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Abstract—This paper investigates the use of rotation invariant 

descriptors based on Local Binary Patterns (LBP) and Local Phase 

Quantization (LPQ) for texture characterization in the context of land-

cover and land-use classification of Remote Sensing (RS) optical image 

data. Very high resolution images from the IKONOS-2 and Quickbird-2 

orbital sensor systems covering different urban study areas were 

subjected to classification through an object-based approach. The 

experiments showed that the discrimination capacity of LBP and LPQ 

descriptors substantially increased when combined with contrast 

information. This work also proposes a novel texture descriptors 

assembled through the concatenation of the histograms of either LBP or 

LPQ descriptors and of the local variance estimates. Experimental 

analysis demonstrated that the proposed descriptors, though more 

compact, preserved the discrimination capacity of bi-dimensional 

histograms representing the joint distribution of textural descriptors and 

contrast information. Finally, the paper compares the discrimination 

capacity of the LBP and LPQ-based textural descriptors with that of 

features derived from the Gray Level Co-occurrence Matrices (GLCM). 

The related experiments revealed a noteworthy superiority of LBP and 

LPQ descriptors over the GLCM features in the context of RS image 

data classification. 
 

Keywords— Feature Extraction, Texture, Local Binary Pattern, 

Urban Land Use/Land Cover, Classification. 

I. INTRODUCTION 

With the advent of very high resolution (VHR) satellite 

imagery (up to 1 m pixels) since the late 1990s the interest for 

object based image analysis (OBIA), also know by the 

acronym GEOBIA (for Geographic Object Based Image 

Analysis), has increased all over the word. Traditional pixel 

based classification methods do not perform well for VHR 

images mainly due to the high within class variability of 

spectral features. Essentially, OBIA consists of two main steps: 

segmentation, which partitions the image in homogeneous 

regions or objects; and classification of the objects obtained in 

the segmentation step.  Both segmentation and classification 

are guided by criteria based on the image objects’ features. 

Among those features, the ones related to texture are 

particularly relevant, as shown in a number of applications, 

such as crop recognition, land-use and land-cover 

classification of urban areas, forest mapping, extraction of 

road networks, to name just a few.  

Moreover, among the numerous texture descriptors 

proposed in the literature thus far, the features derived from 

the Gray Level Co-occurrence Matrix (GLCM) [1] are by far 

the most widely used by the RS community. More recently, a 

new texture descriptor based on Local Binary Patterns (LBP), 

proposed in [2], achieved a remarkable success in face 

recognition applications [3]. 

However, there are few published studies on the use of LBP 

in RS applications, most of which are related solely to 

segmentation [4], [5], [6]. An exception is the study of Song et 

al. [7], which tests LBP on a mosaic of RS images. The 

reported results are also encouraging, but the analysis was 

limited to synthetic images.  

Following LBP’s success, a new method for texture 

representation also based on local binary codes was proposed 

in [8]. The method, known as Local Phase Quantization 

(LPQ), outperformed LBP in some face recognition 

applications [9]. However, to our knowledge there is no 

published study about the use of LPQ for texture description 

in RS image classification. 

 The present paper aims at assessing LBP and LPQ texture 

descriptors in real RS applications following the OBIA 

paradigm for automatic VHR image analysis. Specifically, the 

analysis involve two parts: firstly we evaluate different 

rotation invariant LBP and LPQ descriptors and their 

combination with contrast information and, secondly we 

compare the best rated LBP and LPQ descriptor 

configurations with textural features derived from GLCM. 

The study is conducted upon a land-cover and a land-use 

classification problem using IKONOS-2 and Quickbird-2 

images. The paper further investigates a novel textural 

descriptor, which combines the information carried by local 

binary codes with contrast information. 

The paper is organized as follows. Section 2 presents 

succinctly the LBP and LPQ texture coding techniques as well 

as the subjacent classification strategy. Section 3 describes the 

experiments carried out in this study and discusses the results. 

Finally, in section 4 we summarize our findings. 

II. BINARY TEXTURE CODING AND CLASSIFICATION 

This section provides an overview about the texture coding 

and classification techniques investigated in this work. 

Publications containing a detailed description of those 

techniques are cited in the following.  

