

 ISSN

Number 30 | February 2013

A Region Growing

Segmentation Algorithm

for GPUs

Patrick Nigri Happ

 Raul Queiroz Feitosa

 Cristiana Bentes

 Ricardo Farias

Internal Research Reports

 Number 30 | February 2013

A Region Growing Segmentation

Algorithm for GPUs

Patrick Nigri Happ

Raul Queiroz Feitosa

Cristiana Bentes

Ricardo Farias

CREDITS

Publisher:

MAXWELL / LAMBDA-DEE

Sistema Maxwell / Laboratório de Automação de Museus, Bibliotecas Digitais e Arquivos

http://www.maxwell.vrac.puc-rio.br/

Organizers:

Alexandre Street de Aguiar

Delberis Araújo Lima

Cover:

Ana Cristina Costa Ribeiro

http://www.maxwell.vrac.puc-rio.br/

This work has been submitted to the IEEE Geoscience and Remote Sensing Letters for

possible publication. Copyright may be transferred without notice, after which this

version may no longer be accessible.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—This paper proposes a parallel region growing image

segmentation algorithm for Graphics Processing Units (GPU). It

is inspired in a sequential algorithm widely used by the

Geographic Object Based Image Analysis (GEOBIA) community.

Initially, all image pixels are considered as seeds or primitive

segments. Fine grained parallel threads assigned to individual

pixels merge adjacent segments iteratively following a criterion,

which seeks to minimize the average heterogeneity of image

segments. Beyond spectral features the merging criterion

considers morphological features, which can be efficiently

computed in the underlying GPU architecture. Two algorithms

using different merging criteria are proposed and tested. An

experimental analysis upon five different test images has shown

that the parallel algorithm may run more than 19 times faster

than its sequential counterpart.

Index Terms— Image Segmentation, Parallel Processing,

Graphics Processing Unit

I. INTRODUCTION

ITH the increasing availability of orbital sensors of very

high spatial resolution (VHR), a group of image

interpretation techniques that came to be called Geographic

Object Based Image Analysis, or simply GEOBIA, is gaining

importance worldwide. The first and most important step of

this methodology is image segmentation. Among the methods

proposed in the last four decades [1] for image segmentation,

algorithms based on the region growing technique have been

the most widely used by the GEOBIA community [2].

However, in practice, the high computational cost of this

technique [3] allied to the volume of data to be processed in

the VHR images are still demanding more efficient solutions.

The progress of the Very Large Scale Integration

Technology in the last few years, made parallel computer

1Manuscript received December 29, 2012. This work has been supported

by CNPq, and by the FP7 Program as part of the TOLOMEO Project.

P. N. Happ is Research Assistant with the Department of Electrical

Engineering, Pontifical Catholic University of Rio de Janeiro R. Marquês de

São Vicente, 225, Gávea, Rio de Janeiro, RJ - Brazil - 22453-900 (phone:

+55 3527 1626; fax: +55 3527 1232 (e-mail: patrick@ele.puc-rio.br).

R. Q. Feitosa is with the Department of Electrical Engineering, Pontifical

Catholic University of Rio de Janeiro, and with the Department of Computer

System Engineering, State University of Rio de Janeiro; (e-mail:

raul@ele.puc-rio.br).

C. Bentes, is with the Department of Computer System Engineering, State

University of Rio de Janeiro; (e-mail: cris@eng.uerj.br).

R. Farias is with the Department of Computer System Engineering at

COPPE, Federal University of Rio de Janeiro; (e-mail: rfarias@cos.ufrj.br).

organizations commercially available at affordable prices, so

that parallel processing became the main alternative to

accelerate computationally intensive applications such as

image segmentation [4],[5].

Particularly, Graphics Processing Units (GPUs), that is a

ubiquitous component of modern computers, offer an excellent

cost-to-performance ratio. Modern GPUs use massive

parallelism to provide impressive floating-point capability and

to significantly improve the application performance.

