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Abstract- This work considers the use of dual-reflector antennas
for omnidirectional coverage in a LMDS system base station to
operate with the distribution of digital TV signals. We investigate
the performance of omnidirectional antenna with and without
dielectric radome. Numerical simulations based the method of
moments are presented to illustrate the usefulness of the
omnidirectional antennas to operate in LMDS systems. The
analyses are conducted for a 20% bandwidth. It is used a radome
with thickness equal to 'A./2 and relative permittivity equal to 2.08.
The analyses intend to demonstrate the radome influence in the
antenna behavior across the operation band and to identify the
best radome thickness.

Keywords-Method of moments; omnidirectional reflector
antennas; radomes; LMDS, digital TV

I. INTRODUCTION

The recent growth of internet-related applications and the
introduction of digital TV by satellite with new interesting and
interactive possibilities have stimulated of development of new
radio-based technologies such as local multipoint distribution
systems (LMDS). This technology has the advantage of a high­
capacity of downlink and can be shared by many users in a
flexible manner. LMDS is the broadband wireless technology
with cellular architecture that provides flexible high capacity
connections. The systems employ a point-to-multipoint
broadcast downlink and can be used to deliver digital TV
signals, high-speed data, voice signals or video. The frequency
allocations are in the 28-29 GHz band in the United States [1].
The European Standard for Antennas for Point-to-Multipoint
fixed radio systems proposes the use of several frequency
bands (from 11 GHz up to 60 GHz), for which it makes sense
the use of reflector antennas as a feasible solution [2],[3].

Many antennas have been designed for these wireless point­
to-multipoint applications based on the cellular radio concept.
The cell base-station antenna is required to give uniform
coverage in the azimuth plane, which is achieved either with an
omnidirectional antenna at the center of the cell or some
sectorial coverage antennas. In [4] some antennas
configurations are investigated for LMDS systems operation.
For terminal multiflare horns with dielectric lens and shapped
Gregorian splash reflectors are presented. For base stations
omnidirectional single and dual shapped reflector solutions are
described. An omnidirectional antenna consisting of an axially­
fed dual-rotationally symmetric reflector configuration was
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proposed [5] as an inexpensive solution for areas of limited
traffic. In [6] a reflector antenna is presented as a feasible
solution for LMDS systems base station with a reconfigurable
number of sectorial beams. The antenna is an improved version
of the hourglass reflector antenna.

LMDS systems band frequency operation requires the use
of reflector antennas as a feasible solution. Reflector antennas
can yield compact designs capable of providing the wide
bandwidth required. Omnidirecional dual-reflector antennas are
more compact than single reflectors [7]-[10] and may reduce
the feed return loss [8],[9]. There are four different types of
axis-displaced dual-reflector antennas for omnidirectional
coverage: OADC (omnidirectional axis-displaced Cassegrain),
OADG (Gregorian), OADE (ellipse), and OADH (hyperbola)
[7]-[10]. Among them, the OADC and OADE can lead to
compact geometries [8]-[10].

Radomes are used to protect antennas from a variety of
environmental and aerodynamical effects and may be designed
to support the subreflector. However, they create undesirable
blockage due to interactions of the antenna fields with the
radome. Needless to mention, the radome affects the antenna
pattern and the feed return loss across the bandwidth. A careful
analysis of the antenna-radome system is thus appropriate [11].
Several techniques have been developed for the analysis of
antenna-radome structures to provide accurate design tools.
Surface integral equations, numerically evaluated by the
method of moments (MoM), are one of the most accurate
analysis tool.

As OADC antenna configuration leads to compact
geometries, we investigate this antenna, with and without
dielectric radome, to operate in LMDS systems. The antenna
geometry, illustrated in Fig. 1, is basically the same studied in
[12]. However now we used a more efficient coaxial hom and
different radome thickness are analyzed in a different operation
band. In this work we intend, beyond to demonstrate the
radome influence in the antenna behavior across the operation
band, also to identify the best radome thickness. The accurate
analysis is based on the electric (EFIE) and magnetic (MFIE)
field integral equations, numerically evaluated by the method
of moments (MoM) technique. The OADC antenna
configuration is excited by a TEM coaxial hom and is used a
radome with relative permittivity equal to 2.08.
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Figure I Omnidirectional antenna geometry (OAOC)

II. SURFACE INT EGRA L EQUATIONS

MoM solutions involving the EFIE and MFIE lead to many
different formulations (13], [14]. The EFIE is the choice for
open conducting shells. For closed conducting surfaces the
combined field integral equation (CFIE) avoids spurious
resonances [14]. The CFIE is a linear combination ofEFIE and
MFIE. For dielectric bodies, EFIE and MFIE can be linearly
combined in several forms [13]. One of the most adopted
combinations are MUller and PMCHWT formulations [13].

Present numerical evaluation of the formulations is
performed by the MoM technique. Triangular basis functions
(TBF) are employed for the equivalent current representation
and Galerkin's method is adopted to numerically evaluate the
MoM coefficients. All integrals appearing in the MoM full­
matrix elements are evaluated by Gaussian quadratures with
appropriate singularity treatment [15].

