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A Stochastic Model based on Neural Networks

Luciana C. D. Campos and Marley M. B. R. Vellasco and Juan G. L. Lazo

Abstract— This paper presents the proposal of a generic
model of stochastic process based on neural networks, called
Neural Stochastic Process (NSP). The proposed model can be
applied to problems involving phenomena of stochastic behavior
and / or periodic features. Through the NSP’s neural networks
it is possible to capture the historical series’ behavior of these
phenomena without requiring any a priori information about
the series, as well as to generate synthetic time series with the
same probabilities as the historical series. The NSP was applied
to the treatment of monthly inflows series and the results
indicate that the generated synthetic series exhibit statistical
characteristics similar to historical series.

I. INTRODUCTION

Many real world problems have complex characteristics,
such as nonlinear and chaotic behavior, requiring models
fitted to capture their true characteristics in order to ob-
tain an appropriate treatment [1], [2], [3], [4]. However,
existing models are generally limited to specific problems,
either because they are linear models (whose application
to non linear problems leads to inconsistent or inadequate
solutions), because they require a complex formulation, or
even because they depend on some a priori assumptions,
requiring a detailed knowledge of the problem, which is not
often available [5], [6], [7], [8].

This motivated the development of a generic model of
stochastic process based on neural networks to be applied
to a broader range of problems, involving phenomena with
stochastic behavior and/or presenting regular features of
their probabilistic properties, as mean and variance, among
others. This inherently non-linear model is called Neural
Stochastic Process (NSP), which captures the historical series
behavior to generate synthetic time series, equally likely to
the historical series, applicable to the solution of different
kinds of problems as those involving climatic or economic
phenomena.

The NSP uses Multilayer Perceptron (MLP) neural net-
works [9], each with a single hidden layer, which are
trained using the supervised learning algorithm Levenberg-
Marquardt [10], a variation of the back propagation al-
gorithm [9], [11]. As MLP neural networks are universal
approximators [9], [12], they have been largely applied to
the study of time series forecasting [13], [15], [17], [19].

The use of MLP in time series forecasting involves
learning the past behavior of the series and using this
knowledge to predict a specific point in the future or, if
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multi-step process is being used, a single sequence of points.
However, in some problems, a single sequency of values is
not enough to fully map the intrinsic uncertainties related to
the time series. These intrinsic uncertainties can be captured
by a stochastic model capable of producing synthetic series,
different from the historical series but equally probable. The
use of a stochastic model allows the information contained in
the time series to be more completely extracted, allowing the
evaluation of relevant risks and uncertainties. Therefore, the
objective of the proposed Neural Stochastic Process is not
to generate a single sequence of predicted points, but a set
of scenarios of synthetic series also probable to the analyzed
time series.

The proposed model was applied to the analysis of sea-
sonal hydrological series with monthly intervals and the
results showed that the NSP is able to generate synthetic
series with similar characteristics to the historical series.

This paper is organized as follows: Section II presents the
description of the generic NSP, discussing its formulation as
well as the generation process of synthetic series. Section III
describes the NSP modeling specifically applied to generate
synthetic series of monthly inflows, and Section IV presents
the results obtained in this specific case study. Finally,
Section V presents the conclusions of the paper.

II. NSP MODEL DESCRIPTION

As mentioned before, the proposed generic model for a
stochastic process, NSP, is based on artificial neural net-
works. Through the neural networks it is possible to capture
the characteristics of the time series without making a priori
assumptions about the series’ behavior or performing any
kind of decomposition, such as leaving it stationary or
removing certain characteristics as cycle and tendency. To
accomplish that, the neural networks must have a short-
term memory, which is performed by the well known “win-
dowing” techniques [13], [16]. This technique consists of
introducing memory into the hidden layer neurons, providing
past values from the analyzed time series.

In the basic case, where the series being examined are non
periodic, the NSP is formed by a single stochastic component
(SC). A SC is composed of a neural network (with a temporal
window in the input layer, containing the past terms of the
series to be modeled), and a probability distribution function.
The adjustment of this neural network is performed in its
training process, where the difference between the desired
output and the output provided by the network provides a
series of residues. The probability distribution function is
obtained using this series of residues, and its function is to
provide the random values that are summed to the output of
the neural network. These random values are the stochastic



part of the model that allows the generation of scenarios of
synthetic series, as illustrated in Figure 1.
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Fig. 1. Component Stochastic of NSP

For periodic time series, on the other hand, the NSP’s
parameters must be adequate to the time series interval, as
well as its period. For this reason, the NSP is modeled with
a specific stochastic component (SC) for each period of the
time series. For example, in a time series with a monthly
period, the NSP is composed of 12 SCs - one for each month.