Despite some previous efforts in the use of GPUs for

accelerating image segmentation as in [6] and [7], the works

geared to GEOBIA applications are scarce. This paper

contributes to fill this gap by proposing two parallel algorithms

for region growing segmentation on GPUs. They are based on

different heuristics for merging adjacent segments. Their

computational performances are evaluated experimentally on

two distinct GPUs, and the outcome of the segmentation

compared to the sequential output.

The organization of this paper is as follows. Section II

briefly describes the basic architecture of a GPU. The

sequential segmentation algorithm which derives this proposal

is introduced in Section III. Section IV describes the parallel

algorithms proposed in this paper and its variants. The

experimental evaluation that aimed to assess the computational

performance of parallel algorithms is reported in Section V.

The article concludes summarizing the main conclusions of the

work and indicating future directions.

II. GPU ARCHITECTURE

This work focuses on the NVIDIA GPUs, widely available

on the market. A NVIDIA GPU can be defined as a set of

multithreaded Streaming Multiprocessors (SMs), each

consisting of a set of Scalar Processor (SPs), the GPU cores.

The memory in the GPU is organized as: a large global

memory with high latency; a very fast, low latency on-chip

shared memory to each SM; and a private local memory to

each thread. Data communication between the GPU and the

CPU is conducted via the PCIe bus. The CPU and the GPU

have separate memory spaces, referred to as host memory and

device memory, and the GPU-CPU transfer time is limited by

the speed of the PCIe bus.

The NVIDIA programming model is CUDA (Compute

Unified Device Architecture). CUDA is a C-based

development environment that allows the programmer to

define special C functions, called kernels, which are executed

A Region Growing Segmentation Algorithm for

GPUs

Patrick Nigri Happ, Raul Queiroz Feitosa, Cristiana Bentes, Ricardo Farias

W

mailto:raul@ele.puc-rio.br

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

in parallel on the GPU by CUDA threads. The threads are

organized into a hierarchy defined by a matrix of blocks, each

performing a specified number of threads. Threads in the same

block can cooperate among themselves using synchronization

primitives, shared memory, and global memory. The GPU

supports a great number of fine-grain threads.

Thread processing is not independent in the GPU. Threads

are processed in groups called warps. Within a warp, all the

threads execute the same instruction. If one thread diverges

from the others, its execution is serialized. In this case, the

warp has to be issued multiple times, one for each group of

divergent threads, leading to performance degradation. For

harnessing the parallel processing capability of the GPU it is

advisable to structure the application so that the warps hold a

large number of threads and the load is distributed as evenly as

possible among them. Moreover, as access to global memory

has high latency, it is important that the threads have fine

granularity. More information about NVIDIA's GPUs and the

CUDA programming model can be obtained in [8].

III. SEQUENTIAL ALGORITHM

The parallel algorithm proposed in this paper and presented

in Section IV can be regarded as a parallel implementation of

Baatz and Schäpe algorithm [9]. This section presents a brief

overview of this algorithm, to enable the reader to make sense

of the novelties brought by the present paper.

At the beginning of the segmentation, each image pixel

constitutes a seed and represents one segment. The segments

are created in an iterative process. At each iteration, all

segments are visited following a pseudorandom order, so as to

favor a balanced growth of all segments.

When a segment is visited, the global heterogeneity

increase, which would result from its fusion with each of its

neighbors, is calculated. Then, the best neighbor is determined,

i.e., the one whose fusion would produce the lowest

heterogeneity increase. Subsequently, one of two decision

heuristics is adopted. In the variant known as best fitting the

visited segment is merged with its best neighbor, without any

further concern. In the second variant, known as local mutual

best fitting, merging occurs only if this condition is mutual,

i.e., if the visited segment is also the best neighbor of its best

neighbor. Notice that for both heuristics, fusion is additionally

conditioned to the amount of global heterogeneity increase: its

value should be lower than the square of the scale parameter,

which determines the maximum allowed heterogeneity

increase that can result from merging of two segments. The

scale parameter indirectly influences the average size of the

final segments. The segmentation procedure ends when no

further merging can be performed.