III. OMNIDIRECTIONAL ANTENNA WITHO UT RAOOME

The OADC antenna shown in the Fig. 1, without the
radome, is analyzed for operation in a LMDS system across the
operation band of 26 to 34 GHz. The antenna dimensions are
described in Fig. 1 and were chosen for D, = 17.57Ae, DM =
17.57Ae, Vs = 8.03Ae, WA = 7Ae, DB = 0.255Ae, R,= 0.45Ae and
RE = 1.16Ae, where Ae is the wavelength in the vacuum for
central frequency of de band, 30 GHz. It is used the hom
presented in [16]. The radiation patterns obtained from the
MoM analyses across the operation band are illustrated in Fig.
2 and the Fig. 3 shows the maximum gain and the angle where
maximum gain occurs (MGA). As it can be verified the overall

antenna performance (levels and spatial distribution of main
lobe and sidelobe) is not significantly affected across the
operation band. This fact enables this antenna configuration for
operation in LDMS systems, in principle.

IV. OMNIDIRECTIONAL A NTENNA WITH RAOOME

In this section the electrical performance of the OADC
configuration with radome, illustrated in Fig. 1, is investigated
for operation in the same frequency range. It is employed a
radome with relative permittivity of 2.08. The radome
thickness (d) is chosen for minimal reflection (i.e, the radome
is a half-wavelength, Ad, window), where Ad is the wavelength
in the dielectric [15]. In this work, three different radome
thickness (d) are investigated, as described in Table 1. These
Three values were calculated using wavelength in the dielectric
radome at 26,30 and 34 GHz, respectively.

The radiation patterns of the antenna at 26, 30 and 34 GHz
are shown in Figs. 4--6, respectively. These demonstrate that
antenna electric behavior (levels and spatial distribution of
main lobe and sidelobe) is not significantly modified by the
radome presence. Tables 2 and 3 and Fig. 7 show the
maximum gain and angle where maximum gain occurs (MGA),
respectively, at 26, 30 and 34 GHz for the radome thickness d
presented in Table 1. It can be observed that across the
operation band the antenna characteristics are kept without
important modifications.

Fig. 8 illustrates the feed return loss across the bandwidth.
The oscillatory behavior of the return loss across the band is
expected and caused by the electromagnetic coupling among
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Figure 6. Radiation pattern: DADC antenna with radome at 34 GHz
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T ABLE I. RADOME T HICKNESS

TA BLE Il l. DADC A NTENNA WITH R ADOME: MGA

TAB LE II. DADC A NTENNA WITH RADOME : MAXIM UM GAI N (oBI)

Rad ome Fr equeney (GH z)
thi ckness
d(mm) 26 30 34

3.99 87.8 90.6 90.6

3.47 88 90.2 9 1.8

3.06 88 89.8 91.4

Rad ome Frequeney (GHz)
thi ckness
d (mm) 26 30 33

3.99 10.28 10.11 9.97

3.47 9.28 10.49 10.05

3.06 9.90 10.15 9.98

Frequeney x, Radome thiekness
(GHz) (mm) d(mm)

26 11.53 3.99

30 9.99 3.47
34 8.82 3.06

--Without radome

-- d=3.99 mm
- - d=3.47mm

d=3.00mm
I

I

I I I I
,~ __ L __ --J 1 _

I I I
I I I
I I I
I I

-- ------
I I

5

10

80 90 100 110 120 130 140
O(Degree)

Figure 4. Radiation pattern : DADC antenna with radome at 26 Gl lz
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feed structure, reflectors, and radome. As it can be verified at
frequencies of 26, 30 and 34 GHz the value of return loss for
antenna without radome is approximated equal to antenna with
radome with thickness equal to 3.99, 3.47 and 3.06 mm,
respectively. This fact demonstrates that for frequency for
which the radome was specified (frequency ofradome sintony ­
FRS) it is almost invisible for antenna system (i.e., the
reflections are minimum). When the frequency deviates from
the FRS, the feed return loss increases, as expected. Across the
operation band, the smallest return-loss variation occurs for the
radome with FRS in the center frequency (30 GHz). Antennas
with a FRS radome in the extremes of the operation band
present return loss above -1 OdS for some frequencies; whereas
for the radome with FRS at 30 GHz the return loss peak is
-8.5dS, remaining below -1 OdS at most of the operation band.
So, from the return loss point of view, the best radome
thickness is equal to 3.47 mm.

V. CONCLUSION

This work studied dual-reflector antennas for
omnidirectional coverage in a LMDS system to operation with
signals of digital TV. The performance of omnidirectional
antenna with and without dielectric radome was investigated.
The rigorous analysis was based on electric (EFIE) and
magnetic (MFIE) field integral equations, numerically
evaluated by the MoM technique. The antenna systems were
excited by an omnidirectional TEM coaxial hom. It was
verified that the electrical performance of the analyzed
antennas was not significantly modified across a 20% operation
bandwidth. From the retrun loss point of view, considering the
frequencies values analyzed across the operation band, the best

radome thickness is equal to 3.47 mm (llod/2 where A.d is the
wavelength in the dielectric for central frequency of the
operation bandwidth).
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