A. Synthetic series generated through the NSP

Let Z(t) be one time series with s seasonal period and n
simultaneous observations in all periods. The time index ¢ is
then described by equation 1:

t=(r—1)-s+m (1)

where

e 7 =1...n is the observation number at each period of
the series;

e m=1...s corresponds to a period of the time series;

¢ s € N is the total number of periods;

e n - s is the size of the observed series.

For example, in a monthly time series, r is the year, m
corresponds to the month, s = 12 and n is the total number
of years considered by the series.

As mentioned in the previous section, to model a periodic
time series the NSP is composed of s stochastic components
(SCs), one for each period m of the series, as illustrated by
the NSP’s block diagram on Figure 2.

As can be observed from Figure 2, when NSP is modeling
a periodic time series, there is a concatenation among the
stochastic components where the value of the time series
provided by the SC for a given period is an input of the neural
network’s temporal window of the following period SC. It
must be pointed out that at the beginning of the synthetic
time series generating process, it is necessary to provide the
first values of past terms for setting up the time windows of
NSP’s neural networks. These initial values are taken directly
from the historical series.

All synthetic series are generated using the same set of
initial values taken from the historical series. What differen-
tiates the series of each scenario is the random value, derived
from the probability distribution function, which is added to
the output given by the neural network, in each stochastic
component. Figure 3 illustrates a set of scenarios of synthetic
series generated by the NSP.
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Fig. 3. Synthetic series generated by NSP

B. NSP Formulation

The number of past terms used in the input window of
SC for period m is called order and is represented by p,,.
Thus, to obtain a value for the series at time ¢, Z(t), the NSP
accesses the corresponding SC for period m, and its neural
network receives the terms: Z(t—1), Z(t—2),..., Z(t—pm)-
Additionally, to reinforce the learning of the series’ periodic
behavior, the time series value at the previous period, corre-
sponding to Z(t — s), is also added at the input.

The first past terms used are obtained from the historical
data. After, the past terms are obtained from the synthetic
serie that are being generated.

Figure 4 shows, in details, a neuron belonging to the
hidden layer of the neural network of order p,,,, whose output
is given by equation 2.

Pm
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Fig. 4. Neuron belonging to a hidden layer of a NSP’s network of order
Pm

where ¢ is the activation function of neuron ¢, w; ; is the
synaptic weight of the connection between the input j and
neuron ¢ and 6; is the neuron bias.

Assuming that the neural network of order p,, has [,
neurons in the hidden layer, the output neuron is shown in
Figure 5, with its output calculated by equation 3.
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Fig. 5. Output Neuron of the NSP’s neural network with I,,, neurons in

the hidden layer

lm
Yout = Pout <Z Wout,i * Yi + 90ut> 3)
i=1
where @, 1s the activation function of output layer’s neuron,
represented by out, wgye; is the synaptic weight between
input ¢ (corresponding to the hidden layer’s output neuron )
and the neuron out and 6,,; is the output neuron bias.

As illustrated in Figure 2, the SC’s output is the sum of
the neural network’s output with a random value from the
probability distribution function of neural network’s errors
obtained from the difference between the desired output
and neural network’s output (y,,:). Thus, the value of one
synthetic serie Z(t) whose time index ¢ is described by
equation 1, is generated using equation 4.

Z(t) = Yout T Oé(t) (4)

where «(t) is the random value from the probability distri-
bution function of the neural network’s errors of the SC for
the corresponding period m.

III. CASE STUDY: GENERATING MONTHLY INFLOWS
SCENARIOS

The Brazilian National Interconnected System (NIS) is a
coordination and control system, composed by the compa-

nies from four different regions: South, Southeast/Midwest,
Northeast and part of the North, which congregates the
electricity production and transmission system. The Brazilian
NIS is, a very large system, composed maily by hydrolelec-
tric plants [20].

Currently, the NIS is segmented into four subsystems
corresponding to the interconnected systems: South, South-
east/Midwest, Northeast and North. Since it is a huge system,
for medium and long term planning an aggregation occurs
from the plants reservoirs into power equivalent reservoirs,
one for each subsystem. There is also the aggregation of
inflows to energy plants in Affluent Natural Energy (ANE),
which correspond to the estimate of the energy that can be
generated with all the inflows to each reservoir from that
equivalent reservoir, under a given operational policy [21],
[22].

