661.

B. FENG, K. S. (2002). Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon , 481–496.

BALAT, M. (2008). Mechanisms of Thermochemical Biomass Conversion Processes. Part 1: Reactions of Pyrolysis. Energy Sources , 620-635.

BASU, P. (2010). Biomass Gasification and Pyrolysis. Miami, Usa: Elsevier Inc.

BORREGO, A. E. (1997). Effects of Inertinite content in coal on char Structure and Combustion . Energy & fuels , 702 - 708.

BP, S. (2011). Statistical Review of World Energy.

BRIDGWATER, A. (2001). Progress in Thermochemical Biomass Conversion.Birmingham, UK: Blackwell Science Ltd.

BURGOS, A. F. (2009). Características termogravimétricas de carbonizados obtenidos a altas velocidades de calentamiento. Ingenieria e Investigacion , 25-34.

COELHO, S. T. (Dezembro de 2008). **Carvão Vegetal: Aspectos Técnicos, Sociais, Ambientais e Econômicos**. Centro nacional de referencia em Biomassa . ECURED. (s.f.). **Lignina**. Recuperado el 04 de Junho de 2012, de http://www.ecured.cu/index.php/Lignina

ELLIOT, D. C. (1990). **Developments in direct thermochemical liquefaction of biomass**. Energy Fuels , 339 - 410.

EMBRAPA. (2004). Capim Elefante como fonte de Energia.

FERREIRA, O. (Julho de 2008). Emissão de gases de efeito estufa na produção e consumo do carvão vegetaL. Recuperado el 1 de Junho de 2012, de http://ecen.com/eee21/emiscar2.htm

GARY, J. H., & HANDWERK, G. E. (2001). **Petroleum Refining (Vol. IV)**. New York: Marcel Dekker, Inc.

GILL, T. G. (2008). Effect of blending pet-coke on combustion characteristics of PCI coals. International Meeting on Ironmaking , 833-844.

GOLDSTEIN, I. S. (1977). Wood technology: Chemical aspects . Chemical Society, 372.

GORING, D. (1989). Lignin: Properties and Materials. American Chemical Society, 2-10.

HANSON, K. (2002). **Wood Structure and Properties**. The National Science Foundation .

HARMSEN, P., HUIJGEN, W., LOPEZ, L. B., & BAKKER, R. (2010). Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. Bio Synergy.

I. C. POPOVICI, S. B. (2010). Morphological and microstructural characterization of some petroleum cokes as potential anode materials in lithium ion batteries. Journal of Optoelectronics and Advances Materials , 1903-1908.

J. MACHADO, E. O. (2010). Avaliação da Reatividade do Carvão Vegetal, Carvão Mineral Nacional e Mistura Visando a Injeção em Altos-Fornos. Rio grande do Sud: Centro de Tecnologia/CT, UFRGS. J.A. MENÉNDEZ, J. P. (1995). Adición de coque de petróleo a mezclas coquizables. Modificación de la calidad del coque metalúrgico. Metal, 31-39.

J.C. CRELLING, N. S. (1987). Reactivity of Coal Macerals and Lithotypes. Fuel, 781-785.

JORGE, K. R. (1998). Avaliação do carvão da bracatinga (mimosa scabrella bentham) em função da idade, do teor de umidade da madeira e da temperatura final de carbonização. Curitiba/Parana: Tese.

K. G. NUNES, R. L. (4-7 de outubro de 2011). Avaliação preliminar do comportamento de char do carvão do leão em Termobalança para determinação da reatividade ao CO2. PPGEQ.

K. L. SMITH, L. D. (1994). **The Structure and Reaction Processes of Coal.** New York: Advanced Combustion Engineering Research Center.

KLOCK, U., & MUÑIZ, G. I. (UFPR de Curitiba de 2002). **Quimica da Madeira** http://www.madeira.ufpr.br/ceim/index.php?option=com_content&view=category &id=18:quimica-da-madeira&Itemid=81&layout=default

KOPPEJAN, S. V. (2008). The Handbook of Biomass Combustion and Cofiring. London: Earthscan.

L. LU, V. S. (2002). Chemical Structure of Chars Prepared under Conditions Prevailing in the Blast Furnace PCI Operation. ISIJ International, 816–825.

L.DOUGLAS SMOOT, S. R. (2007). Form coke reaction processes in carbon dioxide. Fuel , 2645-2649.

