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 

Abstract—This paper proposes a parallel region growing image 

segmentation algorithm for Graphics Processing Units (GPU). It 

is inspired in a sequential algorithm widely used by the 

Geographic Object Based Image Analysis (GEOBIA) community.  

Initially, all image pixels are considered as seeds or primitive 

segments. Fine grained parallel threads assigned to individual 

pixels merge adjacent segments iteratively following a criterion, 

which seeks to minimize the average heterogeneity of image 

segments. Beyond spectral features the merging criterion 

considers morphological features, which can be efficiently 

computed in the underlying GPU architecture. Two algorithms 

using different merging criteria are proposed and tested. An 

experimental analysis upon five different test images has shown 

that the parallel algorithm may run more than 19 times faster 

than its sequential counterpart. 

 
Index Terms— Image Segmentation, Parallel Processing, 

Graphics Processing Unit 

  

I. INTRODUCTION 

ITH the increasing availability of orbital sensors of very 

high spatial resolution (VHR), a group of image 

interpretation techniques that came to be called Geographic 

Object Based Image Analysis, or simply GEOBIA, is gaining 

importance worldwide.  The first and most important step of 

this methodology is image segmentation. Among the methods 

proposed in the last four decades [1] for image segmentation, 

algorithms based on the region growing technique have been 

the most widely used by the GEOBIA community [2]. 

However, in practice, the high computational cost of this 

technique [3] allied to the volume of data to be processed in 

the VHR images are still demanding more efficient solutions. 

The progress of the Very Large Scale Integration       

Technology in the last few years, made parallel computer 
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organizations commercially available at affordable prices, so 

that parallel processing became the main alternative to 

accelerate  computationally intensive applications such as 

image segmentation [4],[5]. 

Particularly, Graphics Processing Units (GPUs), that is a 

ubiquitous component of modern computers, offer an excellent 

cost-to-performance ratio. Modern GPUs use massive 

parallelism to provide impressive floating-point capability and 

to significantly improve the application performance. 

Despite some previous efforts in the use of GPUs for 

accelerating image segmentation as in [6] and [7], the works 

geared to GEOBIA applications are scarce. This paper 

contributes to fill this gap by proposing two parallel algorithms 

for region growing segmentation on GPUs. They are based on 

different heuristics for merging adjacent segments. Their 

computational performances are evaluated experimentally on 

two distinct GPUs, and the outcome of the segmentation 

compared to the sequential output. 

The organization of this paper is as follows. Section II 

briefly describes the basic architecture of a GPU. The 

sequential segmentation algorithm which derives this proposal 

is introduced in Section III. Section IV describes the parallel 

algorithms proposed in this paper and its variants. The 

experimental evaluation that aimed to assess the computational 

performance of parallel algorithms is reported in Section V. 

The article concludes summarizing the main conclusions of the 

work and indicating future directions. 
 

II. GPU ARCHITECTURE 

This work focuses on the NVIDIA GPUs, widely available 

on the market. A NVIDIA GPU can be defined as a set of 

multithreaded Streaming Multiprocessors (SMs), each 

consisting of a set of Scalar Processor (SPs), the GPU cores. 

The memory in the GPU is organized as: a large global 

memory with high latency; a very fast, low latency on-chip 

shared memory to each SM; and a private local memory to 

each thread. Data communication between the GPU and the 

CPU is conducted via the PCIe bus. The CPU and the GPU 

have separate memory spaces, referred to as host memory and 

device memory, and the GPU-CPU transfer time is limited by 

the speed of the PCIe bus. 

The NVIDIA programming model is CUDA (Compute 

Unified Device Architecture). CUDA is a C-based 

development environment that allows the programmer to 

define special C functions, called kernels, which are executed 
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in parallel on the GPU by CUDA threads. The threads are 

organized into a hierarchy defined by a matrix of blocks, each 

performing a specified number of threads. Threads in the same 

block can cooperate among themselves using synchronization 

primitives, shared memory, and global memory. The GPU 

supports a great number of fine-grain threads. 

