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Modeling the Young Modulus of Nanocomposites:
A Neural Network Approach

Leandro F. Cupertino, Omar P. Vilela Neto, Marco Aurelio C. Pacheco,
Marley B. R. Vellasco and Jose Roberto M. d’Almeida

Abstract— Composite materials have changed the way of
using polymers, as the strength was favored by the incorpora-
tion of fibers and particles. This new class of materials allowed
a larger number of applications. The insertion of nanometric
sized particles has enhanced the variation of properties with
a smaller load of fillers. In this paper, we attempt to a
better understanding of nanocomposites by using an artificial
intelligence’s technique, known as artificial neural networks.
This technique allowed the modeling of Young’s modulus of
nanocomposites. A good approximation was obtained, as the
correlation between the data and the response of the network
was high, and the error percentage was low.

I. INTRODUCTION

IN materials science, a composite is a material with two
or more distinct phases; a continuous matrix phase and a

dispersed filler or reinforcement phase. Nanocomposites are a
special class of composites in which the dispersed phase has
one or more dimensions below 100 nm. When these consti-
tuents, matrix and dispersed filler, are put together, one can
achieve properties better than the two phases independently.
Therefore, the use of reinforcements to improve materials
resistance and lightness has been extensively done. In the
past few years, nanoparticles have gained great attention and
have been studied as a new successfully approach, which
enables the creation of materials with low percentage of filler
and greatly improved properties [1] [2] [3].

Numerical and analytical models are essential tools for
studying the controlling parameters of composites as well
as nanocomposites’ properties. Many existent models [4]
[5] [6] show that the particle’s modulus, aspect ratio and
volume fraction are key factors influencing the mechanical
properties of composites and nanocomposites. For clay re-
inforced resin matrix nanocomposites, for example, these
are key parameters governing the material’s stiffness [7].
Besides, the exfoliation of the clays plays also an important
role [8]. Particularly, exfoliation is greater with less silicate’s
layers, or when the inter-lamellar spacing is bigger. Both
factors imply in a consequent properties enhancement of the
composite.

However, despite many works on nanocomposite’s pro-
perties, the understanding of the relationship between the
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macroscopic behavior and nanostructure properties is still
an open question. Currently, several analytical models are
based on the rule of mixtures [9], supposing a perfect load
transfer between matrix and filler. These approaches work
for a specific combinations of matrixes and fillers and are
not so confident when overloading concentration of fillers.
However, it’s known that the relationship between filler vo-
lume fraction and mechanical properties of a nanocomposite
can also be non linear.

Nowadays, the process used to create these new improved
materials is made by exhaustive experimental work based
on the specialist’s knowledge, implying in a lot of physical
experiments and high cost.

This work aims to find a function which can be used as
a proxy of the natural behavior of matrix/nanofiller mixture,
modeling the relationship between the Young’s modulus and
the concentration and characteristics of each filler, by means
of an Artificial Neural Network (ANN). Young’s modulus
is a mechanic property and can be defined as the ratio of
the uniaxial stress over the uniaxial strain. The proposed
proxy shows good result when compared with previously
developed models and can be used to reduce the number
of experiments needed to develop nanocomposites, helping
material specialists to decide what combination of parameters
and materials should be made experimentally. This feature
reduces cost and time to develop nanocomposites with useful
properties.

This paper is structured as follow: section II briefly
explains the nanocomposites; section III makes a quick
summary about the ANN used here; section IV describes the
computational approach of the developed model, section V
presents the results and the comparison with other models
and finally, section VI presents the conclusions.

II. NANOCOMPOSITES

The properties of composites depend on both the charac-
teristics of the reinforcement (quantity, size, shape and distri-
bution) and matrix. Thus, several classification schemes are
available for such materials. The taxonomy defines them due
to the type of matrix and the morphology of its reinforcing
agents. Regarding the type of matrix it may be polymeric,
metallic or ceramic. As for the reinforcement, it may be
particulates (large or dispersed particles), fibrous (long or
short fibers) or structural (laminated). Recently, with the
inclusion of nanoparticles as reinforcing agents, a new class
of materials was created and it is called nanocomposites.