L.LU, V. S. (2001). Quantitative X-ray diffraction analysis and its application to various coals. Carbon , 1821-1833.

M. F. IRFAN, M. R. (2011). Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review. Energy , 12-40.

M. L. GOMES, E. O. (2006). Thermal Analysis Evaluation of the Reactivity of Coal Mixtures for Injection in the Blast Furnace. Materials Research , 91-95.

M.J. ALONSO, A. B. (2001). A reactivity study of chars obtained at different temperatures in relation to their petrographic characteristics. Fuel Processing Technology, 257-272.

M.ZAMALLOA, T. U. (1995). Characterization of Industrial Coke Structures. ISIJ Intenational , 35 (5), 449-457.

MASCHIO, G. K. (1992). **Pyrolysis, a promising route for biomass Utilization**. Bioresour.Technol , 219 - 231. MASUDA, H. Carvao e Coque Aplicados a Metalurgia Vol.I e II. Sao Paulo: ABM.

OLIVEIRA, d. J., VIVACQUA FILHO, A., & GOMES, P. (1982). Produção de Carvão Vegetal - aspectos tecnicos. CETEC, 60-73.

P. C. PINHEIRO, F. J. (2005). Influencia da temperatura e da Taxa de Aquecimento da Carbonizacao nas propiedades do Carvao Vegetal de Eucalytus. Biomassa & Energia, 159-168.

PALOMARES, Y. (2011). Reatividade comparativa de Coque, Carvao Mineral, Carvao Vegetal e Coque Verde de Petroleo. Rio de Janeiro - Brasil: Tese.

PARKASH, S. (2010). **Petroleum Fuels Manufacturing Handbook.** Toronto: Mc Graw Hill.

PERALBA, M. (1979). Reatividade de um carvão redutor, mina buti- recreio (rs) efeito de aditivos e granulometria. Rio Grande do Sul: Tese.

POHLMANN, J. G. (2010). Avaliação da reatividade ao co2 de chars obtidos em atmosferas convencional (O2/N2) e de oxi-combustão (O2/CO2) com vistas à aplicação no alto-forno. Porto Alegre- Brasil: Tese.

R. J. TOSTAM, E. M. (2008). Structural evaluation of coke of petroleum and coal tar pitch for the elaboration of anodes in the industry of the aluminum. Light Metals, 887-892.

RADOVIC, L. R. (2008). **Chemistry and Physics of Carbon** (Vol. 30). Pennsylvania: Taylor & Francis Group.

RIZZO, E. M. (2009). **Processo de Produção Ferro Gusa em Alto Forno**. Sao Paulo: ABM.

S. GUPTA, Y. A.-O. (2006). Influence of Carbon Structure and Mineral Association of Coals on Their Combustion Characteristics for Pulverized Coal Injection (PCI) Application. Metallurgical and Materials transactions, 457-473.

S. J. YOON, Y. C. (2007). Thermogravimetric study of coal and petroleum coke for co-gasification. Energy Research , 512-517.

S.PUSZ, M. L. (2010). Changes in coke structure due to reaction with carbon dioxide. Coal Geology , 287-292.

SANDRA RODRIGUES, I. S.-R. (2011). Microstructural evolution of high temperature treated anthracites of different rank. Coal Geology, 204-211.

SARKANEN, G. G. (1989). Lignin: Properties and Materials. Toronto, Canada: American Chemical Society.

SING, J., EVERETT, D., HAUL, R., MOSCOW, L., PIEROTTI, R., & ROUQUEROL, J. (1985). **Reporting physiosorption data for gas/solid systems**. Pure Appl. Chem., 603-619.

SPEIGHT, J. G. (2005). Handbook of Coal Analysis. New Jersey: Wiley Interscience.

STATISTICS, I. (2010). Coal Information. Paris: International Energy Agency.

SUBERO, J. L. (2006). Influencia microestructural del coque de petroleo calcinado sobre el choque termico del anodo. Universidad, Ciencia y Tecnologia, 152-160.

SUN, L. a. (2004). Microcrystallite structural changes of petroleum coke during the course of carbonization analyzed by X-ray diffraction. Petroleum Processing Section, 53-56.