A. LBP Texture Coding 

The LBP code associated to a pixel at w = (x,y) is 

computed from a set of P equally spaced samples over a circle 

of radius R centered at that pixel, as illustrated in Fig. 1. From 

the intensities gp (0 ≤ p < P) of the P samples and the intensity 

gc of the central pixel a sequence of P binary values TP = 

{S(g0 - gc), S(g1 - gc),...,S(gP-1 - gc)} is computed, where S is 



the sign function, which takes the value 0 (zero) when the 

argument is negative and 1 (one) otherwise.  

 

   
   P=8, R=1     P=16, R=2      P=24, R=3 

Fig. 1  LBP computation for different P and R 

 

A simple mapping procedure converts the bit sequence TP 

into a non negative integer value. Ojala and co-authors 

demonstrated empirically that only the TP sequences 

containing no more than two 0 to 1 or 1 to 0 transitions are 

relevant for texture characterization [2]. By imposing rotation 

invariance to these sequences, a texture coding (LBPP,R) 

comes about,  which is given by the number of 1’s in the 

sequence. Formally:  
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Thus, LBPP,R, may take up to P+2 distinct values, which 

represent the gray level spatial distribution (texture) in a 

neighborhood of a given pixel. Clearly, LBPP,R is invariant to 

monotonic gray-scale changes.  

A multi-scale texture representation can be built by 

considering more than one LBPP,R code generated with 

multiple P and R values. 

B. LPQ Texture Coding 

LPQ is a descriptor conceived originally to outperform 

LBP in applications dealing with images affected by blurring 

or by non uniform illumination. As in LBP, a code is 

computed for each pixel position, which represents the texture 

within the M×M pixel neighborhood Nw, centered in w, as 

shown in Fig. 2(a).  

 

 
Fig. 2 The neighborhood Nw (A) and the corresponding Fourier spectrum (B). 

 

Phase quantization takes into account only the sign of the 

real and imaginary components of the Fourier transform Fw(u), 

u = (u, v), in four values close to the origin of the frequency 

space, specifically (0,k), (k,k), (k,0) and (k,-k), as indicated by 

the white circles in Fig. 2(b), where k =M
-1

. The eight bits 

generated this way are grouped into a binary code that 

represents the texture in Nw. This procedure is executed for 

each pixel, producing the so called LPQM image, where M×M 

is the neighborhood size. 

The method further includes a simple procedure that 

decorrelates the Fourier coefficients before the quantization 

step. A detailed description of the LPQ texture coding 

technique can be found in [10]. 

A rotation invariant LPQ variant is also proposed by 

Ojansivu et al. [11]. It involves a preliminary step that 

computes the angle corresponding to the so called local 

characteristic orientation. The neighborhood is rotated by this 

angle before the LPQ codes are computed. This yields a 

rotation invariant binary number that represents the texture in 

Nw. Texture representation in multiple scales can be obtained 

by computing LPQM for different values of  M. 

C. VAR Texture Coding 

The LBP descriptors are invariant to monotonic gray scale 

changes and, consequently do not capture the contrast 

information. Ojala et al. [2] propose a local contrast descriptor, 

denoted henceforth as VARP,R, which is also rotation invariant, 

defined as: 
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   . VARP,R is an approximation of local 

variance, that can be computed efficiently if performed 

concurrently with the computation of LBPP,R. 

D. Texture Similarity Metric 

The texture of an image segment can be described by a 

normalized histogram of the binary codes associated to the 

pixels inside the segment. Analogously, each object class can 

be described by a specific model histogram of the binary 

codes computed upon a set of segment samples belonging to 

the class being modeled. The comparison between the 

segment and the model texture is carried out by measuring the 

similarity between the corresponding histograms. Most related 

works use the G statistic [12] for that purpose, which is given 

by equation (3).  
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where f1 and f2 are the segment and model histograms 

respectively, and B is the number of bins in f1 and f2. 

III.  EXPERIMENTAL ANALYSIS 

This section describes the procedures and results of three 

experiments that aimed at the evaluation of the texture 

descriptors considered in this study. 

