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Brandão, & Landeira-Fernandez, 2001). Freezing and 

escape responses triggered by dPAG stimulation are 

mediated by the same neurochemical processes and 

represent a model of panic attack, whereas dPAG post- 

stimulation freezing at the aversive escape threshold 

is mediated by a distinct neuronal substrate and 

appears to be a model of panic disorder (for review, 

see Brandão, Zanoveli, Ruiz-Martinez, Oliveira, & 

Landeira-Fernandez, 2008). 

Considerable evidence also indicates that the 

freezing response to contextual cues previously 

associated  with  electrical  footshock  is  one  of  the 

most reliable animal models of anticipatory anxiety 

(Brandão  et  al.,  2008).  In  a  typical  experiment, 

a rat is exposed to a novel chamber, and a brief 

unsignaled footshock is presented several minutes 

later. Some time later (i.e., the next day), the animal 

freezes when returned to the same chamber in the 

absence of footshock (Landeira-Fernandez, 1996). 

This  defensive  freezing  response  differs  from  the 

one triggered by dPAG stimulation because no 

piloerection or exophthalmus is observed. Moreover, 

freezing in response to contextual cues previously 

paired with footshock involves an initial active motor 

component with the purpose of withdrawing to a safe 

and hidden location next to an object (thigmotaxis), 

such as a corner or a wall. 

Previous studies indicated that rats exposed to 

contextual cues previously associated with electrical 

footshock exhibited a robust defensive freezing 

response and exhibited a higher dPAG electrical 

stimulation threshold to induce escape responses 

compared with control animals that were not exposed 

to contextual fear conditioning (Magierek, Ramos, 

da Silveira-Filho, Nogueira, & Landeira-Fernandez, 

2003). This pattern of results has been replicated 

recently (Galvão, Larrubia, Hommes, Cardenas, & 

Cruz, 2010) and indicates that anticipatory anxiety 

might play an inhibitory role on the occurrence of 

panic  attack-like  behavior.  However,  still  unclear 

is the extent to which anxiety might influence the 

development of panic disorder. 

Two  new  lines  of  Wistar  rats,  termed  Carioca 

High- and Low-Freezing (CHF, CLF), were selectively 

bred for high and low levels of freezing in response to 

contextual cues previously associated with footshock 

(Gomes & Landeira-Fernandez, 2008 ). After three 

generations of breeding, CHF rats were considered to 

naturally have a greater propensity for exhibiting higher 

freezing responses compared with CLF animals. A 

recent study indicated isomorphism between CHF rats 

and anticipatory anxiety (Dias, Bevilaqua, Silveira, 

Landeira-Fernandez,  &  Gardino,  2009).  Therefore, 

these lines of animals may be an important tool for 

investigating the relationship between anxiety with panic 

attack and panic disorder. Accordingly, the purpose of 

the present study was to investigate whether CHF and 

CLF animals exhibit different patterns of panic attack- 

and panic disorder-like behaviors induced by electrical 

stimulation of the dPAG. 

 

Method 
 
Subjects 

Experimental animals selectively bred for high 

(CHF)  and  low  (CLF)  contextual  fear  conditioning 

were obtained according to a procedure described in a 

previous study (Gomes & Landeira-Fernandez, 2008). 

Briefly, albino Wistar rats were placed in an observation 

chamber. Three minutes later, three unsignaled electrical 

footshocks (0.7 mA, 1 s duration) were delivered 20 s 

apart. Three minutes after the last shock, the animal was 

returned to its home cage. Approximately 24 h after the 

training session, the animal was returned to the same 

observation chamber for an 8-min test session in the 

absence of any stimulation. The present study employed 

male  CHF  and  CLF  rats  from  the  ninth  generation 

with the highest (CHF) and lowest (CLF) conditioned 

freezing scores. All animals were employed as breeders 

in our ongoing selective breeding program before the 

beginning of the experiment. 

Animals were housed in groups of five to seven, 

according to their respective lines, in polycarbonate cages 

measuring 18 × 31 × 38 cm3, with food and water available 

ad  libitum. The room temperature was  controlled (24 

± 1°C), with a 12 h/12 h light/dark cycle (07:00–19:00 

h).  The  experiment  was  conducted  during  the  light 

phase of the cycle. Animals were 6 months old at the 

beginning of the experiment. The experimental procedures 

were performed in accordance with the guidelines for 

experimental animal research established by the Brazilian 

Society of Neuroscience and Behavior, which are based on 

the United States National Institutes of Health Guide for 

the Care and Use of Laboratory Animals (revised 1996). 