T. LI, C. D.-X. (2005). Gasification reactivity of petroleum coke at high temperature. Fuel Chemistry and Technology .

T. LINDSTAD, M. S. (2004). The Influence of alkalis on the Boudouard Reaction. SINTEF Materials Technology , 261-271.

W. ZHU, W. S. (2008). Effect of the Coal Particle Size on Pyrolysis and Char Reactivity for Two Types of Coal and Demineralized Coal. Energy & Fuels, 2482-2487.

XIAOLING ZHU, C. S. (2010). Influences of carbon structure on the reactivities of lignite char reacting with, CO2 AND NO. Fuel Processing Technology, 837-842.

YASUSHI SEKINE, K. I. (2006). Reactivity and structural change of coal char during steam gasification. Fuel, 122-126.

YOUQUING WU, S. W. (2009). Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke. The Institution of Chemical Engineers, 323–330.

Apêndice I

Resultados dos modelos cinéticos

т	Δt	т	Р	ΔΡ
mi	n	K	mg	
0,0		298	79,89	0,00
1,5		353	79,85	0,04
3,0		423	79,32	0,53
10,0		783	78,69	0,63
15,0		1043	77,00	1,69
20,0		1273	74,42	2,58
22,3	—		73,83	—
23,0	0,70		73,68	0,15
24,0	1,70		73,50	0,33
25,0	2,70		73,32	0,51
26,0	3,70		73,18	0,65
27,0	4,70		73,00	0,83
28,0	5,70	1373	72,88	0,95
29,0	6,70		72,75	1,08
30,0	7,70		72,65	1,18
31,0	8,70		72,55	1,28
32,0	9,70		72,45	1,38
34,0	11,70		72,25	1,58
36,1	13,80		72,06	1,77

* Coque Verde de Petróleo

$\tau =$	65,0	$d(P_{i})/dt - (A - AP) / \tau$					
Assíntota,A =	11,1						
t, min	$\Delta P_{t,modelado}$	t ,min	$\Delta P_{t,medido}$	$\Delta P_{t,modelado}$			
0	0,0000	0,7000	0,1500	0,1189			
2	0,3363	1,7000	0,3300	0,2865			
4	0,6624	2,7000	0,5100	0,4516			
6	0,9786	3,7000	0,6500	0,6141			
8	1,2852	4,7000	0,8300	0,7741			
10	1,5825	5,7000	0,9500	0,9318			
12	1,8709	6,7000	1,0800	1,0870			
14	2,1504	7,7000	1,1800	1,2398			
16	2,4216	8,7000	1,2800	1,3903			
18	2,6845	9,7000	1,3800	1,5385			
20	2,9394	11,7000	1,5800	1,8282			
	$R^2 = 99.44\%$						

Modelo de Reacional Corrigido (pseudo reação contínua)

Modelo de Reação Continua

P, inicial= 73,83

t,corr	ΔΡ	~	$1 (1 x)^{1/3}$	MOD	
min	mg	χ	1 - (1 - χ)	κ	$1 - (1 - \chi)^{1/3}$
0,000	-	-	-	0,0007	
0,700	0,150	0,002	0,002	0,0029	0,0016
1,700	0,330	0,004	0,004	0,0026	0,0038
2,700	0,510	0,007	0,007	0,0026	0,0061
3,700	0,650	0,009	0,009	0,0024	0,0083
4,700	0,830	0,011	0,011	0,0024	0,0106
5,700	0,950	0,013	0,013	0,0023	0,0129
6,700	1,080	0,015	0,015	0,0022	0,0151
7,700	1,180	0,016	0,016	0,0021	0,0174
8,700	1,280	0,017	0,018	0,0020	0,0196
9,700	1,380	0,019	0,019	0,0019	0,0219
11,700	1,580	0,021	0,022	0,0019	0,0264
13,800	1,770	0,024	0,024	0,0018	0,0311
				$R^2 =$	99,14%