As shown in (1), the measure of the heterogeneity increase

(f), also called fusion cost, has a spectral component (hcolor)

and a morphological component (hshape). The relative

importance of each component is determined by a mixture

factor (wcolor). Thus, the fusion factor is given by:

.).1(. shapecolorcolorcolor hwhwf  (1)

The spectral component of the fusion cost is given by a

linear combination of the standard deviation of the pixels

values within the segment in each band. The coefficients of the

linear combination are user-defined parameters that determine

the relative contribution of each spectral band.

In the original algorithm, the morphological component is a

function of two features: Compactness (Cmp) and Smoothness

(Smt), respectively defined in (2) and (3). The former

considers the edge length l and the object area n, and is

minimum for circular shapes as it can be seen in

./ nlCmp  (2)

 In contrast, the latter achieves its minimum for rectangular

shapes, being formulated in terms of the edge length l and the

edge length of segment’s bounding box b as in

./ blSmt  (3)

A further user defined parameter expresses the relative

importance of Compactness and Smoothness.

IV. PARALLEL ALGORITHM

A. General Description

The central idea of the proposed algorithm is to create one

thread to carry out the processing related to each image pixel,

so as to take full advantage of the GPU fine-grain thread

computing capacity. This approach also fosters a better load

balancing, since each thread will always deals with the

computation of a single pixel.

The algorithm sets up a data structure in the GPU global

memory with the information about the pixels and the

segments they belong to is stored. The data structure is a

vector whose index identifies the pixel.

Each vector entry contains the following fields: a) the

identifier of the segment which the pixel belongs b) whether or

not the pixel belongs to the edge of its segment c) information

necessary for calculating spectral and morphological features

of the segment d) the identifier of the best neighbor segment,

and e) the fusion cost related to its best neighbor.

The pixel called from this point forward in the text as

segment maker is the one whose identifier matches the

segment’s identifier. The information contained in fields c) to

e) is only relevant for the segment maker.

In this paper we propose two parallel segmentation

algorithms: PBF (Parallel Best Fitting), based on the "best

fitting" segmentation; and PLMBF (Parallel Local Mutual Best

Fitting), derived from the "local mutual best fitting" heuristic.

Both versions are performed by six kernels executed in

parallel in the GPU (see Fig. 3) and described in the following.

A more detailed description is available at [10].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Fig. 1. Parallel segmentation algorithm diagram

1) Initialize Seeds: This function initializes the image pixels

as seed segments. Basically, the function fills the entries

corresponding to each pixel in the data structure.

2) Evaluate Neighbors: This function consists of two steps: a

local one, comprising threads within each block, and a

global one that consolidates local results. In the first step

edge pixels of each segment are identified. Then, for each

edge pixel the fusion costs relative to its adjacent

segments are estimated. The identifier of the neighbor

segment with the lowest fusion cost is stored locally in the

GPU shared memory. Since this evaluation is performed

by many threads in parallel, there may be conflicting

identifiers. Such conflicts are solved within each block at

the end of the first step. In the second step, existing

conflicts between different blocks are solved, obtaining a

unique identification of each segment’s best neighbor. The

best neighbor’s identifier and the fusion cost of the

segment makers are updated in the GPU global memory

within a critical section.

3) Process Fusions: All segment makers whose fusion cost is

lower than the allowed maximum (the square of the scale

parameter) are selected for merge. A critical section

avoids multiple simultaneous processing of a single

segment. Basically, one segment maker of each pair of

segments being merged is elected to be the maker of the

new created segment, whereas the other maker becomes a

regular pixel of that new segment.

4) Redefine Segments: After a fusion, the other pixels of the

merged segments must be identified as belonging to the

resultant segment. This task is performed in parallel by the

Redefine Segments function. It assigns to these pixels the

new segment identifier.

5) Recalculate Borders: Pixels along the common border of

two segments being merged will not belong to the border

of the resultant segment. This function checks for each

pixel at the segment border if at least one of its adjacent

pixels belongs to another segment. If this is not the case,

the data structure is updated to indicate that these pixels

are no longer part of the segment border.

6) Write Image Result: When no fusion can be performed,

the segmentation result is generated and the algorithm is

terminated.