A. Study Areas 

1) Area 1 – Land-use Classification:  This experiment 

aimed at classifying the land-use of a section of the city of Sao 

Paulo (Brazil), considering the urban blocks as the analysis 

units. For that purpose, a 0.6 m resolution, panchromatic 

image from the QuickBird-2 sensor was used. The image was 

(a) (b) 



captured on March 2002 and has 4000×4000 pixels. Fig. 3(A) 

shows a color-composite of the image. The urban blocks layer 

was obtained in vector format directly from the official Urban 

Planning Agency of São Paulo. Fig.  3(B) shows the reference 

land-use classification of the area. 

 

 
        Unoccupied plots          High standard  residential areas 

 Slum areas  Low standard residential housing 

 

Fig. 3  Image used for land-use classification (A) and the land-use map (B) 

 

 

 
  Grass type vegetation  Forested areas  Urban areas 

 
Fig. 4 Image used for land-cover classification (A) and land-use map (B) 

2) Area 2 – Land-cover Classification: A second problem 

addressed in our experiments consisted on the land-cover 

classification of a section of the city of Rio de Janeiro (Brazil). 

A 1m resolution, panchromatic image from the IKONOS-2 

sensor was used for that purpose. The image was captured on 

May 2010 and has 2800×2000 pixels. 

Fig. 4(A) shows a color-composite of the image. The whole 

area was segmented using the commercial system Definiens 

Developer and the resulting segments were manually 

classified. The land-cover map obtained this way was used as 

reference data and it is shown in Fig. 4(B). 

B. Experiments 

The objective of this analysis is to assess the relative 

performance associated to textural descriptors, rather than 

maximizing recognition rates. Thus, we decided to use only 

texture features for object description although the inclusion 

of spectral and shape features in addition to texture would 

probably lead to higher performances. A number of 

combinations of P and R values for LBPP,R and VARP,R 

descriptors, as well as different window sizes (M×M) for 

LPQM have been considered  in our experiments.  

 

1) The contribution of contrast: This experiment aimed at 

assessing the relative performance of texture descriptors 

derived from LBPP,R e VARP,R for RS image classification. 

Specifically, four descriptors are evaluated: the LBPP,R 

histogram, the VARP,R histogram, the histogram resulting from 

the concatenation of LBPP,R and VARP,R histograms, and the 

bi-dimensional histogram that represents the joint distribution 

of  LBPP,R / VARP,R. 

So, we investigated the classification accuracy associated to 

LBPP,R and to VARP,R separately, as well as the improvement 

that may be brought by combining them into a single 

descriptor. The experiment also investigated if the 

concatenation of both LBPP,R and VARP,R histograms is a 

proper replacement in terms of performance for the bi-

dimensional histogram representing the joint distribution 

LBPP,R / VARP,R. The concatenation of both LBPP,R and VARP,R 

histograms  constitutes a descriptor proposed in this work.  In 

all cases the VARP,R values were quantized in 8 levels. 

Classification was based on the G statistic (equation 3). 

Table 1 presents the Kappa values recorded for both 

applications and study areas. The results indicate that the 

optimal setting of P and R is not only application dependent, 

but may have an important impact in classification accuracy. 

It is worth mentioning that the best results in our experiments 

were obtained with P equal to 8 or 16 and with R between 2 

and 3, which is consistent with other studies on LBP [2]. 

Table 1 also reveals that the combined descriptors 

LBPP,R+VARP,R, and LBPP,R/VARP,R consistently outperformed  

LBPP,R  and VARP,R. In our experiments both combinations 

brought in average an absolute improvement of 0.10 to the 

Kappa index for both study areas, which is a significant 

performance gain for automatic RS image classification. 

Again, these results are consistent with [2]. 



Furthermore, it should be noted that both combined 

descriptors – LBPP,R+VARP,R and LBPP,R/VARP,R – achieved 

similar performances. Thus the descriptor LBPP,R+VARP,R, 

proposed in this work preserved the information contained in 

LBPP,R/VARP,R that was relevant for class discrimination in 

both test applications. Additionally, the LBPP,R+VARP,R 

descriptor is much more compact than the bi-dimensional 

version LBPP,R/VARP,R. Thus, this novel descriptor has the 

potential to simplify the classifier design, to reduce the 

demand for training samples and to improve the classifier 

generalization capacity. 