%cinzas = 0,10

P, inicial=	73,83	%cinzas =	= 0,10		
t,corr	ΔP	Ŷ	$1 - (1 - \gamma)^{1/3}$	MOD	-
min	mg	۸.	· (·)	κ	$1 - (1 - \chi)^{1/3}$
0,000				0,0007	
0,700	0,150	0,002	0,001	0,0010	0,0005
1,700	0,330	0,004	0,001	0,0009	0,0012
2,700	0,510	0,007	0,002	0,0009	0,0020
3,700	0,650	0,009	0,003	0,0008	0,0027
4,700	0,830	0,011	0,004	0,0008	0,0034
5,700	0,950	0,013	0,004	0,0008	0,0042
6,700	1,080	0,015	0,005	0,0007	0,0049
7,700	1,180	0,016	0,005	0,0007	0,0056
8,700	1,280	0,017	0,006	0,0007	0,0064
9,700	1,380	0,019	0,006	0,0006	0,0071
11,700	1,580	0,021	0,007	0,0006	0,0085
13,800	1,770	0,024	0,008	0,0006	0,0101
				$R^2 =$	99,12%

Modelo Núcleo não Reagido

 Energia de Ativação ajustado ao Modelo de Reacional Corrigido (pseudo reação continua)

т	1000/T	t	Δt	Р	ΔΡ	–In(τ _{obs})	–In(τ _{mod})	
C	1000/1		min	mg		m	min	
—	—	—	—	79,890	—	—	—	
700	1,028	14,1	—	77,900			—	
780	0,950	15,6	1,50	76,620	3,270	1,277	1,138	
860	0,883	17,2	1,60	75,557	4,333	0,976	0,956	
940	0,824	18,9	1,70	74,770	5,120	0,797	0,799	
1020	0,773	20,5	1,60	74,292	5,598	0,598	0,661	
1100	0,728	22,3	1,80	73,830	6,060	0,584	0,539	
			coef ang =	2,703				
			coef lin =	-1,429	_			
			10 ³ /T	τ	_			
			0,00	-1,430				
			1,20	1,814	_			

* Carvão de Capim Elefante

t	Δt	Т	Р	ΔΡ
min		К	m	g
0,0		298	29,80	0,00
5,0		593	28,20	1,60
10,0		823	25,50	2,70
15,0		1053	22,90	2,60
20,0		1283	19,70	3,20
22,3	0,00		18,00	0,00
23,0	0,70		17,50	0,50
24,0	1,70		16,70	1,30
25,0	2,70		15,80	2,20
26,0	3,70		15,00	3,00
27,0	4,70	1373	14,20	3,80
28,0	5,70		13,35	4,65
29,0	6,70		12,70	5,30
30,0	7,70		12,00	6,00
31,0	8,70		11,40	6,60
32,0	9,70		11,10	6,90

Modelo de Reacional Corrigido (pseudo reação continua)

τ= Assíntota,A =	12,5 12,8		$d(P_t)/dt = (A - \Delta$	Ρ) / τ
t, min	$\Delta P_{t,modelado}$	t ,min	$\Delta P_{t,medido}$	$\Delta P_{t,modelado}$
0	0,0000	_	_	_
2	1,8926	0,7000	0,5000	0,6971
4	3,5053	1,7000	1,3000	1,6276
6	4,8796	2,7000	2,2000	2,4866
8	6,0507	3,7000	3,0000	3,2795
10	7,0486	4,7000	3,8000	4,0115
12	7,8990	5,7000	4,6500	4,6872
14	8,6236	6,7000	5,3000	5,3109
16	9,2411	7,7000	6,0000	5,8867
18	9,7673	8,7000	6,6000	6,4182
20	10,2157	9,7000	6,9000	6,9089
R ² = 99,90%				

P, inicial=	18,00	%cinzas = 18,30			
Δt	ΔP	~	-ln(1-x)	N	IOD
mim	mg	X	χ -ιι(1-χ)		-In(1–χ) _{mod}
0,000	_			0,0624	
0,700	0,500	0,034	0,035	0,0494	0,0467
1,700	1,300	0,088	0,093	0,0544	0,1134
2,700	2,200	0,150	0,162	0,0600	0,1801
3,700	3,000	0,204	0,228	0,0617	0,2468
4,700	3,800	0,258	0,299	0,0636	0,3135
5,700	4,650	0,316	0,380	0,0667	0,3802
6,700	5,300	0,360	0,447	0,0667	0,4469
7,700	6,000	0,408	0,524	0,0681	0,5136
8,700	6,600	0,449	0,596	0,0685	0,5804
9,700	6,900	0,469	0,633	0,0653	0,6471
				$R^2 =$	99,89%

