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Abstract—This article proposes a new algorithm based on evolu-
tionary computation and quantum computing. It attempts to 
resolve ordering combinatorial optimization problems, the most 
well known of which is the traveling salesman problem (TSP). 
Classic and quantum-inspired genetic algorithms based on binary 
representations have been previously used to solve combinatorial 
optimization problems. However, for ordering combinatorial 
optimization problems, order-based genetic algorithms are more 
adequate than those with binary representation, since a specia-
lized crossover process can be employed in order to always gen-
erate feasible solutions. Traditional order-based genetic algo-
rithms have already been applied to ordering combinatorial 
optimization problems but few quantum-inspired genetic algo-
rithms have been proposed. The algorithm presented in this 
paper contributes to the quantum-inspired genetic approach to 
solve ordering combinatorial optimization problems. The per-
formance of the proposed algorithm is compared with one order-
based genetic algorithm using uniform crossover. In all cases 
considered, the results obtained by applying the proposed algo-
rithm to the TSP were better, both in terms of processing times 
and in terms of the quality of the solutions obtained, than those 
obtained with order-based  genetic algorithms.  

Keywords - quantum–inspired genetic algorithms, ordering 
combinatorial optimization, genetic algorithms, quantum bit  

I. INTRODUCTION 
To overcome the challenges caused by the complexity of 

combinatory optimization problems, researchers have utilized 
techniques based on mathematical programming and on evolu-
tionary computation, particularly genetic algorithms. 

Ordering combinatorial optimization problems constitute a 
widely studied class of combinatorial optimization problems. 
In general, in an ordering combinatorial optimization problem 
with n elements, the objective is to determine which ordering 
of these elements exhibits the best results for a pre-established 
criterion.  The most well-known version of this type of prob-
lem is the traveling salesman problem (TSP), the objective of 
which is to determine the order in which n cities must be vi-
sited to minimize the total distance traveled. The solution is 
restricted in that each city can only be visited once, except for 
the city in which the salesman begins and ends his sales trip.  

There are countless approaches to solving the TSP based 
on mathematical programming [1], such as the branch and 
bound method and Lagrangian relaxation.  

Regarding genetic algorithms, a number of specific tech-
niques can be used to address this problem [2] [3], and these 
are analyzed and compared at the end of this article.  

For binary combinatorial optimization problems, a new ap-
proach [4] [5] [6] has been proposed to obtain a faster con-
verging algorithm and to lower the computational cost. This 
approach combines the genetic algorithm technique with a 
quantum bit concept, employing the quantum superposition of 
states, and has displayed promising results when applied to the 
knapsack problem, particularly when compared to solutions 
obtained with genetic algorithms with binary representation. 
The principles of quantum computing and of evolutionary 
computation have also been employed in optimization prob-
lems using real variables without restrictions [7] [8], and these 
have performed better than classic genetic algorithms. Quan-
tum-inspired approaches have already been extended to order-
ing optimization problems. The method presented in [9] fol-
lows the approach proposed in [4] [5], which makes use of 
rotation matrices to update the quantum bits, but with a special 
procedure that always generate feasible solutions. The ap-
proach taken here employs a different process to generate 
feasible solutions and does not employ rotational matrices to 
update the quantum bits.  

This article contains four additional sections (not including 
the present section). Section II explains the basic concept 
behind quantum bits and the representation proposed for the 
quantum individual in ordering problems. Section III describes 
the ordering quantum-inspired genetic algorithm proposed in 
this study, explaining the process by which solutions are ob-
tained based on the quantum individual (the observation of the 
quantum individual) and how these individuals evolve over 
successive generations. Section IV presents the results ob-
tained with the proposed algorithms and compares them with 
the traditional ordering genetic algorithm technique for the 
TSP, for cases that consider 27, 48, 52, and 100 cities. Finally, 
section V presents the conclusions of this study.  