 
Surgery 

All animals were implanted with a stainless steel 

unilateral guide-cannula aimed at the dPAG. Under 

tribromoethanol anesthesia (250 mg/kg, i.p.), each 

animal was fixed in a Kopf stereotaxic frame and injected 

locally with lidocaine (20 mg/ml). The upper incisor bar 

was set 3.3 mm below the interaural line such that the 

skull was horizontal between bregma and lambda. The 

following coordinates were used for implantation of the 

guide-cannula, with lambda serving as the reference for 

each plane according to the Paxinos and Watson (1986) 

rat brain atlas: anterior/posterior, +2.3 mm; medial/ 

lateral, -1.7 mm; dorsal/ventral, -4.5 mm. The guide- 

cannula was attached to the skull of the animal with 

acrylic resin and three stainless steel screws. A stylet 

of the same length as the guide-cannula was introduced 

inside the guide-cannula to prevent obstruction. 

DBD
PUC-Rio - Certificação Digital Nº 0812188/CA



102 
 

 

Material 

The experiment was conducted in the same 

observation chamber (25 × 20 × 20 cm3) where CHF 

and CLF animals were phenotyped for contextual fear 

conditioning. The observation chamber was placed 

inside a sound-attenuating box. A red light bulb (25 

W) was placed inside the box, and a video camera 

mounted on the back of the observation chamber was 

used to observe the animal’s behavior on a monitor 

placed outside the experimental room. A ventilation fan 

attached to the box supplied 78 dB background noise. 

 

Procedure 
 

Seven   days   after   surgery,   each   animal   was 

placed inside the observation chamber. Five minutes 

later, freezing and escape aversive thresholds were 

determined using electrical stimuli (alternating current, 

60 Hz, 20 s) presented through a removable electrode 

connected to the guide-cannula aimed at the dPAG. 

Brain  stimulation  was  presented  at  20-s  intervals, 

with the current intensity beginning at 5 µA and 

increasing by 5 µA steps. The freezing threshold was 

operationally defined as the lowest current intensity that 

produced an absence of movement, with the exception 

of respiration, accompanied by at least two of the 

following autonomic reactions: urination, defecation, 

piloerection, or exophthalmia. The current intensity 

producing running or jumping was considered to be 

the escape threshold. The dPAG electrical stimulation 

was stopped when the threshold for eliciting an escape 

was reached. To investigate freezing behavior that 

occurred after cessation of dPAG stimulation applied 

at the escape threshold, the animals remained in the 

observation chamber for an additional 8 min without 

any stimulation. During this period, freezing was scored 

using a time-sample procedure. Every 2 s, the animal’s 

freezing behavior was scored by a well-trained observer. 

After the experiment, animals were sacrificed under 

deep anesthesia with chloral hydrate. The brain was 

perfused through the heart with saline solution (0.9%) 

followed by 10% formalin solution, removed, and 

postfixed in 10% formalin. Frozen 55-µm sections were 

cut using a microtome to localize the positions of the 

electrode tips according to the atlas of Paxinos and Watson 

(1986). Only data from rats with electrode tips located 

inside the dPAG were included in the statistical analysis. 

 

Results 
 

Data are expressed as mean ± SEM. Two-way 

repeated-measures analysis of variance (ANOVA) was 

used to evaluate differences in aversive threshold between 

CHF and CLF animals. The breeding line (CHF and 

CLF) was considered the between-subjects factor, and 

aversive thresholds (freezing and escape) were considered 

the within-subjects factors. Two-way repeated-measures 

ANOVA was also used for dPAG-evoked post-stimulation 

freezing analysis, with breeding line (CHF and CLF) the 

between-subjects factor and time (min) the within-subjects 

factor. Significant effects in the ANOVA were followed by 

the Newman-Keuls post hoc test. Values of p < 0.05 were 

considered statistically significant. 

Histological examination of the brain slices 

indicated that all electrode tips were located inside the 

dPAG. The final group samples were the following: 

CHF, n = 7; CLF, n = 7. The representative sites of the 

dPAG stimulation are shown in Figure 1. 
 