 
TABLE I   

KAPPA INDEXES FOR SINGLE SCALE TEXTURE DESCRIPTORS 

GIVEN BY DIFFERENT COMBINATIONS Of LPBP,R  AND  VARP,R  

P,R 

Kappa Index 

Study Area 1 Study Area 2 
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R
 

L
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P
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R

  

8,1 0.69 0.81 0.81 0.83 0.78 0.72 0.83 0.83 

8,2 0.76 0.79 0.90 0.89 0.79 0.77 0.85 0.86 

8,3 0.79 0.77 0.88 0.90 0.65 0.82 0.86 0.86 

16,2 0.81 0.80 0.84 0.86 0.78 0.77 0.91 0.87 

16,3 0.81 0.77 0.87 0.88 0.78 0.84 0.86 0.86 

24,3 0.81 0.76 0.88 0.86 0.76 0.77 0.82 0.83 

24,5 0.78 0.68 0.86 0.85 0.53 0.77 0.74 0.77 

 

To close this section, it must be noticed that no significant 

performance difference has been observed in our experiments 

between corresponding single and multi-scale versions of LBP 

descriptors.  

 

2) Variants of LPQM : The purpose of this experiment was to 

compare LPQM descriptor separately or combined with the 

contrast information. As in previous experiments, contrast 

information was given by VARP,R. The results reported in this 

section correspond to the (P,R) combinations among  {(8,1), 

(8,2), (16,2), (16,3)}, which produced the highest Kappa value. 

Once again, the G statistic was used for classification.  

In this analysis we did not test descriptors representing the 

joint distribution of LPQM and VARP,R because it would 

involve very large histograms (in our case, 2550 bins), what 

would be impractical under our test conditions as in most real 

applications. Thus, the analysis tested only the LPQM 

individually and concatenated with VARP,R. 

The results for both study areas using LPQM and VARP,R are 

shown in Table 2. The Kappa values ranged from 0.65 to 0.74 

for study area 1 and from 0.74 and 0.86 for study area 2 when 

LPQM was used independently. Recalling table 1, the Kappa 

indexes for LBPP,R varied between 0.69 and 0.81 for the study 

area 1 and between 0.53 and 0.79 for study area 2.  

The analysis of the results obtained when both LBPP,R and 

LPQM techniques were combined with the contrast 

information (VARP,R) leads to a similar conclusion. It is 

noteworthy that the Kappa index varied within similar ranges 

for LPQM+VARP,R and for  LBPP,R+VARP,R  in both study areas.  

In sum, a comparison with the LBPP,R showed that the 

higher computational complexity associated to the LPQM 

descriptors is not directly compensated by corresponding 

benefits in terms of performance.  

 
TABLE II 

KAPPA INDEXES FOR SINGLE SCALE TEXTURE DESCRIPTORS 

GIVEN BY DIFFERENT COMBINATIONS OF LPQM AND  VARP,R 

M 

Kappa Index 

Study Area 1 Study Area 2 

LPQ LPQ+VAR LPQ LPQ+VAR 

3 0.74 0.87 0.82 0.91 

5 0.74 0.92 0.86 0.91 

7 0.65 0.89 0.74 0.86 

9 0.67 0.89 0.86 0.84 

 

3) Comparing  LBPP,R,  LPQM  and GLCM: In the experiments 

reported in the preceding sections the better tradeoff between 

performance and computational complexity was achieved by 

the descriptor LBPP,R+VARP,R  followed by LPQM+VARP,R. 

The objective of this final experiment was to compare these 

descriptors with features derived from GLCM, which is 

widely used for texture characterization in RS image 

classification.  

To make the descriptors comparable, the same classifier 

design should be applied for all descriptors to avoid possible 

bias introduced by different classification algorithms. Clearly, 

the G statistic does not qualify for that purpose since the 

GLCM features do not take the form of histograms. So, in this 

experiment we elected a SVM, working in one-against-all 

mode for all classifications, due to its generally good 

performance in dealing with large numbers of features.  