II. REPRESENTATION OF THE QUANTUM INDIVIDUAL 
Quantum-inspired genetic algorithms are based on the concept 
of a quantum bit [4]. One quantum bit (Qbit) is the smallest 
amount of information stored in a quantum computer, being 
represented by a vector (α, β), in which α and β are complex 
numbers such that |α2| and |β2| provide the probability of a 



quantum bit being observed in state 0 or in state 1, respective-
ly. Naturally, the following equation must hold 

 122 =+ βα  (1) 

In genetic algorithms with binary representation, each gene 
of an individual (known as a classic individual) is represented 
by a bit. In the case of quantum-inspired genetic algorithms 
applied to the combinatorial optimization problems, each gene 
of an individual is represented by a quantum bit. The idea 
behind quantum-inspired genetic algorithms is to generate 
each classic individual based on the quantum individual. To 
obtain a classic gene from a quantum gene, it is sufficient to 
observe or randomly select the quantum bit based on the α and 
β values of the Qbit. The algorithm proposed in [4] to solve 
binary combinatorial optimization problems, applied to the 
Knapsack Problem, represents the quantum individuals 
through an n dimensional vector of Qbits. The genes of the 
classic individual are obtained by randomly observing each 
quantum gene, based on the probabilities of obtaining states 0 
or 1. Assuming that the quantum individual is represented by 
the vector of Qbits: 
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and that the observed classic individual is represented by the 
vector of bits (c1, c2,……., cn), then: 

ci = 0 if rndi≤βi
2 and ci = 1,otherwise; where rndi is a random 

value selected from the interval [0,1]. 

In an ordering combinatorial optimization problem with n 
dimensions, the individual (known as a classic individual) is 
represented by a vector whose n components assume values 
between 1 and n, with no repetitions. In the quantum version 
of an ordering genetic algorithm, the quantum individual that 
is adopted should be capable of producing classic individuals. 
When these concepts are applied to the TSP, the classic indi-
vidual represents a sequence of visits to all cities. For each 
visit or stop of the salesman, a set of n Qbits is employed to 
define the probability of each city being selected for that visit. 
Assuming that the visit of interest is the second one, n Qbits 
will be associated to it, each of them controlling the probabili-
ty of selection of each city for the second stop. Considering all 
stops, n2 Qbits will be needed and a possible representation for 
the quantum individual for the ordering problem is an n x n 
matrix of quantum bits in which the jth quantum bit of the ith 
row of the matrix determines the probability of the jth city 
being selected in the ith stop of the trip. Therefore, the repre-
sentation of the quantum individual is: 

        2

21

22221

11211

,in which,
......,,,

.........
......,,,
......,,,

ijij

nnnn

n

n

q
qqq

qqq
qqq

Q β=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=       (2) 

To clarify, q35 represents the probability of city 5 being the 
third city to be visited.  

The quantum bits that make up the quantum individual are 
related to one another, given that the probability of some city 
being selected as a particular stop should be 1 (to adhere to the 
restrictions of the problem). This relationship is expressed by: 
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Once the structure of the ordering quantum individual is 
established, it must be defined how the process will begin, 
how it will be observed (to generate solutions for the pro-
blem), and how it will be updated throughout the iterations of 
the algorithm. These points are described in detail in the next 
section. 

III. ORDERING QUANTUM-INSPIRED GENETIC ALGORITHMS 
The structure of a quantum-inspired genetic algorithm is 

simple and is displayed as follows: 

Initialize Quantum Population 
While No (Maximum Number of Generations) 

Observe Quantum Population 
Update Quantum Population 
Increase Number of Generations 

End While. 

The stages of the algorithm are explained in detail below. 

A. Initialization of the Quantum Population 
In traditional genetic algorithms the population is com-

monly initialized in a random manner. However, for a quan-
tum population, a more appropriate method would be to in-
itialize the quantum individual such that equal probabilities are 
ensured in generating solutions for the ordering combinatorial 
optimization problem. A solution to this problem is a vector of 
dimension n with elements that have values between 1 and n 
with no repetitions; this is called the classic individual because 
it is analogous to the individual used in a traditional ordering 
genetic algorithm.  