Thread processing is not independent in the GPU. Threads 

are processed in groups called warps. Within a warp, all the 

threads execute the same instruction. If one thread diverges 

from the others, its execution is serialized. In this case, the 

warp has to be issued multiple times, one for each group of 

divergent threads, leading to performance degradation. For 

harnessing the parallel processing capability of the GPU it is 

advisable to structure the application so that the warps hold a 

large number of threads and the load is distributed as evenly as 

possible among them. Moreover, as access to global memory 

has high latency, it is important that the threads have fine 

granularity. More information about NVIDIA's GPUs and the 

CUDA programming model can be obtained in [8]. 

 

III. SEQUENTIAL ALGORITHM 

The parallel algorithm proposed in this paper and presented 

in Section IV can be regarded as a parallel implementation of 

Baatz and Schäpe algorithm [9]. This section presents a brief 

overview of this algorithm, to enable the reader to make sense 

of the novelties brought by the present paper. 

At the beginning of the segmentation, each image pixel 

constitutes a seed and represents one segment. The segments 

are created in an iterative process. At each iteration, all 

segments are visited following a pseudorandom order, so as to 

favor a balanced growth of all segments. 

When a segment is visited, the global heterogeneity 

increase, which would result from its fusion with each of its 

neighbors, is calculated. Then, the best neighbor is determined, 

i.e., the one whose fusion would produce the lowest 

heterogeneity increase. Subsequently, one of two decision 

heuristics is adopted. In the variant known as best fitting the 

visited segment is merged with its best neighbor, without any 

further concern. In the second variant, known as local mutual 

best fitting, merging occurs only if this condition is mutual, 

i.e., if the visited segment is also the best neighbor of its best 

neighbor. Notice that for both heuristics, fusion is additionally 

conditioned to the amount of global heterogeneity increase: its 

value should be lower than the square of the scale parameter, 

which determines the maximum allowed heterogeneity 

increase that can result from merging of two segments. The 

scale parameter indirectly influences the average size of the 

final segments. The segmentation procedure ends when no 

further merging can be performed. 

As shown in (1), the measure of the heterogeneity increase 

(f), also called fusion cost, has a spectral component (hcolor) 

and a morphological component (hshape). The relative 

importance of each component is determined by a mixture 

factor (wcolor). Thus, the fusion factor is given by: 

.).1(. shapecolorcolorcolor hwhwf           (1) 

 

The spectral component of the fusion cost is given by a 

linear combination of the standard deviation of the pixels 

values within the segment in each band. The coefficients of the 

linear combination are user-defined parameters that determine 

the relative contribution of each spectral band.  

In the original algorithm, the morphological component is a 

function of two features: Compactness (Cmp) and Smoothness 

(Smt), respectively defined in (2) and (3). The former 

considers the edge length l and the object area n, and is 

minimum for circular shapes as it can be seen in 

 

./ nlCmp                    (2) 

 

 In contrast, the latter achieves its minimum for rectangular 

shapes, being formulated in terms of the edge length l and the 

edge length of segment’s bounding box b as in 

 

./ blSmt                    (3) 

 

A further user defined parameter expresses the relative 

importance of Compactness and Smoothness. 

IV. PARALLEL ALGORITHM 

A. General Description 

The central idea of the proposed algorithm is to create one 

thread to carry out the processing related to each image pixel, 

so as to take full advantage of the GPU fine-grain thread 

computing capacity. This approach also fosters a better load 

balancing, since each thread will always deals with the 

computation of a single pixel. 

The algorithm sets up a data structure in the GPU global 

memory with the information about the pixels and the 

segments they belong to is stored. The data structure is a 

vector whose index identifies the pixel. 

Each vector entry contains the following fields: a) the 

identifier of the segment which the pixel belongs b) whether or 

not the pixel belongs to the edge of its segment c) information 

necessary for calculating spectral and morphological features 

of the segment d) the identifier of the best neighbor segment, 

and e) the fusion cost related to its best neighbor. 