Each ANE is a non stationary series, due to periods of
flooding and dry season in the year, and seasonal with
periods of 12 months, which, generally, exhibit periodic
correlations [23]. In the context of the energetic operation
planning of the Brazilian hydrothermal system, the genera-
tion and analysis of different scenarios is crucial to obtain
acceptable risk rates in the future [21]. The use of the
only scenario available in practice, which is the record of
observed inflows (called historical series), is insufficient to
provide a broader analysis of the possible long term inflows
scenarios. Through the creation of plausible scenarios, it is
possible to reproduce the basic features of the historical data,
gathering the real information of this series and allowing
the assessment of risks and uncertainties pertaining to a
hydroelectric system. Thus, the NSP has been applied to treat
ANE series uncertainties, generating a set of synthetic series.

The modeling of neural stochastic processes for the treat-
ment of ANE series is composed of four systems NSP(p, ),
one for each subsystem of the NIS. As the series of ANE are
seasonal with periods of 12 months, each NSP(p,[) consists
of 12 SCs, one for each month, as can be observed from
Figure 6. Therefore:

e P =pi...p1o: vector with the neural network’s order of
each SC;

e [ =1;...l19: vector with the number of neurons in the
neural network’s hidden layer of each SC.

The order p,, of the neural network from the SC of m
period can vary from 1 to 11, which corresponds to the
maximum number of past terms allowed to keep the annual
seasonality. From preliminary experiments it was observed
that some months usually need smaller orders than others.
Therefore, four types of order for each neural network were
evaluated: 3, 6, 9 and 11 months lags. For each defined order,
1 to 20 hidden nodes were tested, resulting in a total of 80
configurations to be evaluated for each month m of each NIS
subsystem. In addition, each of these 80 neural networks’
configurations were trained 10 times with different synaptic
weights initializations.

To adjust each NSP(p, ), an historic of ANE values was
used in this work. There is an historic of ANE values, from
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Fig. 6. Concatenation among the 12 NSP’s stochastic components

1931 to 2005, for each NIS subsystem. This historic data was
divided into two subsets: training and validation sets. Each
validation set weights was used to determine the optimum
number of training cycles, in the early stopping process
to avoid overfitting, as well as to verify the best number
of hidden neurons. The validation stage of the NSP neural
networks consist of the generation of a series with k& years,
composed by the concatenation of the s neural networks’
outputs. Therefore, the £ last years in the historical data has
been used to compose the validation set, while all prior years
define the input-output training subset. In this study k is equal
to five, since the current NIS planning system is performed
with synthetic time series for the next five years. Therefore,
the validation set is composed of the last five years of the
historical data.

Once all neural networks have been trained, the neural
network of month m that provides the best performance for
the validation set is selected to form the m-th SC of the NSP.
As the validation set is composed of only five years, it was
also decided to verify the performance of the trained neural
networks’ over a larger number of data patterns, composed
of the unification of training and validation sets. The chosen
performance measure is the mean absolute percentage error
(MAPE) [24], which is widely used to validate time series
models, calculated by equation 5.

MAPE = %i
k=1

Z(k) — C((k — 1) - s +m)
Z(k)

&)

where m is the month, x is the total number of patterns of
month m in the series, k is the element index, s = 12 is the
amount of months, Z (k) is the k-th unified pattern’s desired
output of month m, C' is a series created with the neural
networks’ outputs.

Once the neural network that will compose the m-th SC
of the NSP is selected, the error series obtained from the

difference between the neural network’s output and the train-
ing set outputs is used to calculate a theoretical probability
distribution function for the composition of that SC.

IV. SIMULATION RESULTS

Table I below presents, for each NIS’s subsystem, the final
configuration of each neural network that integrates the NSP.
Table I also presents the order and the number of neurons in
the hidden layer of each neural network in the NSP of each
subsystem.

TABLE I
CONFIGURATIONS OF SELECTED NEURAL NETWORKS

Southeast-Midwest Sub-system South Sub-system
Month | Lags # Neurons Month | Lags | # Neurons
1 3 19 1 6 3
2 9 20 2 9 17
3 6 15 3 9 1
4 11 7 4 11 3
5 3 10 5 3 19
6 3 10 6 6 10
7 9 3 7 3 14
8 6 16 8 6 1
9 11 16 9 11 2
10 3 19 10 3 3
11 3 12 11 1 3
12 6 9 12 6 1
Northeast Sub-system North Sub-system
Month | Lags # Neurons Month | Lags | # Neurons
1 11 9 1 11 11
2 3 6 2 9 14
3 11 6 3 6 4
4 3 13 4 11 15
5 3 2 5 9 16
6 11 19 6 11 3
7 6 1 7 6 1
8 11 1 8 11 8
9 9 3 9 9 17
10 6 1 10 6 19
11 9 5 11 9 18
12 9 7 12 9 15

With each final NSP (p,l) of Table I, 200 synthetic
series of 5 years (60 months) were generated. In order
to analyze the quality of these generated synthetic series,
statistical tests [25], [26] were performed to verify whether
the synthetic series are also equally probable to ANE series.