According to the formulation adopted for the traveling sa-
lesman problem, the trip begins and ends in city 1, and the 
quantum individual should be initialized in a way that ensures 
an equal probability in the generation of classic individuals. 
Then, the initial quantum individual (or generation 0) is 
represented as follows: 
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The first row of the quantum individual is always of the 
form (1, 0, …, 0). This is because the probability of city 1 
being selected as the first stop must be 1 (by definition), and 
consequently, the probability of any other city being selected 
as the first city is 0. The other rows of the quantum individual 
indicate that the probability of a city being selected for any 

stop is always equal to 
1

1
−n

 because the probability of city 1 

being selected will always be 0 in any row other than the first 
one. This initial quantum individual satisfies conditions (2) 
and (3).  

B.  Observation of the Quantum Population 
Once a quantum individual is generated, the next action is 

to generate classic individuals, a process called observation of 
the quantum individual.  

Consider, for example, the second row of the representa-
tive matrix of any quantum individual (0, q22,..., q2n). As con-
dition (3) must always be satisfied, upon choosing a random 
number, which has a uniform distribution in a half-open inter-
val (0,1] called r2, there will always be an index k, such that: 

 2
1

22

1

1
2 and rqrq

k

j
j

k

j
j ≥< ∑∑

=

−

=

                     (5) 

Therefore, city k will be the second city to be visited. To de-
termine the third stop of the trip, the third row of the quantum 
individual (0, q32,..., q3k,..., q3n) must be considered. The 
process performed to determine the city of the second stop 
cannot be directly applied to the original third row of the quan-
tum individual when q3k is nonzero, because city k can no 
longer be selected as the third stop (if it is equal to zero, then 
the third row is ready to be processed). Therefore, it is neces-
sary to update the probabilities with which the cities may be 
selected for the third stop. Knowing that city k must have zero 
probability to be selected and that the conditions in (3) must 
always be satisfied, the third line of the quantum individual 
must be altered so that the following holds: 
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This new updated row ensures that city k cannot be selected a 
second time. Given that 
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Thus, condition (3) is still satisfied by the new row 3. Natural-
ly, the process described to update the third row must be ap-
plied to all rows that have yet to be processed. After rows 3, 4, 
…, n have been updated, the process of determining the third 
stop follows the same steps described to obtain the second 
city. Once the third stop is determined, the process of updating 
the unprocessed rows is repeated and the cities of the other 
stops are chosen until all stops have been determined. 

The rows are not necessarily processed sequentially (first, 
second, third, etc.); any order is valid for generating the classic 
individual.  

In short, let: 

• IP be the set of already processed rows;  
• CP be the set of the cities which have already been visited;  
• i Є {1, 2,..., n}– IP be the next row to be processed;  
• k be the city chosen in the selection process of row i.   
Assuming that (0, q’

m2,..., q’
mk, ..., q’

mn) is the current represen-
tation of row m Є {1, 2, ..., n}– IP (after all of the updates made 
in processing the rows belonging to IP), then the elements of 
rows m Є {1, 2,..., n} – IP – {i} will be represented by q’’

mj,     
m Є {1, 2,..., n}– IP – {i}, j Є {1, 2,..., n}– CP –{k}, in which: 
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If the observation process of the quantum individual is per-
formed ncla times, then ncla classic individuals will be gener-
ated.  

C. Updating the Quantum Population 
Each classic generated individual is evaluated by the criterion 
function that has been established; the best classic individual 
obtained (with the best value in the criterion function) from 
each quantum individual is used to update this quantum indi-
vidual. Let’s assume that the algorithm is at generation t and 
that Q(t) is a quantum individual of this generation. Let’s also 
assume that the observation process for the quantum individu-
al produces ncla classic individuals and that the best individual 
is represented by vector c(t) (a vector with n dimensions 
whose elements vary between 1 and n, with no repetitions, and 
the first position of c(t) is equal to 1). The vector c(t) may then 
be represented as a matrix, ordering the rows of the n x n iden-
tity matrix in the order of the elements of c(t). This matrix will 
be called E(t). For example, if c(t)=(1, 3, 2), then matrix E(t) 
will be formed by rows (1, 0, 0)T, (0, 0, 1)T, and (0, 1, 0)T. 