Nanocomposites are materials in which the dispersed
phase consists of particles at the nanometer scale. Unlike
the traditional approach, in which the use of particles is often
used to fill volume and reduce the cost of final product, the
interaction of nanoparticles with the matrix always provides
an improvement in mechanical, electrical, optical and/or
thermals properties. By maintaining the same concentration
(mass or volume), these materials have a surface area larger
than the microcomposites and, unlike them, need little rein-
forcement volume to significantly alter the properties. While
microcomposites need reinforcements volume in the range of
30% by volume (v/v) in a nanocomposite composition up to
a maximum of 10% v/v is sufficient. Above this value often
present decay in performance.

In taxonomic terms the nanocomposites retain the same
logic, but they are slightly different and may be classified
as spherical, baculiforms or lamellar. For each of these
classifications, one can cite the example of silica, carbon
nanotube and montmorillonite, respectively. The nanoclays
can be treated in various ways, seeking to improve the
interface between the matrix and the load, such as carbon
nanotubes aminofunctionalized [1].

It should be borne in mind that the intent of the nanocom-
posite, as regards the mechanical properties, is not to replace
fiber composites, since the increase in properties when using
the nanoparticle is not superior to those obtained with fibers.
One of the current proposals is the hybridization between the
two approaches, obtaining a material with two charges, but
lighter and with superior properties.

III. ARTIFICIAL NEURAL NETWORK

Computational intelligence is a branch of computer science
that develops algorithms and techniques to imitate some
cognitive abilities, like recognition, learning and evolution.
ANN is one of its techniques, which mimics the behavior of
biological neurons and has been widely used in problems of
series prediction, pattern recognition and function approxi-
mation [10]. It can be a non-linear mathematical model used
to find complex relationships between inputs and targets of
a function.

The neuron representation is illustrated in Fig. 1. The
artificial neuron k, typically called processor element, has
a set of inputs xm (dendrites) and an output yk (axon). The
inputs are pounded by synaptic weights wkm (synapses),
which determines the effect of entry xm on processor k.
These weighted inputs are summed, providing the internal
potential of the processor (vk). The output or activation state
yk of the element processor k is finally calculated using an
activation function ϕ(.), typically a sigmoid function.

An ANN is composed by interconnected neurons and may
have different types of topology. In this paper, we used
multiple layers of neurons where the outputs of each neuron
of a layer are used as inputs of the next one. This topology
in known as Multi-Layer Perceptron (MLP) [10] (Fig. 2).

ANN with only one hidden layer is able to approach,
with a specific precision, any continuous function [11] [12].
The fundaments for this statement is that any continuous
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Fig. 2. ANN topology presented with four layers: an input, two hidden
and an output. Each neuron is represented as a circle.

function, limited within an interval, can be approximated as
a linear superposition of sines, which can be mapped by the
neurons of the hidden layer, since the activation function of
the neurons is the log-sigmoid one. To approach a nonlinear
function, two hidden layers are needed.

In order to achieve a good input/output relationship, a
training algorithm adjusts the ANN’s weights through an
error minimization between the network output and the tar-
get. Many such input/target samples, known as patterns, are
needed to train a network. This data is divided into three sets:
training, validation and test. The first one are the patterns
presented to ANN in order to optimize the network’s weights,
minimizing the error. The validation set intends to give
the generalization ability to the model, avoiding overfitting.
Finally, the test set, with a database never presented before
to the ANN, is used to measure the effective quality of data
fitting. Fig. 3 shows the optimization procedure during the
training stage.

The main advantage of an ANN over other interpolation
methods is its capability of modeling systems with a very
strong non-linear behavior. Even though, for composites and
nanocomposites, it’s not possible to extract deep physical
insights on the interfacial interaction between matrix and
filler from the ANN. However, one can obtain trends that can
help in constructing new physical models or in understanding
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Fig. 3. Training algorithm schema.

the composite manufacturing process, as already made for the
growth of other nanostructures, such as quantum dots [13].