Both the PBF and PLMBF algorithms basically use the

same described functions with small changes. The key

differences lie in the Process Fusions function. In PLMBF

after having selected the best neighbor, Process Fusions

additionally checks if the mutuality condition holds. If not, no

fusion takes place. Furthermore, the PLMBF algorithm

incorporates a mechanism that deals with situations in which

multiple segments have the same fusion cost.

B. Morphological Features

The features defined in (2) and (3) must be computed

whenever two adjacent segments are being considered for

merging. It involves determining the edge length of the new

segment that will result if the fusion actually occurs. Besides

being computationally expensive, this operation implies in a

large number of accesses to the data structure stored in the

GPU global memory, whose latency is high. Moreover, it may

lead to an unbalance load among the threads, since the

associated computational load is proportional to the border

length of each segment.

In order to avoid this problem, we propose two different

morphological features, presented in (4) and (5), whose

computation does not involve a prior computation of the edge

length, to substitute Compactness and Smoothness.

 The first morphological feature is defined as

,/4max/ ndComp  (4)

where dmax is the axis of the ellipse with identical second

order moment and n is the segment area. It is worth noting

that this feature is also called Compactness (Comp) by John

Russ in [11], possibly because it also reaches its minimum for

circular shapes.

Second, we propose the replacement of the Smoothness by

the Solidity (Sol) as defined in

nboxnSol / , (5)

where n is the segment area and nbox is the area of its

bounding box. Note that the Solidity is sensitive to segment’s

convexity and is minimum for rectangular shapes.

V. EXPERIMENTAL ANALYSIS

A. Speedups

The purpose of the experiments reported in this section was

to determine the speedup achieved by both proposed

segmentation algorithms. The experiments were performed in

two different configurations of GPUs, CPUs and operating

systems. The first configuration represents a low-cost

environment usually present in regular computers at the time

this paper is published, while the second configuration

represents a more sophisticated GPU environment based on

the Fermi architecture for high-performance computing:

 GT 9600: GPU: NVIDIA GeForce 9600 GT with 64 cores

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

and 1GB of memory; CPU: Intel Core 2 6300 @ 1.86GHz

and 3.25GB of RAM; OS: Windows XP.

 GTX 480: GPU: NVIDIA GeForce GTX 480 with 480

cores and 1,5GB of memory; CPU: Intel i7 970 @

3.2GHz and 16 GB of RAM; OS: Ubuntu 10 64 bits.

The experiments were conducted on five test images,

labeled from IM1 to IM5, with distinct sizes in pixel (800
2
,

1000
2
, 1400x1500, 2000

2
, and 2400

2
) and different sensors

(IKONOS, Quickbird and Aerial). Fig. 2 and Fig. 3 display,

respectively, the speedups obtained by the PBF and PLMBF

algorithms relative to their respective sequential version

measured in the GT 9600 configuration. The speedup achieved

by PBF ranged from 4.3 to 6.2, whereas PLMBF attained

speedups between 3.9 and 8.5.

Fig. 4 and Fig. 5 show the speedups of PBF and PLMBF,

for different scale values, relative to the corresponding

sequential version running on the GTX 480 configuration.

PBF reached speedups between 9.0 and 14.6, whereas the

speedup of PLMB ranged from 10.2 to 19.0.

Fig. 2 to 5 further reveal that the speedups of both

algorithms tend to lessen as the scale increases. As described

in Section IV, each image pixel is assigned to a GPU core

when the segmentation starts. For a segment comprising

multiple pixels, the cores in charge of the border pixels and the

so called segment makers carry out most of the computation

related to that segment. The cores assigned to the other pixels

of the same segment do comparatively less work. In

consequence, the load tends to concentrate on fewer cores as

segments grow and the speedup diminishes. Hence, speedups

decreases with scale as scale is directly related to the size of

the segments obtained in the end of the segmentation

procedure.

The results in both configurations show a superiority of

PLMBF over the PBF in terms of the achieved speedups. This

is due to the fact that “local mutual best fitting” algorithm is

more complex than “best fitting”. So, PLMBF involves more

computation than PBF not only in absolute terms but also

relative to the time spent transferring data between CPU and

GPU.