Single scale variants of LBP and LPQ combined or not with 

the contrast information have also been investigated. Different 

configurations for the GLCM computation have been 

considered, specifically, the number of image gray levels 

(Ng{128, 64, 32, 16}) and the distance (d{1, 2, 3}) 

characterizing the position operator. In all cases, co-

occurrence matrices of four orientation angles ({0°, 45°, 90, 

135°}) were computed for each segment.  Different statistics 

were calculated for each GLCM, bringing about four feature 

vectors, which were then averaged to form a single texture 

descriptor. Of the 14 statistics originally proposed by Haralick 

et al. [1] for generating texture features from GLCM, only a 

sub-set is used in practice. Among them, entropy, energy, 

homogeneity, contrast and correlation are probably the most 

widely used. In addition to them, we also used dissimilarity, 

variance and shade to describe textures in our experiment, as 

they are also quite frequently used in RS applications.  

Fig. 5 shows the best and the worst values obtained for each 

descriptor and reveals a clear superiority of LBP and LPQ in 

comparison to GLCM descriptors. The discrimination 

capacity of each descriptor can be evaluated by inspecting the 

maximum and minimum values measured in each case. For 

study area 1, 0.91 and 0.93 were the maximum values 



obtained with LBP and LPQ respectively, while the maximum 

performance achieved with GLCM was 0.86. For study area 2 

the maximum Kappa index values were 0.93 and 0.89, 

respectively for LBP and LPQ, whereas the maximum values 

obtained with GLCM was 0.80. It is meaningful that the study 

area 1 (Kappa = 0.86) is close to the worst results measured 

with LBP and LPQ, 0.86 and 0.85, respectively. A similar 

behavior is observed for study area 2. 

The lowest results for each descriptor for both study areas 

are equally inferior for GLCM in comparison to LBP and LPQ. 

For study area 1, 0.78 was the minimum value for GLCM, and 

0.86 and 0.85 respectively for LBP and LPQ. Similarly, for 

the study area 2 the minimum Kappa value observed for 

GLCM was 0.62, while the Kappa index was never inferior to 

0.77 and 0.80 for LBP and LPQ respectively. Therefore, the 

observed superiority of LBP and LPQ over GLCM descriptors 

is remarkable, especially considering that they occur around 

high values of Kappa index.  

To close this section, we would like to point out that the 

results obtained with SVM and with the G statistic do not 

differ substantially for the LBP and LPQ descriptors, which 

we believe supports the use of the classification approach, 

wherein segments are described by feature vectors that 

encompass the LBP or LPQ histogram values along with other 

non textural features. 

 

 
Fig. 5 Kappa index for LBP, LPQ and GLCM descriptor in both study areas 

IV. CONCLUSIONS 

In this paper descriptors based on Local Binary Patterns 

(LBP) and Local Phase Quantization (LPQ) for texture 

characterization in very high resolution satellite images have 

been investigated. Different descriptor variants have been 

tested on IKONOS-2 and Quickbird-2 images for land-cover 

and land-use classification. 

The experiments corroborated the results found in other 

studies, wherein the discrimination capacity of LBP and LPQ 

substantially increased when they are combined with the 

contrast information.  

This paper proposed a novel texture descriptor that results 

from concatenating the histogram of a texture binary code 

(either LBP or LPQ) and the histogram of a local variance 

estimate. 

The experimental analysis demonstrated that the proposed 

descriptor, in spite of being  more compact, preserved the 

discrimination capacity of bi-dimensional histograms that 

represent the joint distribution of binary codes and local 

variance. 

Furthermore, no significant performance difference has 

been observed in our experiments between corresponding 

single and multi-scale versions of LBP and LPQ descriptors.  

In contrast to works where LBP and LPQ have been used in 

face recognition, the performances associated to both 

descriptors were very close in our tests. This means that the 

higher complexity involved in the computation of LPQ, as 

compared to LBP, did not bring a corresponding improvement 

in terms of recognition performance.  

Finally, the paper compared the LBP and LPQ descriptors 

with textural features derived from the Gray Level Co-

occurrence Matrix, which are the textural descriptors most 

commonly used by the Remote Sensing community. The 

experiments revealed a noteworthy superiority of LBP and 

LPQ descriptors over the GLCM features. 
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