IV. COMPUTATIONAL APPROACH

A. Database

The study of polymeric nanocomposites is being exten-
sively done in a lot of domains like physics, chemistry,
materials science, engineering and even dentistry. Properties
like hardness, drying time, stress and thermal and electrical
conductivities are analyzed, and researches sought to tailor
these properties. Although the number of data published in
the literature is high, the different goals cause a hetero-
geneous availability of properties’ data. In this project we
decided to initially work with the Young’s modulus, since this
property is one of the most studied and that presents a greater
number of available data. It is also our interest to work with
other properties, but this requires a partnership with other
experimental groups, in order to obtain the necessary data.

The data used in this work was collected from various
articles published in the recent years. These data include the
use of thirteen matrices and eighteen nanofillers. Table I lists
the components supported by the ANN and their respective
references. Some of the data were taken from graphs which,
although includes a noisier measure, enable the study of a
greater range of materials.

Five parameters were chosen as inputs of the network
to represent the behavior of the elastic modulus (Young’s
Modulus): the matrix material, the filler material, filler’s
weight percentage (%wt), filler’s diameter and filler’s aspect
ratio. The aspect ratio can be defined as the ratio of its longer
dimension to its shorter dimension. Each of the matrices
and fillers were referenced as a class. When necessary, new
classes of matrices and fillers can be introduced on the
creation of the neural network.

The data collected was filtered to remove some outliers
that could difficult the network learning. Then, the inputs
and outputs were normalized as shown in table II. The
filler concentration and relative Young’s modulus where
normalized in a different way in order to make possible a
little extrapolation of database’s values.

B. Artificial Neural Network

The total number of data used in the development of the
network was 151. On the data selection for the training set,

TABLE I
MATRICES AND FILLERS USED ON THE ANN.

Matrix Filler Ref.
UP MMT (Cloisite 30B) [2]
UP MMT (Cloisite 25A) [2]
UP MMT [2]
UP MMT Na+ [2]

PMMA MMT (Cloisite 20A) [16]
PMMA CNF (PR-21-PS) [3]
PMMA CNF (PR-24-PS) [3]

PP CaCO3 [22]
PP CaCO3 [19]
PP SiO2 [7]
iPP CaCO3 [14]

E-glass-PP MMT (Nanomer 1.28E) [17]
PLLA (moulded) HAP [18]
PLLA (moulded) g-HAP [18]
PLLA (annealed) HAP [18]
PLLA (annealed) g-HAP [18]

PA6 SiO2 [7]
PA6 MMT [4]
PU CNF [20]

SBR Clay [21]
NBR Clay [21]

CNBR Clay [21]
Epoxy TiO2 [15]
Epoxy Carbon Black [1]
Epoxy DWCNT [1]
Epoxy DWCNT–NH2 [1]
Epoxy SWCNT [23]
Epoxy DWCNT [23]
Epoxy MWCNT [23]
Epoxy MWCNT–NH2 [23]
Epoxy Carbon Black [23]
Epoxy DWCNT–NH2 [23]

TABLE II
NORMALIZATION OF THE ANN DATA.

Property Normalization
Matrix class Real [0, 1]
Filler class Real [0, 1]

Filler diameter Real [0, 1]
Filler aspect ratio Real [0, 1]

Filler concentration Real [0, 0.9]
Relative Young modulus Real [0.1, 0.9]

all matrices and fillers were fixed as members, summing
up 113 (75% of data). For the validation set, 23 (15%)
patterns were randomly selected. The test set had 15 (10%)
different patterns (not used in the training or validation sets),
7 of which refer to a special combination of matrix/filler. In
the latter one, a new combination of matrix and filler was
proposed, i.e., on the training and validation sets we had
samples of PP/CaCO3 and PA6/SiO2, so on the test set we
evaluated a different composite (PP/SiO2) that was not used
neither in the training nor in the validation sets. These were
chosen in order to evaluate the real predictive power of the
developed system.

The training algorithm chosen was based on the
Levenberg-Marquardt minimization algorithm [24], since it
has a fast convergence, which contributes to the learning
speed of the ANN. The error metric used was the root mean



squared error (RMSE), so the best network configuration was
chosen based on which configuration gave the lowest RMSE
on the validation set, avoiding over fitting and allowing
generalization.