The quantum individual is updated in order to increase the 
probability of the observation of the classic individual c(t). 
Thus, every other solution will have a reduced probability of 
observation.  

One possible way of updating the quantum individual is to 
use the following recurrence equation: 

                     )()()())(1()1( tEttQttQ εε +−=+                  (10) 



In equation (10), ε(t) is a parameter to be specified; it has a 
value between 0 and 1 and is either dependent on the genera-
tion or not.  

Because it satisfies conditions (2) and (3), the quantum in-
dividual Q(t+1) remains valid. Condition (2) is clearly satis-
fied because each element of Q(t+1) is a convex combination 
of one element from Q(t) Є [0,1] and one element from        
E(t) Є {0,1}. For the conditions in (3), it follows that: 
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It remains to be shown that the probability of observing the 
classic individual c(t) is greater in Q(t+1) than in Q(t). For 
this, it is sufficient to verify that 
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with equality occurring only in the case in which 

)(,0)( e)(,1)( icjtqicjtq ijij ≠∀=== . 

It should be noted that, because the probability of observ-
ing c(t) in Q(t+1) is greater than in Q(t), over the course of the 
generations, the quantum individual may reach a situation in 
which any observation made always produces the same classic 
individual. In almost every numerical analysis that has been 
performed, the capacity of the quantum individual to generate 
distinct classic individuals is severely affected when a certain 
number of generations are reached. The greater coefficient for 
each row of the matrix (representing the quantum individual) 
is a good indication of the capacity of the quantum individual 
to generate distinct classic individuals. Let’s assume that the 
greatest coefficient in the third row is 0.98 (in column 5). If 
the third row were the first one to be processed, city 5 will be 
selected as the third stop of the trip in 98% of the observations.  

Expanding this idea, let si be the greatest coefficient in line 
i and consider that s = Mini=1,n{si}. A high value of s (greater 
than 0.99, for example) affirms that the expectance of observ-
ing multiple distinct classic individuals is small.  

The algorithm presented in this section was tested with 
four different configurations of the traveling salesman prob-
lem. The next section presents the results. 

IV. RESULTS 
Multiple traveling salesman problems were analyzed using 

configurations of 27, 48, 52, and 100 cities. The configurations 
of 48, 52 and 100 cities can be found in TSPLIB951 under the 

                                                           
1 http://www2.iwr.uni-heildelberg.de/groups/comopt/software/TSPLIB95/tsp 

 

names att48, berlin52 and kroc100, respectively. Each confi-
guration was solved with an ordering genetic algorithm and 
with the proposed algorithm. Ten experiments were performed 
for each algorithm, and the minimum, mean and maximum 
values of the criterion function are presented for each experi-
ment, as well as the number of evaluations of the criterion 
function. 

For the ordering genetic algorithm, uniform order crossov-
er was adopted, and for a problem with n cities, 50n genera-
tions and 2n classic individuals were considered. 
Thus100n2+2n (including initializing) evaluations of the crite-
rion functions will be performed for each experiment.  

For the quantum-inspired genetic algorithm, the numbers 
of generations, quantum individuals and classic individuals 
observed are chosen so that the number of evaluations of the 
criterion function is equivalent to that of the ordering genetic 
algorithm. The performance of the quantum inspired algorithm 
depends on the number of observations of each quantum indi-
vidual for every generation and on the values used to update 
the quantum individuals. The number of observations is a 
parameter named ncla and the value used to update a quantum 
individual is obtained as follows. Considering a quantum indi-
vidual q, each observed classic individual is evaluated by the 
criterion function and the best individual (the cq(t) vector) 
exhibits the total distance covered, which is denominated 
FGerq(t)). Throughout the generations, the best classic indi-
vidual obtained for each generation is stored, and the distance 
covered in this solution is called FMinq. The parameter εq(t), 
used to update the quantum individual, is calculated by the 
following equation: 
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The values adopted for εbase  and p were parameterized.  Note 

that the ratio 
)(tFGer

FMin

q

q  is always less than or equal to one and 

that the lower this value is, the worse the solution found in the 
observation process of the quantum individual in generation t 
will be. The use of (13) reduces the effect of a bad solution in 
updating a quantum individual (10). The parameter p works as 
a reducer for the updating; the greater the power p, the less the 
effect of a bad solution (a small 

)(tFGer
FMin

q

q  ratio) on updating 

the quantum individual.  