Moreover, the experiments did not detect a substantial

dependence of the speedup on the input image. Indeed, as the

scale increases the sensitiveness of the speedup to the input

image became even less significant.

Finally, it is worth remarking that, despite achieving

accelerations of up to 19.0, these were far below the number of

processors available in the GPU. Since threads are assigned to

segments and the region growing paradigm requires the

inspection of relations between adjacent segments for each

merging operation, threads’ dependency is considerable. This

evidently hinders the full exploitation of the parallel

processing capability available in the GPU hardware.

Fig. 2. Chart of speedup as a function of scale for the PBF algorithm

regarding its sequential version using GT_9600

Fig. 3. Chart of speedup as a function of scale for the PLMBF algorithm

regarding its sequential version using GT_9600

Fig. 4. Chart of speedup as a function of scale for the PBF algorithm

regarding its sequential version using GTX_480

Fig. 5. Chart of speedup as a function of scale for PLMBF algorithm

regarding its sequential version using GTX_480

B. Segmentation Outcome

The outcomes produced by the parallel algorithm and by its

original sequential counterpart may differ for two main

reasons: first, because different features are used to measure

morphological heterogeneity and, second, due to different

segments’ processing orders.

The difference caused by the use of distinct morphological

features can be reduced by a proper adaptation of

segmentation parameters. In respect to the processing order, it

affects the sequential as well as the parallel version. By using

a preset processing sequence, the sequential algorithm will

produce always the same outcome every time it is executed for

a given input image and parameter setting. However, whatever

it may be, the adopted sequence will be always arbitrary in the

sense that other plausible sequences may exist, which produce

different but equally good and possibly even better outcomes.

In contrast, parallel region growing algorithms will

generally produce different results each time it is executed.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

This happens because threads’ processing times is not constant

every time they are executed, what affects the segments’

processing order and consequently the final segmentation

outcome.

This experiment aims at demonstrating that the outcomes

produced by the proposed parallel algorithm diverge from a

result yielded by the sequential counterpart as much as

sequential algorithm’s outcomes running with different

segments’ processing orders may differ from each other.

The experiment was conducted as follows. First, the

sequential algorithm working with the original morphological

features was applied to one of the test images and a set of

segments from its outcome were taken as reference for

comparison purpose. Subsequently, parameters of the parallel

version were tuned in order to obtain a result as coherent as

possible with the references. A stochastic optimization method

similar to the one described in [12] was applied for that

purpose. Specifically, parameters of the parallel algorithm

were adapted to minimize the dissimilarity between its

outcome and the selected reference segments. The Reference

Bounded Segment Booster (RBSB) [12] was used as

dissimilarity metric.

Then, segments’ processing order of the sequential version

was changed by using a simple trick. The input image was first

mirrored vertically and then segmented. The outcome was

mirrored back and the result compared with the references

through the RBSB. The same procedure was performed with a

horizontally mirrored image. The worst (highest) RBSB score

among the tested processing orders was kept.

This experiment was performed 50 times for PBF, each time

changing either the input image and/or the reference segments.

In every instance the RBSB score of PBF was inferior (better)

to the worst score obtained by changing the processing order

of the sequential algorithm and in 90% of cases PBF achieved

the best score among all. The average RBSB score was 67%

and 6% respectively for the sequential algorithm in the worst

case and for the PBF parallel algorithm. These values indicate

that the variability of the outcome due to changes in processing

order of the sequential algorithm is mostly higher than the

difference of the outcome produced by the parallel algorithm.

Conversely, for PLMBF the RBSB score was superior

(worse) in 56% of cases to the worst score recorded for the

sequential version working with distinct processing orders.

However, the average scores computed on 50 experiments

were 7% and 4% respectively for the sequential algorithm in

worst case and for the PLMBF algorithm. Recall that a RBSB

score equal to 4%, means that the outcomes being compared

agreed in average in 96% of the pixels comprised in the

reference segments.

VI. CONCLUSIONS

This paper proposed a novel parallel algorithm for image

segmentation inspired in a sequential version widely used by

the remote sensing community. In the proposed algorithm a

heterogeneity criterion that controls the region growth is

formulated in terms of both spectral and morphological

features.