Once it’s known that the relationship between filler volume
fraction and mechanical properties of a nanocomposite can
be non linear, we used a two layer MLP network. In order to
select the best network architecture, the number of neurons
on each layer was varied from 3 to 12 on the first hidden
layer and from none to 4 on the second one. As the initial
weights are randomly selected, we used the average RMSE
of 100 runs to evaluate each network architecture. Besides,
the activation function of the hidden and output layers was
varied between hyperbolic tangent, linear and saturating
linear transfer functions.

V. RESULTS AND DISCUSSION

In order to evaluate the results of the ANN two different
metrics were used: the correlation coefficient (R value) and
the mean average percentage error (MAPE). The first one
indicates the strength and direction of a linear relationship
between two random variables. In other words, it measures
how well the output data variation is explained by the neural
model. The second metric measures how close the predicted
results are from the actual data.

The configuration of the best network found has the
activation function of the hidden layer as the hyperbolic
tangent and for the output layer, linear. The numbers of
neurons on the first and second hidden layers are 10 and
2, respectively.

The results of the neural network showed a great cor-
relation in all the sets used. Values of 0.994, 0.999 and
0.999 were obtained for the training, validation and test sets,
respectively. Values above 0.9 indicate a good agreement
between experimental and predicted values. Fig. 4 shows a
linear regression between the network outputs and the targets.
Showing that, as the target and output values tend to be the
same, the model is well adapted to the used data.

In terms of MAPE, the results showed values of 4.17%,
3.63% and 5.06% for the training, validation and test sets,
respectively. Once the experimental measured error is com-
monly around 10%, and the network error is below this range,
the results obtained are acceptable. Fig. 5 shows the output
of the data used on the training, validation and test sets (◦)
and the achieved response of the ANN (�). It can be clearly
seen that the predicted behavior of the network is quite close
to the experimental data. It’s important to notice that the first
seven data of the test set consists of a mixture of matrix and
filler which has never been presented during the training and
validation of the network. This indicates that the network can
predict the Young’s modulus of an unknown mixture, once
these matrix and filler were used separately on the training
set. This feature enables the researcher to predict how the
mixture of two different materials, not done experimentally,
should work.

In order to compare the ANN with different models
studied [9], the filler fraction was converted from weight

to volume fraction and it’s concentration’s scale is shown
in terms of both, weight and volume fractions (see Fig.
6). In [9], the author uses four different composites sets to
discuss six distinct models. In each of these sets the matrix
and filler remained the same, being the weight fraction of
the filler, the only variable changed. Two of these models
are the rules of mixtures of Voigt and Reuss, 1 and 2,
respectively, where E, Ed and Ec are the Young’s modulus
of the composite, disperse and continuous phase respectively,
and φ is the dispersed particle volume fraction. Although
these two models don’t have a very high accuracy, the Reuss’
model is the lower limit of the Young’s modulus, as the
Voigt’s model is the upper limit.

E = φEd + (1− φ)Ec (1)

1

E
=

φ

Ed
+

(1− φ)

Ec
(2)

The other equations are described in terms of the bulk (K)
and shear (G) modulus of the composite, and its dispersed
and continuous phase ( 3, 4 and 5). These equations are
differed by the f function as shown in 6-9.

Er =
E

Ec
=

[
9GrKr

6(1 + νc)Kr + 3(1− 2νc)Gr

]
(3)

K =

[
4Gd(Kc −Kd) + fKd(3Kc + 4Gd)

3(Kd −Kc) + f(3Kc + 4Gd)

]
(4)

G =

[
Gg(Gc −Gd) + fGd(Gc +Gg)

(Gd −Gc) + f(Gc +Gg)

]
(5)

where Kr and Gr are defined as K/Kc and G/Gc, respec-
tively. The four different equations used for f are given
below.

f = exp(φ) (6)

f = (1− φ)−1 (7)
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f = exp

[
φ

1− φ
φm

]
(8)

f = exp

(
1− φ

φm

)
(9)

where φm is the maximum packing volume fraction or
percolation-threshold of particles.

Figures 6-9, plot the rule of mixture equations as well
as the relative modulus approach. For the relative modulus
approach all the four proposed equations for f were used.
The resultant plots using f from 6, 7, 8 and 9 are referred
to as models I, II, III and IV, respectively.