As discussed in section III.C, the quantum individual may 
eventually exhaust its capacity to generate distinct classic 
individuals. By adopting the smallest among the large coeffi-
cients of each row as a control parameter, as long as this value 
is greater than 0.99, the quantum individual will stop its 
processing and the best solution obtained so far will be used as 
the one produced by the quantum individual. This control 
parameter will be called saturation of the quantum individual 



and it is easy to verify that its values lie within ⎥⎦
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the probability to observe distinct classic individuals decreases 
as saturations increases, the number of observations of the qth 
quantum individual at generation t will be given by: 
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where nclaq(t) is the number of observations of the quantum 
individual q at generation t, sq(t) is the saturation value of the 
quantum individual q at generation t and NC is as parameter to 
be determined. Expression (14) indicates that the number of 
observations depends linearly on saturation; it is equal to NC if 

the saturation value is 
1

1
−n

 and 1 when the saturation value is 

1. 

The tests performed with the quantum-inspired genetic al-
gorithm used different values for parameters NC, εbase and p. 
Random order processing was used for the lines of the repre-
sentative matrix of the quantum individual in the observation 
process.  

In the tables in the following sections, the abbreviated terms 
have the following meanings: 

NQ: number of quantum individuals considered; 

NC: maximum number of observed classic individuals; 

εbase: parameter (see 13); 

p: parameter (see 13);  

Min:  the minimum value obtained for the criterion function 
for the 10 experiments; 

Avg:  the mean value obtained for the criterion function for 
the 10 experiments; 

Max:  the maximum value obtained for the criterion func-
tion for the 10 experiments; 

NE:  the maximum number of evaluations of the criterion 
function for the 10 experiments. 

A. Results for 27 cities 
The 27-cities configuration refers to the problem that con-

siders the 27 Brazilian state capital cities, beginning and end-
ing in Rio de Janeiro. The optimal solution to this problem 
was obtained through the integer programming technique [10], 
and the smallest possible distance covered was 17,028 km. By 
using a ordering genetic algorithm (1350 generations and 54 
individuals) the best solution (average result) for the 10 expe-
riments was obtained for a crossover rate of 1.00, mutation 
rate of 0.02, and elitism of 10% (i.e. the top 10% of individu-
als in each generation progress to the next generation). The 
minimum, average and maximum solutions were 19489, 
20954 and 22556, respectively. A total of 749,540 evaluations 
of the criterion function were performed and the processing 

time was less than 2 s. The results for the quantum inspired 
algorithm are shown in Table 1 (2700 generations and 
processing time about 2 s for each set of parameters).  

TABLE 1. RESULTS FOR 27 CITIES 

NQ NC εbase p Avg Min Max NEval 
1 27 0.015 0 21139 18089 25568 317,015 
1 27 0.015 1 20890 18153 23433 326,533 
1 27 0.015 2 19994 18269 23162 364,030 
1 27 0.015 3 21446 19810 24399 369,087 
1 27 0.015 4 19773 17028 21781 435570 
1 27 0.020 0 22531 18225 25229 210,989 
1 27 0.020 1 20603 17028 23194 227,450 
1 27 0.020 2 22029 17436 26707 258,430 
1 27 0.020 3 19648 17028 22456 262,666 
1 27 0.020 4 21248 19357 26778 335,125 

 
Although, processing times are equivalent, the best average 

solution for the quantum inspired algorithm outperforms that 
for the ordering genetic algorithm by 6.23%. With the use of 
the quantum inspired algorithm the number of evaluations of 
the criterion function is reduced by a factor of 0.36. As the 
parameter p increases, more evaluations of the criterion func-
tion are needed because the quantum individual is updated 
with small values (Eq. 13). Regarding the minimum and max-
imum solutions, the quantum inspired algorithm provided 
gains of about 12.63% and 0.44%.  