Modelo de Reação Continua

Modelo de Núcleo não reagido

P, inicial=	18,00	%cinzas =	18,30		
				-	
t,corr	ΔP	~	$1 (1 x)^{1/3}$	MOD	
min	mg	χ	1 - (1 - χ)	κ	$1 - (1 - \chi)^{1/3}$
0,000	0,000	0,000	0,000	0,0196	
0,700	0,500	0,034	0,011	0,0164	0,0137
1,700	1,300	0,088	0,030	0,0179	0,0334
2,700	2,200	0,150	0,053	0,0195	0,0530
3,700	3,000	0,204	0,073	0,0198	0,0727
4,700	3,800	0,258	0,095	0,0202	0,0923
5,700	4,650	0,316	0,119	0,0209	0,1119
6,700	5,300	0,360	0,138	0,0207	0,1316
7,700	6,000	0,408	0,160	0,0208	0,1512
8,700	6,600	0,449	0,180	0,0207	0,1709
9,700	6,900	0,469	0,190	0,0196	0,1905
				$R^2 =$	99,85%

т	1000/T	t	Δt	Р	ΔP	–In(τ _{obs})	–In(τ _{mod})
C	1000/1		min	mg		min	
—	—	—	—	29,800	—	—	_
700	1,028	14,1		23,400		—	—
780	0,950	15,6	1,50	22,400	7,400	0,553	0,826
860	0,883	17,2	1,60	21,500	8,300	0,426	0,482
940	0,824	18,9	1,70	20,500	9,300	0,271	0,184
1020	0,773	20,5	1,60	19,300	10,500	-0,070	-0,078
1100	0,728	22,3	1,80	18,000	11,800	-0,348	-0,310
			coef ang =	5,132			
			coef lin =	-4,048	_		
			10 ³ /T	τ			
			0,00	-4,048			
			1,20	2,111			

 Energia de Ativação ajustado ao Modelo de Reacional Corrigido (pseudo reação continua)

* Coque Metalúrgico

t	Δt	т	Р	ΔΡ
mi	n	К	mg	
0,0		298	108,50	0,00
1,5		353	108,49	0,01
3,0		423	108,47	0,02
10,0		783	107,52	0,95
15,0		1043	106,96	0,56
20,0		1273	106,80	0,16
22,3	—		106,20	_
23,0	0,70		105,90	0,30
24,0	1,70		105,45	0,75
25,0	2,70		105,12	1,08
26,0	3,70		104,67	1,53
27,0	4,70		104,22	1,98
28,0	5,70	1373	103,74	2,46
29,0	6,70		103,34	2,86
30,0	7,70		102,89	3,31
31,0	8,70		102,39	3,81
32,0	9,70		101,71	4,49
34,0	11,70		100,68	5,52
36,1	13,80		99,50	6,70

τ=	27,90	$d(\mathbf{P})/dt = (\mathbf{A} - \mathbf{A}\mathbf{P})/\tau$		
Assíntota,A =	14,57			M) / L
t, min	$\Delta P_{t,modelado}$	t ,min	$\Delta P_{t,medido}$	$\Delta P_{t,modelado}$
0	0,0000	0,7000	0,3000	0,3610
2	1,0079	1,7000	0,7500	0,8612
4	1,9460	2,7000	1,0800	1,3439
6	2,8192	3,7000	1,5300	1,8095
8	3,6320	4,7000	1,9800	2,2588
10	4,3886	5,7000	2,4600	2,6922
12	5,0928	6,7000	2,8600	3,1103
14	5,7483	7,7000	3,3100	3,5138
16	6,3584	8,7000	3,8100	3,9030
18	6,9264	9,7000	4,4900	4,2785
20	7,4550	11,7000	5,5200	4,9903
		R ² =	99,01%	

Modelo de Reacional Corrigido (pseudo reação continua)

Modelo de Reação Continua

106,20

P, inicial=

t,corr	ΔP		- 	MOD		
min	mg	χ	$-\ln(1 - \chi)$	κ	$1 - (1 - \chi)^{1/3}$	
0,000	0,000	0,000	0,000	0,0196		
0,700	0,300	0,003	0,003	0,0047	0,0034	
1,700	0,750	0,008	0,008	0,0048	0,0082	
2,700	1,080	0,012	0,012	0,0044	0,0131	
3,700	1,530	0,017	0,017	0,0045	0,0179	
4,700	1,980	0,022	0,022	0,0046	0,0228	
5,700	2,460	0,027	0,027	0,0048	0,0276	
6,700	2,860	0,031	0,032	0,0047	0,0325	
7,700	3,310	0,036	0,037	0,0048	0,0373	
8,700	3,810	0,042	0,042	0,0049	0,0422	
9,700	4,490	0,049	0,050	0,0052	0,0470	
11,700	5,520	0,060	0,062	0,0053	0,0567	
13,800	6,700	0,073	0,076	0,0055	0,0669	
				R ² = 99,65%		