In Fig. 6, a nanocomposite of organoclay (bis(hydroxyl
ethyl)-(methyl)-rapeseed quaternary ammonium organoclay)
matrix wiah a nylon-6 filler [4] is used to compare the exist-
ing models and the ANN. In this case, a low concentration of
filler is used (maximum volume fraction of 3%). As can be
seen, in this concentration range, the variability of the data
is almost linear, and model III gives the best fitting.

Fig. 7 shows a montmorillonite/SBR (Styrene Butadiene
Rubber) [21] composite set, where a different result is no-
ticed. With greater volume fraction and a nonlinear behavior,
the ANN is able to follow the trend of the experimental data
where the other models fail.

In Fig. 8 and 9, composites of montmorillonite clay with
NBR (Nitrile Rubber) [21] and CNBR (Carboxylated Acry-
lonitrile Butadiene Rubber) [21] matrices are respectively
shown. Once again a nonlinear behavior is observed and the
ANN’s ability to follow the trend of the experimental data
is the best one for both sets. For these cases, a limitation
on models III and IV is noticed. As the particle volume is
higher than the percolation-threshold volume fraction (φm,
defined as 0.12 and 0.10 to models III and IV, respectively),
the models can’t correctly predict the composite’s behavior
anymore. This is easily observed on 8 and 9 and evinced in
Fig. 8 and 9. Moreover, by using a maximum of 0.55 wt% in
the training set of the neural network, this network is able to
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predict any value at concentrations till the maximum training
value.

From the above results it can be said that, in general,
the ANN has a better fitting to the experimental points and
thus better represents the Young’s modulus variation than
the analytical models I-IV, which present a good behavior
just for composites with low volume fractions of filler. The
poor result achieved by the ANN for the composite organ-
oclay (bis(hydroxyl ethyl)-(methyl)-rapeseed quaternary am-
monium organoclay)/nylon-6 set may have been caused by
a scarce quantity of data with low weight fraction of filler
used on the development of the network.

Finally, having a well developed ANN one can get an idea
of the variation of the relative modulus (E/Ec) as function of
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any of the synthesis parameters presented to the network. As
an example we have varied the concentration and diameter
of a particle. Fig. 10 shows the level set output of the
network corresponding to a material composed by a matrix of
poly(methyl methacrylate) (PMMA) with carbon nanofibers
(CNF) with an aspect ratio of 100. It can be observed that
smaller the particle diameter, faster the modulus increases,
for example, a composite having a diameter of 100 nm, needs
30 wt% to achieve a relative modulus of 4, while another
one, with a diameter of 600 nm needs 40wt% to achieve the
same result. In this case, with a small filler concentration a
good response of Young’s module is obtained. On the other
hand, larger particles need a higher concentration to obtain
a similar result. Besides, when the smaller particles achieve
high concentrations the composite modulus decreases. This
can be explained by clustering of these particles, which will
act as if they were larger. Therefore, a micro-reinforced
composite is formed, instead of a nanocomposite.

VI. CONCLUSIONS

The process of creation of new composite materials is
considered to be very expensive. It’s necessary to perform
several experiments in order to select a suitable combina-
tion of matrix/filler to achieve some determined objective.
Normally this issue is done by trial and error.

The use of computational techniques to predict the beha-
vior of composites, given their synthesis input parameters,
was proposed in this paper. The network developed presents
high correlations values of 0.994, 0.999 and 0.999 for
the training, validation and test sets, respectively. Besides,
MAPE values of 4.17%, 3.63% and 5.06% for the training,
validation and test sets, are low, confirming the good corre-
lation of the network with the experimental data.

The network developed was compared with analytical
models available on the literature. The ANN’s results show
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a better agreement with the data set than the other models.
These results prove that through the use of ANN; it is possi-
ble to predict if a certain matrix/filler pair can give the desired
property, preventing the researcher to spend materials, time
and money. With the procedure here developed, one can
gather enough data to cover a larger amount of matrix and
filler. Moreover, other properties can be inferred too. The
future goal is the construction of a simulator able of predict
several nanocomposites properties with decreasing time and
cost.
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