 
 
Figure 1. Composite of stimulation electrode tips within the 
dPAG. According to the Paxinos and Watson (1986) atlas, the 
numbers on the right-hand side of each plate indicate the distance 
in millimeters from bregma. CHF animals are represented by 
circles, and CLF animals are represented by squares. 
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As reported previously (Oliveira, Nobre, Brandão, 

& Landeira-Fernandez, 2004), freezing and escape 

responses induced by dPAG electrical stimulation 

occurred in a stepwise fashion. As the intensity of the 

current applied to the dPAG increased, the animals 

suddenly  stopped,  became  immobile,  and  often 

urinated and defecated. With higher intensities, this 

freezing behavior was followed by vigorous running 

and jumping reactions. The escape response stopped as 

soon as the dPAG electrical stimulation was switched 

off. Figure 2 shows the mean (± SEM) of the electrical 

current threshold required to trigger freezing and escape 

behaviors in CHF and CLF animals. Two-way ANOVA 

revealed main effects of breeding line (F[1,12] = 5.42, 

p < 0.05) and aversive threshold (F[1,12]   = 234.37, 

p < 0.0001). No breeding line ´ aversive threshold 

interaction was found (F[1,12]  = 0.37, p > 0.5). Post 

hoc analysis indicated that CHF animals presented 

higher aversive freezing and  escape thresholds than 

CFL animals (both p < 0.05). 
 

 
 

Figure 2. Mean (± SEM) freezing and escape thresholds 
determined with the procedure of the dPAG electrical 
stimulation in the two breeding lines selected according to 
their emotional reactivity. 

 
Figure 3 shows the mean (± SEM) percentage of 

time that CHF and CLF animals spent freezing following 

dPAG stimulation at the escape threshold. Two-way 

repeated-measures ANOVA showed a significant effect 

of breeding line (F[1,12]  = 12.10, p < 0.005). No main 

effect of time (F[1,12]  = 2.18, p > 0.1) or interaction 

between lines of animals during the 8-min dPAG post- 

stimulation period (F [1,12]  = 0.34, p > 0.5) was found. 

Post hoc analysis indicated that CHF animals expressed 

more dPAG-evoked post-stimulation freezing behavior 

compared with CLF animals during the 8-min test period 

(all p < 0.05). Because CHF animals required a higher 

threshold current than CLF animals to elicit an escape 

response it is possible that differences between these 

two groups in freezing behavior immediately after dPAG 

electrical stimulation at the escape threshold might be 

due to differences in the threshold current between CHF 

and CLF. In order to test this possibility, an analysis of 

covariance (ANCOVA) using the escape dPAG electrical 

stimulation threshold parameter as covariant factor was 

performed. Results from this analysis indicated confirmed 

significant main effect of breeding line (F [1,12]  = 9.34, 

p = 0.01). A main effect of time (F [1,12]  = 8.47, p = 

0.01) and no interaction between lines of animals during 

the 8-min dPAG post-stimulation period (F [1,12]   = 

0.55, p > 0.4) was also detected. 
 

 
 

 
Figure 3. Mean (± SEM) percentage of freezing in CHF and 
CLF animals during the 8-min period after the cessation of 
dPAG stimulation applied at the escape threshold. 

 
Discussion 
 

The current understanding of anxiety disorders 

departed from an earlier concept of a unitary process 

and  evolved  into  a  more  recent  view  that  suggests 

a group of different but interrelated nosological 

categories. A major shift in this recent view of anxiety 

disorder occurred with Klein’s pioneering work (1962; 

1964), which showed that imipramine had a selective 

effect in the treatment of panic attacks. Since then, a 

qualitative distinction between anticipatory anxiety and 

spontaneous panic attack has been repeatedly observed 

in clinical settings (Battaglia & Ogliari, 2005). However, 

the relationship between anticipatory anxiety with panic 

attack and the development of panic disorder remains a 

subject of intense debate. 

Experimental research employing rats selectively 

bred for high or low levels of emotionality represents 

an important and powerful tool for investigating the 

relationships between different aspects of anxiety 

disorders. Rats in this study were selectively bred to 

exhibit high (CHF) or low (CFL) levels of freezing 

in response to contextual cues previously associated 

with footshock (Gomes & Landeira-Fernandez, 2008). 

Although freezing appears to be the main conditioned 

response observed during fear conditioning, active 

escape responses have also been suggested to be present 

during this aversive learning situation (Tarpley, Shlifer, 

Halladay, & Blair, 2010). This is a particularly important 

issue because it might challenge the view that the CHF 
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phenotype is associated with more anxiety-like behavior 

than the CLF phenotype. Thus, CLF rats may freeze less 

not because they are less “afraid,” but because they are 

more “frightened” and thus more prone to exhibit active 

escape responses than defensive freezing behavior. 