13,60

%cinzas =

P, inicial=	106,20	%cinzas =	13,60		
		-	_		
t,corr	ΔP		$1 - (1 - \chi)^{1/3}$	MOD	
min	mg	λ		κ	$1 - (1 - \chi)^{1/3}$
0,000	0,000			0,0196	
0,700	0,300	0,003	0,001	0,0016	0,0011
1,700	0,750	0,008	0,003	0,0016	0,0027
2,700	1,080	0,012	0,004	0,0015	0,0044
3,700	1,530	0,017	0,006	0,0015	0,0060
4,700	1,980	0,022	0,007	0,0015	0,0076
5,700	2,460	0,027	0,009	0,0016	0,0092
6,700	2,860	0,031	0,010	0,0016	0,0108
7,700	3,310	0,036	0,012	0,0016	0,0124
8,700	3,810	0,042	0,014	0,0016	0,0140
9,700	4,490	0,049	0,017	0,0017	0,0156
11,700	5,520	0,060	0,020	0,0017	0,0189
13,800	6,700	0,073	0,025	0,0018	0,0222
				$R^2 =$	99,68%

Modelo de Núcleo não reagido

 Energia de Ativação ajustado ao Modelo de Reacional Corrigido (pseudo reação continua)

т	1000/T	t	∆t	Р	ΔP	–In(τ _{obs})	–In(τ _{mod})	
C	1000/1	min m		m	g	m	min	
_	—	—	—	108,500	_	_	_	
700	1,028	14,1	—	107,060		—	—	
780	0,950	15,6	1,50	106,890	1,610	2,550	2,774	
860	0,883	17,2	1,60	106,877	1,623	2,606	2,664	
940	0,824	18,9	1,70	106,833	1,667	2,638	2,568	
1020	0,773	20,5	1,60	106,760	1,740	2,532	2,484	
1100	0,728	22,3	1,80	106,200	2,300	2,349	2,410	
			coef ang =	1,648				
			coef lin =	1,209				
			10 ³ /T	τ				
			0,00	1,209				
			1,20	3,187				

✤ Carvão Mineral

t	Δt	т	Р	ΔP
	min	К	mg	
0,0		363	24,20	0,00
5,0		593	23,30	0,90
10,0		823	22,70	0,60
15,0		1053	21,75	0,95
20,0		1283	20,20	1,55
22,0			19,50	—
23,0	1,00		19,10	0,40
24,0	2,00		18,70	0,80
25,0	3,00		18,20	1,30
26,0	4,00		17,80	1,70
27,0	5,00	1373	17,30	2,20
28,0	6,00		16,90	2,60
29,0	7,00		16,50	3,00
30,0	8,00		16,15	3,35
30,8	8,80		16,00	3,50
31,6	9,60		15,90	3,60

Modelo de Reacional Corrigido (pseudo reação continua)

τ= Assíntota,A =	8,80 5,40	$d(P_t)/dt = (A - \Delta P) / \tau$					
t, min	$\Delta P_{t,modelado}$	t ,min	$\Delta P_{t,medido}$	$\Delta P_{t,modelado}$			
0	0,0000	_	_	_			
2	1,0978	1,0000	0,4000	0,5801			
4	1,9724	2,0000	0,8000	1,0978			
6	2,6692	3,0000	1,3000	1,5599			
8	3,2244	4,0000	1,7000	1,9724			
10	3,6667	5,0000	2,2000	2,3406			
12	4,0191	6,0000	2,6000	2,6692			
14	4,2998	7,0000	3,0000	2,9626			
16	4,5235	8,0000	3,3500	3,2244			
18	4,7017	8,8000	3,5000	3,4135			
20	4,8436	9,6000	3,6000	3,5861			
	R ² = 99,73%						