Two variants of the parallel algorithm were described, each

one characterized by a different decision heuristic for merging

segments. In both variants, each pixel is processed by a

distinct thread in order to exploit the parallel processing

capability provided by GPUs.

The acceleration of both proposed variants relative to their

sequential counterparts achieved in our experimental analysis

values up to 14.6 and 19.0.

It has also been found experimentally that the segmentation

outcome of the parallel algorithms is generally similar to the

outcome produced by their sequential counterpart.

An implementation of both parallel algorithms as well as

their sequential versions, are available exclusively for

educational and research purposes at the following address:

http://www.lvc.ele.puc-rio.br/wp/?cat=41.

REFERENCES

[1] W. K. Pratt, Digital Image Processing (4th Edition). Wiley-Interscience,

2007, pp. 579-622.

[2] G. Meinel and M. Neubert, “A Comparison of segmentation programs

for high resolution remote sensing data”, Proceedings XXth ISPRS

Congress, Istanbul, 14-23. International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences, Vol. XXXV-B4, p.

1097-1102, July 2004.

[3] J. Wassenberg, W. Middelmannand, and P. Sanders, “An efficient

parallel algorithm for graph-based image segmentation”, in CAIP '09:

Proceedings of the 13th International Conference on Computer

Analysis of Images and Patterns, pp. 1003-1010, Berlin, Heidelberg.

Springer-Verlag.

[4] P. Lenkiewicz, M. Pereira, M. M. Freire, and J. Fernandes, “A new 3D

image segmentation method for parallel architectures”, Multimedia and

Expo, 2009. ICME 2009. IEEE International Conference on, vol., no.,

pp.1813-1816, June 28 2009-July 3, 2009.

[5] P. N. Happ, R. S. Ferreira, C. Bentes, G. A. O. P. Costa, and R. Q.

Feitosa, “Multiresolution Segmentation: a Parallel Approach for High

Resolution Image Segmentation in Multicore Architectures”, in: 3rd

International Conference on Geographic Object-Based Image Analysis,

2010, Ghent, The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences. Enshede: ITC, 2010.

[6] S. Schenke, B. Wuensche, and J. Denzler, “GPU-based volume

segmentation”, in Proc. of IVCNZ ’05 (2005), pp. 171 – 176.

[7] L. Pan, L. Gu, and J. Xu, “Implementation of medical image

segmentation in CUDA”, Information Technology and Applications in

Biomedicine, 2008. ITAB 2008. International Conference on , vol., no.,

pp.82-85, 30-31 maio 2008.

[8] NVIDIA, “CUDA C Programming Guide”, v.5.0, Available:

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.

[9] M. Baatz and A. Schäpe, “Multiresolution segmentation: an

optimization approach for high quality multi-scale image

segmentation”, in: XII Angewandte Geographische

Informationsverarbeitung, Wichmann-Verlag, Heidelberg, 2000.

[10] P. N. Happ, “Image segmentation on GPUs: a parallel approach to

region growing”, MSc. Dissertation, Rio de Janeiro, Brasil: Pontifical

Catholic University of Rio de Janeiro, 2011.

[11] J. C. Russ, The Image Processing Handbook (3rd Edition). Materials

Science and Engineering Department North Carolina State University

Raleigh - North Carolina, 1998, pp. 553.

[12] R. Q. Feitosa, G. A. O. P. Costa, T. B. Cazes, and B. Feijó, “A genetic

approach for the automatic adaptation of segmentation parameters”,

International Conference on Object-based Image Analysis – ISPRS

Proceedings, v. 36, n. 4/C42, 2006.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide
https://www.google.com.br/search?hl=pt-BR&sa=X&ei=qRhiT6G6E4G0gwegs8jbAg&ved=0CBwQvwUoAA&q=Angewandte+Geographische+Informationsverarbeitung&spell=1
https://www.google.com.br/search?hl=pt-BR&sa=X&ei=qRhiT6G6E4G0gwegs8jbAg&ved=0CBwQvwUoAA&q=Angewandte+Geographische+Informationsverarbeitung&spell=1