The pixel called from this point forward in the text as 

segment maker is the one whose identifier matches the 

segment’s identifier. The information contained in fields c) to 

e) is only relevant for the segment maker. 

In this paper we propose two parallel segmentation 

algorithms: PBF (Parallel Best Fitting), based on the "best 

fitting" segmentation; and PLMBF (Parallel Local Mutual Best 

Fitting), derived from the "local mutual best fitting" heuristic. 

Both versions are performed by six kernels executed in 

parallel in the GPU (see Fig. 3) and described in the following. 

A more detailed description is available at [10]. 
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Fig. 1.  Parallel segmentation algorithm diagram 

 

1) Initialize Seeds: This function initializes the image pixels 

as seed segments. Basically, the function fills the entries 

corresponding to each pixel in the data structure. 

2) Evaluate Neighbors: This function consists of two steps: a 

local one, comprising threads within each block, and a 

global one that consolidates local results. In the first step 

edge pixels of each segment are identified. Then, for each 

edge pixel the fusion costs relative to its adjacent 

segments are estimated. The identifier of the neighbor 

segment with the lowest fusion cost is stored locally in the 

GPU shared memory. Since this evaluation is performed 

by many threads in parallel, there may be conflicting 

identifiers. Such conflicts are solved within each block at 

the end of the first step. In the second step, existing 

conflicts between different blocks are solved, obtaining a 

unique identification of each segment’s best neighbor. The 

best neighbor’s identifier and the fusion cost of the 

segment makers are updated in the GPU global memory 

within a critical section. 

3) Process Fusions: All segment makers whose fusion cost is 

lower than the allowed maximum (the square of the scale 

parameter) are selected for merge. A critical section 

avoids multiple simultaneous processing of a single 

segment. Basically, one segment maker of each pair of 

segments being merged is elected to be the maker of the 

new created segment, whereas the other maker becomes a 

regular pixel of that new segment.  

4) Redefine Segments: After a fusion, the other pixels of the 

merged segments must be identified as belonging to the 

resultant segment. This task is performed in parallel by the 

Redefine Segments function. It assigns to these pixels the 

new segment identifier.  

5) Recalculate Borders: Pixels along the common border of 

two segments being merged will not belong to the border 

of the resultant segment. This function checks for each 

pixel at the segment border if at least one of its adjacent 

pixels belongs to another segment. If this is not the case, 

the data structure is updated to indicate that these pixels 

are no longer part of the segment border. 

6) Write Image Result: When no fusion can be performed, 

the segmentation result is generated and the algorithm is 

terminated. 

Both the PBF and PLMBF algorithms basically use the 

same described functions with small changes. The key 

differences lie in the Process Fusions function. In PLMBF 

after having selected the best neighbor, Process Fusions 

additionally checks if the mutuality condition holds. If not, no 

fusion takes place. Furthermore, the PLMBF algorithm 

incorporates a mechanism that deals with situations in which 

multiple segments have the same fusion cost.  

B. Morphological Features 

The features defined in (2) and (3) must be computed 

whenever two adjacent segments are being considered for 

merging. It involves determining the edge length of the new 

segment that will result if the fusion actually occurs. Besides 

being computationally expensive, this operation implies in a 

large number of accesses to the data structure stored in the 

GPU global memory, whose latency is high. Moreover, it may 

lead to an unbalance load among the threads, since the 

associated computational load is proportional to the border 

length of each segment. 

In order to avoid this problem, we propose two different 

morphological features, presented in (4) and (5), whose 

computation does not involve a prior computation of the edge 

length, to substitute Compactness and Smoothness. 

 The first morphological feature is defined as 

 

,/4max/ ndComp                 (4) 

 

where dmax is the axis of the ellipse with identical second 

order moment and n  is the segment area. It is worth noting 

that this feature is also called Compactness (Comp) by John 

Russ in [11], possibly because it also reaches its minimum for 

circular shapes.  

Second, we propose the replacement of the Smoothness by 

the Solidity (Sol) as defined in 

 

nboxnSol / , (5) 

 

where n is the segment area and nbox is the area of its 

bounding box. Note that the Solidity is sensitive to segment’s 

convexity and is minimum for rectangular shapes. 