P, inicial=	19,50	%cinzas =	15,00			
t,corr	ΔΡ	~	– In (1 – χ)	MOD		
min	mg	χ		κ	$1 - (1 - \chi)^{1/3}$	
0,000	0,000	-	-	0,0196		
1,000	0,400	0,024	0,024	0,0244	0,0281	
2,000	0,800	0,048	0,049	0,0247	0,0562	
3,000	1,300	0,078	0,082	0,0272	0,0844	
4,000	1,700	0,103	0,108	0,0271	0,1125	
5,000	2,200	0,133	0,142	0,0285	0,1406	
6,000	2,600	0,157	0,171	0,0284	0,1687	
7,000	3,000	0,181	0,200	0,0285	0,1969	
8,000	3,350	0,202	0,226	0,0282	0,2250	
8,800	3,500	0,211	0,237	0,0270	0,2475	
9,600	3,600	0,217	0,245	0,0255	0,2700	
R ² = 99,52%					= 99,52%	

Modelo de Reação Continua

Modelo de Núcleo não Reagido

P, inicial=	19,50	%cinzas =	15,00		
t,corr	ΔΡ		$1 - (1 - \chi)^{1/3}$	MOD	
min	mg	X		κ	$1 - (1 - \chi)^{1/3}$
0,000	0,000			0,0196	
1,000	0,400	0,024	0,008	0,0081	0,0080
2,000	0,800	0,048	0,016	0,0082	0,0159
3,000	1,300	0,078	0,027	0,0090	0,0239
4,000	1,700	0,103	0,035	0,0089	0,0319
5,000	2,200	0,133	0,046	0,0093	0,0398
6,000	2,600	0,157	0,055	0,0092	0,0478
7,000	3,000	0,181	0,064	0,0092	0,0558
8,000	3,350	0,202	0,072	0,0091	0,0637
8,800	3,500	0,211	0,076	0,0086	0,0701
9,600	3,600	0,217	0,078	0,0082	0,0765
		R ² =	= 99,46%		

т	1000/T	t	Δt	Р	ΔP	–In(τ _{obs})	–In(τ _{mod})
C	1000/1		min	m	ng	mi	in
	—	—	_	24,200	—	_	—
700	1,028	13,2	—	22,100	2,100		—
780	0,950	15,0	1,80	21,750	2,450	1,091	1,127
860	0,883	16,7	1,70	21,200	3,000	0,740	0,759
940	0,824	18,5	1,80	20,650	3,550	0,519	0,440
1020	0,773	20,3	1,80	20,100	4,100	0,234	0,161
1100	0,728	22,0	1,70	19,500	4,700	-0,184	-0,086
			coef ang =	5,481			
			coef lin =	-4,078			
			10 ³ /T	τ			
			0,00	-4,078			
			1,20	2,499			

Energia de Ativação ajustado ao Modelo de Reacional Corrigido (pseudo reação continua)

Apêndice II

Desenvolvimento Modelo de Reacional corrigido

$$\frac{dP_t}{dt} = \frac{P_t}{\tau}$$
$$(A - P_o) \ll Pt$$

$$\frac{dP_t}{dt} = \frac{(A - P_o) + Pt}{\tau}$$

Sendo que

 $\begin{aligned} \Delta \mathbf{P} &= P_o - Pt \\ d\Delta \mathbf{P} &= -dP_t \end{aligned}$

Sustituindo

$$-\frac{dP_t}{dt} = \frac{(A - \Delta P)}{\tau}$$
$$-\frac{d\Delta P}{(A - \Delta P)} = \frac{dt}{\tau}$$

Dividindo entre (1/A)

$$-\frac{dt}{\tau} = \frac{(1/A)d\Delta P}{1 - (\Delta P/A)}$$

Integrando

$$-\frac{t}{\tau} = \int_0^{\Delta P} \frac{(1/A)}{1 - (\Delta P/A)} d\Delta P$$
$$-\frac{t}{\tau} = \ln (1 - \frac{\Delta P}{A})$$
$$(1 - \frac{\Delta P}{A}) = \exp^{-(t/\tau)}$$

$$\Delta \mathbf{P} = \mathbf{A}(1 - \exp^{-\left(\frac{\mathbf{t}}{\tau}\right)})$$

Onde : ΔP : Variação do peso, (miligramas); A: Constante de correção, t: tempo (min); τ : ajuste do tempo (mim)