The ¢-Test was applied to evaluate whether the mean of the
synthetic series is statistically equal to the historical mean.
The hypothesis is that the average of 200 values of each
month in each year is statistically equal to the historical mean
for the corresponding month. In each test run, a p-value is
obtained and if that p-value is above the significance level
of 5%, that hypothesis is accepted. The percentage of 60
p-values (one for each month of the five-year series) above
the level of significance indicates the performance of NSP
to generate synthetic series, informing how well the model
would reproduce the first moments of the series.

Analogously, the Levene test was also applied to evaluate
whether the variance of each period of the scenarios is statis-
tically equal to the historical variance of the corresponding
month, as well as the Kolmogorov-Smirnov (KS) test to



verify if the scenarios come from the same probability dis-
tribution of the historic, indicating that the model reproduces
correctly the behavior of the historical series.

As the ANE’s historic was divided into two subsets, one
for training and the other for validation of the NSP’s neural
networks, the synthetic series assessment was carried out
with these two sets. Table II shows the obtained results on
the goodness of fit test. As can be noted, all NSPs fitted
with the historical series of the four subsystems provided,
with a performance over 50 %. The best fitting occurred with
the models of Southeast-Midwest and South subsystems. The
Northeast system resulted in a higher adhesion in tests with
the Training historical data than with the Validation data.
The North model got better compliance with the Levene’s
test and lower adherence to KS tests. This difference of NSP
performance occurs because the influence of ANE’s behavior
in each subsystem. Each subsystem of NIS correspond a
different regions on Brazil, so that its ANE’s serie is affected
for a specific climate phenomena.

TABLE I
GOODNESS OF FIT TEST RESULTS

Sub-system Historic
Training Validation
Test t Levene | K-S t Levene K-S
Southeast-Midwest | 94% 95% 94% | 97% 100% 97%
South 75% 90% 90% | 95% 99% 99%
Northeast 97% 99% 94% | 69% 64% 54%
North 85% 90% 64% | 74% 99% 67%

Figures 7 and 8 show the envelope of the 200 scenarios
(synthetic series) with 5 years of ANE-generated by the
complete NSP, including the curve of the average for each
month in each year of synthetic series and also the curve of
the monthly average from the historical set replicated in 5
years, in order to analyze the behavior of this average’s series
generated in all 60 months. This was accomplished for the
two historical sets in each subsystem.

It is observed that, in all subsystems, the average of the
historical subsets are inside the envelopment scenarios. In
overall, the envelopes scenarios had followed the perfor-
mance of ANE historical series.

V. CONCLUSIONS

The objective of this study was to develop a new general
stochastic process model, intrinsically non-linear, which can
be applied to a range of problems with stochastic behav-
ior phenomena and/or with periodic characteristics of their
properties.

The proposed model, called NSP, was based on neural
networks. Through the neural networks, the NSP is able
to identify and assimilate characteristics of historical time
series, such as seasonality, periodicity and trend, without
requiring any a priori information about the series. The goal
of the NSP is to generate scenarios with synthetic time series
equally probable to the analyzed historical series, addressing
any period of time for the necessary amount.
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Fig. 7. Envelopment of the scenarios generated in the NSP and the historical
average of the training set
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In the case study, the NSP was applied to the uncertainty
analysis of the monthly inflows series. A 200 synthetic series
of 5 years of Affluent Natural Energy (ANE) were generated
for each one of the four sub-systems that comprise the
Brazilian National Interconnected System (NIS). In each set
of synthetic series, an evaluation was performed with some
goodness of fit tests to verify whether they were statistically
similar to historical series of ANE. It was found that the
synthetic series generated by this NSP showed the best
goodness of fit to the set of historical series and the envelopes
of these scenarios encompass the ANE historical average.
Therefore, it can be concluded that the proposed NSP is able
to capture the behavior of the historical series to generate
synthetic series with similar characteristics.
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