 

V. EXPERIMENTAL ANALYSIS 

A. Speedups 

The purpose of the experiments reported in this section was 

to determine the speedup achieved by both proposed 

segmentation algorithms. The experiments were performed in 

two different configurations of GPUs, CPUs and operating 

systems. The first configuration represents a low-cost 

environment usually present in regular computers at the time 

this paper is published, while the second configuration 

represents a more sophisticated GPU environment based on 

the Fermi architecture for high-performance computing: 

 GT 9600: GPU: NVIDIA GeForce 9600 GT with 64 cores 
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and 1GB of memory; CPU: Intel Core 2 6300 @ 1.86GHz 

and 3.25GB of RAM; OS: Windows XP.  

 GTX 480: GPU: NVIDIA GeForce GTX 480 with 480 

cores and 1,5GB of memory; CPU: Intel i7 970 @ 

3.2GHz and 16 GB of RAM; OS: Ubuntu 10 64 bits. 

The experiments were conducted on five test images, 

labeled from IM1 to IM5, with distinct sizes in pixel (800
2
, 

1000
2
, 1400x1500, 2000

2
, and 2400

2
) and different sensors 

(IKONOS, Quickbird and Aerial). Fig. 2 and Fig. 3 display, 

respectively, the speedups obtained by the PBF and PLMBF 

algorithms relative to their respective sequential version 

measured in the GT 9600 configuration. The speedup achieved 

by PBF ranged from 4.3 to 6.2, whereas PLMBF attained 

speedups between 3.9 and 8.5. 

Fig. 4 and Fig. 5 show the speedups of PBF and PLMBF, 

for different scale values, relative to the corresponding 

sequential version running on the GTX 480 configuration. 

PBF reached speedups between 9.0 and 14.6, whereas the 

speedup of PLMB ranged from 10.2 to 19.0. 

Fig. 2 to 5 further reveal that the speedups of both 

algorithms tend to lessen as the scale increases. As described 

in Section IV, each image pixel is assigned to a GPU core 

when the segmentation starts. For a segment comprising 

multiple pixels, the cores in charge of the border pixels and the 

so called segment makers carry out most of the computation 

related to that segment. The cores assigned to the other pixels 

of the same segment do comparatively less work. In 

consequence, the load tends to concentrate on fewer cores as 

segments grow and the speedup diminishes. Hence, speedups 

decreases with scale as scale is directly related to the size of 

the segments obtained in the end of the segmentation 

procedure. 

The results in both configurations show a superiority of 

PLMBF over the PBF in terms of the achieved speedups. This 

is due to the fact that “local mutual best fitting” algorithm is 

more complex than “best fitting”. So, PLMBF involves more 

computation than PBF not only in absolute terms but also 

relative to the time spent transferring data between CPU and 

GPU. 

Moreover, the experiments did not detect a substantial 

dependence of the speedup on the input image. Indeed, as the 

scale increases the sensitiveness of the speedup to the input 

image became even less significant. 

Finally, it is worth remarking that, despite achieving 

accelerations of up to 19.0, these were far below the number of 

processors available in the GPU. Since threads are assigned to 

segments and the region growing paradigm requires the 

inspection of relations between adjacent segments for each 

merging operation, threads’ dependency is considerable. This 

evidently hinders the full exploitation of the parallel 

processing capability available in the GPU hardware. 
 

 
Fig. 2.  Chart of speedup as a function of scale for the PBF algorithm 

regarding its sequential version using GT_9600 

 

 
Fig. 3.  Chart of speedup as a function of scale for the PLMBF algorithm 

regarding its sequential version using GT_9600 

 

 
Fig. 4.  Chart of speedup as a function of scale for the PBF algorithm 

regarding its sequential version using GTX_480 
 

 
Fig. 5.  Chart of speedup as a function of scale for PLMBF algorithm 

regarding its sequential version using GTX_480 

B. Segmentation Outcome 

The outcomes produced by the parallel algorithm and by its 

original sequential counterpart may differ for two main 

reasons: first, because different features are used to measure 

morphological heterogeneity and, second, due to different 

segments’ processing orders. 