It should be noted that the best solution obtained by the 
proposed algorithm is identical to the optimal solution for this 
problem.  

B. Results for 48 cities  
The 48-cities problem includes traveling to 48 state capi-

tals in the United States of America (att48). The optimal solu-
tion of this problem is a tour with length of 10,628.  By using 
the ordering genetic algorithm (2400 generations and 96 indi-
viduals) the best average result for the 10 experiments was 
obtained for a crossover rate of 1.00, mutation rate of 0.01 and 
elitism of 10%. The minimum, average and maximum solu-
tions were 11828, 13454 and 16280, respectively. A total of 
2,304,960 evaluations of the criterion functions were per-
formed and the processing time was less than 9 s. The results 
for the quantum inspired algorithm are shown in Table 2 (4800 
generations and processing time of about 18 s for each set of 
parameters).  

The processing time for the proposed algorithm is about 
twice that for the ordering genetic algorithm but the best aver-
age solution obtained by the quantum inspired algorithm is 
5,22% better; the number of evaluations of the criterion func-
tion is reduced by a factor of 0.76. The behavior of the pro-
posed algorithm concerning parameter p was the same as in 
the previous problem. It is worth mentioning the benefit ob-
tained when two quantum individuals are used, except for the 
power of 4. Regarding the minimum and maximum solutions 
the gains were about 0.17% and 11.13% with respect to the 
genetic algorithm.  



TABLE 2. RESULTS FOR 48 CITIES 

NQ NC εbase p Avg Min Max NEval 
1 48 0.01 0 13472 12300 14877 1,292,719 
1 48 0.01 1 13993 12357 15488 1,453,491 
1 48 0.01 2 13424 11687 15512 1,512,381 
1 48 0.01 3 13290 12143 14052 1,685,151 
1 48 0.01 4 13170 12025 14315 1,821,684 
2 24 0.01 0 12725 11808 14468 1,760,347 
2 24 0.01 1 13020 12088 14329 1,931,600 
2 24 0.01 2 13000 12046 14296 2,027,459 
2 24 0.01 3 12932 11863 14978 2,070,556 
2 24 0.01 4 13717 12309 15222 2,109,300 

 
The best solution (third line in Table 2) was 9.96% worse 

than the optimal solution for this problem.  

C. Results for 52 cities 
The 52-city problem (berlin52) considered locations in the 

city of Berlin. The optimal solution of this problem is a tour 
with length of 7,542. By using the ordering genetic algorithm 
(2600 generations and 104 individuals) the best average result 
for the 10 experiments was obtained for a crossover rate of 
1.00, mutation rate of 0.03 and elitism of 10%. The minimum, 
average and maximum solutions were 9068, 9907 and 10684, 
respectively. A total of 2,653,020 evaluations of the criterion 
function were performed and the processing time was less than 
11 s. The results for the quantum inspired algorithm are shown 
in Table 3 (5200 generations and processing time of about 22 s 
for each set of parameters).  

TABLE 3. RESULTS FOR 52 CITIES 

NQ NC εbase p Avg Min Max NEval 
1 52 0.01 0 9616 8728 10023 1,498,121 
1 52 0.01 1 9571 8931 10548 1,569,538 
1 52 0.01 2 9495 8898 10224 1,699,698 
1 52 0.01 3 9737 9218 10122 1,878,582 
1 52 0.01 4 9465 8711 9949 1,987,600 
2 26 0.01 0 9428 8812 10445 1,992,334 
2 26 0.01 1 9232 8617 9858 2,125,711 
2 26 0.01 2 9143 8678 9622 2,207,771 
2 26 0.01 3 9222 8758 9817 2,353,256 
2 26 0.01 4 9329 8752 10009 2,425,091 
 
Processing time for the proposed algorithm is again about 

twice that for the genetic algorithm, but the best average solu-
tion is 7.71% better, and the number of evaluations of the 
criterion function is reduced by a factor of 0.83. The results 
are similar to those obtained for 48 cities. The use of two 
quantum individuals showed to be better for all powers. Re-
garding the minimum and maximum solutions the gains were 
about 4.30% and 9.94%.  

The proposed algorithm’s best solution (seventh line in 
Table 3) is 14.25% worse than the optimal one for this prob-
lem.  

D. Results for 100 cities  
This last configuration considers 100 locations (kroc100). 

The optimal solution is a tour with length of 20,749. By using 
the ordering genetic algorithm (5000 generations and 200 
individuals) the best average result for the 10 experiments was 
obtained for a crossover rate of 1.00, mutation rate of 0.02 and 
elitism of 10%. The minimum, average and maximum solu-
tions were 24298, 28274 and 34956, respectively. The crite-
rion function was evaluated 10,002,000 times and the 
processing time was less than 85 s.  

For this problem a slight modification was implemented. 
Equation (14) is used as long as the number of generations is 
below 2/3 of the total of generations. When the number of 
generations is beyond this limit, the parameter NC is doubled. 
The objective of this modification is to guarantee that the 
quantum individuals reach the state of saturation before the 
generations finish. When multiple quantum individuals are 
employed (more than three) a rule to force them to change 
information is applied. After 10% of the total number of gen-
erations, the quantum individual that observed the worst solu-
tion (based on the criterion function) is updated, at each gener-
ation,  by using the best solution observed among all quantum 
individuals (and not by its own solution). Results for the quan-
tum inspired algorithm are shown in Table 4 (30000 genera-
tions and processing time of about 300 s).  

Processing time for the proposed algorithm, when com-
pared to the genetic algorithm, is almost four times larger 
(some extra processing time was needed in order to prevent 
numerical instability). The best average solution from quan-
tum inspired algorithm is 6.20% better, and the number of 
evaluations of the criterion function is reduced by a factor of 
0.79. The behavior of the proposed algorithm concerning the 
parameter p is different from the previous problems. The 
number of evaluations of the criterion function decreases as 
long as the power increases (except for power 4). Regarding 
the minimum and maximum solutions the gains were about -
1.32% and 18.63% with respect to the genetic algorithm.  

The proposed algorithm’s best solution (first line in Table 
4) is 14.49% worse than the optimal solution for this problem.  

TABLE 4. RESULTS FOR 100 CITIES 

NQ NC εbase p Avg Min Max NEval 
4 10 0.05 0 28274 23963 31687 6,471,566 
4 10 0.05 1 27892 25943 29580 6,394,866 
4 10 0.05 2 29155 24516 31595 5,506,115 
4 10 0.05 3 27875 26425 30963 5,079,966 
4 10 0.05 4 29579 27513 33945 7,306,298 
5 10 0.05 0 28994 26234 32921 9,408,336 
5 10 0.05 1 26521 24619 28443 7,894,853 
5 10 0.05 2 28605 26136 30617 9,337,997 
5 10 0.05 3 28953 26827 31112 9,869,944 
5 10 0.05 4 29921 25426 51165 10,031,647 

 



V. CONCLUSION 
Quantum-inspired genetic approaches have been used to ad-
dress ordering combinatorial optimization problems by using 
the standard rotation matrices method to update the quantum 
bits. A new approach has been presented in this paper and was 
applied to the well known Traveling Salesman Problem as a 
case study. Four instances with different sizes were consi-
dered, and the results obtained suggest that the performance of 
a quantum-inspired genetic algorithm (for solving ordering 
problems) is superior to that of genetic ordering algorithms 
that employ uniform crossover. Further research, such as cros-
sover and mutation of quantum individuals, as well as the 
search for additional numerical results, will be necessary to 
establish a definitive verdict. 
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