The difference caused by the use of distinct morphological 

features can be reduced by a proper adaptation of 

segmentation parameters. In respect to the processing order, it 

affects the sequential as well as the parallel version.  By using 

a preset processing sequence, the sequential algorithm will 

produce always the same outcome every time it is executed for 

a given input image and parameter setting. However, whatever 

it may be, the adopted sequence will be always arbitrary in the 

sense that other plausible sequences may exist, which produce 

different but equally good and possibly even better outcomes.   

In contrast, parallel region growing algorithms will 

generally produce different results each time it is executed. 
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This happens because threads’ processing times is not constant 

every time they are executed, what affects the segments’ 

processing order and consequently the final segmentation 

outcome. 

This experiment aims at demonstrating that the outcomes 

produced by the proposed parallel algorithm diverge from a 

result yielded by the sequential counterpart as much as 

sequential algorithm’s outcomes running with different 

segments’ processing orders may differ from each other. 

The experiment was conducted as follows. First, the 

sequential algorithm working with the original morphological 

features was applied to one of the test images and a set of 

segments from its outcome were taken as reference for 

comparison purpose. Subsequently, parameters of the parallel 

version were tuned in order to obtain a result as coherent as 

possible with the references. A stochastic optimization method 

similar to the one described in [12] was applied for that 

purpose. Specifically, parameters of the parallel algorithm 

were adapted to minimize the dissimilarity between its 

outcome and the selected reference segments. The Reference 

Bounded Segment Booster (RBSB) [12] was used as 

dissimilarity metric.  

Then, segments’ processing order of the sequential version 

was changed by using a simple trick. The input image was first 

mirrored vertically and then segmented. The outcome was 

mirrored back and the result compared with the references 

through the RBSB. The same procedure was performed with a 

horizontally mirrored image. The worst (highest) RBSB score 

among the tested processing orders was kept. 

This experiment was performed 50 times for PBF, each time 

changing either the input image and/or the reference segments. 

In every instance the RBSB score of PBF was inferior (better) 

to the worst score obtained by changing the processing order 

of the sequential algorithm and in 90% of cases PBF achieved 

the best score among all. The average RBSB score was 67% 

and 6% respectively for the sequential algorithm in the worst 

case and for the PBF parallel algorithm.  These values indicate 

that the variability of the outcome due to changes in processing 

order of the sequential algorithm is mostly higher than the 

difference of the outcome produced by the parallel algorithm.  

Conversely, for PLMBF the RBSB score was superior 

(worse) in 56% of cases to the worst score recorded for the 

sequential version working with distinct processing orders. 

However, the average scores computed on 50 experiments 

were 7% and 4% respectively for the sequential algorithm in 

worst case and for the PLMBF algorithm. Recall that a RBSB 

score equal to 4%, means that the outcomes being compared 

agreed in average in 96% of the pixels comprised in the 

reference segments. 

 

VI. CONCLUSIONS 

This paper proposed a novel parallel algorithm for image 

segmentation inspired in a sequential version widely used by 

the remote sensing community. In the proposed algorithm a 

heterogeneity criterion that controls the region growth is 

formulated in terms of both spectral and morphological 

features. 

Two variants of the parallel algorithm were described, each 

one characterized by a different decision heuristic for merging 

segments. In both variants, each pixel is processed by a 

distinct thread in order to exploit the parallel processing 

capability provided by GPUs. 

The acceleration of both proposed variants relative to their 

sequential counterparts achieved in our experimental analysis 

values up to 14.6 and 19.0. 

It has also been found experimentally that the segmentation 

outcome of the parallel algorithms is generally similar to the 

outcome produced by their sequential counterpart. 

An implementation of both parallel algorithms as well as 

their sequential versions, are available exclusively for 

educational and research purposes at the following address: 

http://www.lvc.ele.puc-rio.br/wp/?cat=41. 
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