Much evidence appears to exclude this possibility. 

For example, conditioned freezing is a direct function 

of footstock intensity (Morris & Bouton, 2008) and has 

been pharmacologically validated as an animal model 

of anticipatory anxiety. Accordingly, benzodiazepine 

receptor agonists such as diazepam and midazolam 

reduced the amount of conditioned freezing, whereas 

the benzodiazepine inverse agonist dimethoxy-β- 

carboline produced freezing behavior similar to that 

elicited by context fear conditioning (Fanselow, 1991). 

Consistent with this, anxiolytic-like substances such as 

the dPAG, which in turn might inhibit defensive reactions 

triggered by this structure. Therefore, activation of the 

neural circuitry involved in anxiety might indeed inhibit 

the occurrence of panic attack-like behavior associated 

with neurons located within the dPAG. 

The present results also indicated that CHF animals 

displayed more freezing behavior immediately after 

dPAG electrical stimulation at the escape threshold 

compared with  CLF  animals. This  difference might 

be attributable to the fact that CHF animals required 

a higher threshold current than CLF animals to elicit 

an escape response. An ANCOVA contested this 

hypothesis indicating that although CHF animals were 

more resistant to the expression of escape behavior in 

response to dPAG stimulation, they were more prone 

to freezing after the occurrence of the dPAG aversive 

5-HT receptor agonists, selective serotonin reuptake stimulation compared with CLF animals. 

inhibitors, and monoamine oxidase inhibitors with 

verified clinical efficacy in the treatment of anxiety 

symptoms, attenuated conditioned behavior in rats, 

indicating  considerable  construct  and  face  validity 

of this paradigm to human anxiety (Conti, Maciver, 

Ferkany, & Abreu, 1990; Maki et al., 2000). Moreover, 

mice selectively bred for high and low levels of freezing 

in response to contextual cues previously associated with 

footshock also presented, respectively, higher and lower 

levels of anticipatory anxiety in the fear-potentiated 

startle test (Ponder et al., 2007). Finally, previous results 

from our laboratory with different models of anxiety, 

such as the elevated plus maze and social interaction 

test, indicated that CHF animals exhibited significantly 

more anxiety-like behavior than control rats (Dias et al., 

2008) Therefore, the CHF line appears to represent a 

robust animal model of anticipatory anxiety. 

The  results  of  the  present  study  indicated  that 

CHF animals had a higher dPAG electrical stimulation 

aversive threshold for producing freezing and escape 

reactions than CLF animals. This result is consistent with 

several other studies, which indicated that contextual fear 

conditioning can inhibit defensive responses to aversive 

proximal or painful stimuli such as the tail-flick response 

to radiant heat, complex and elaborated nociceptive 

responses elicited in the formalin test, vigorous running 

and jumping triggered by footshock (Fanselow, 1982) 

and shock-induced defensive fight reactions (Bolles and 

Collier, 1976). Moreover, contextual fear conditioning 

can also inhibit vigorous escape responses induced by 

N-methyl-D-aspartate (Galvão et al., 2010) or electrical 

stimulation (Magierek et al.,2003)  of the dPAG. Much 

evidence indicates that the amygdaloid complex and its 

projections to the ventral portion of the PAG are critically 

involved in the regulation of contextual fear conditioning. 

Malfunctioning  of  this  system  might  be  associated 

with pathological forms of anticipatory anxiety (e.g., 

generalized anxiety disorder). Descending inhibitory 

projections from the amygdaloid complex might reach 

The dPAG post-stimulation freezing is not fear- 

conditioning in response to contextual cues associated 

with the dPAG electrical stimulation. Previous studies 

employed a context shift procedure and indicated that 

freezing after dPAG stimulation persisted when animals 

were  placed  in  a  different  context  immediately after 

the dPAG stimulation (Vianna et al., 2001). Moreover, 

several studies indicated that freezing observed after 

dPAG  stimulation  has  a  different  neural  mechanism 

from freezing and escape responses elicited by dPAG 

electrical stimulation. For example, electrolytic lesions 

or muscimol-induced inactivation of the amygdaloid 

complex reduced  dPAG  post-stimulation freezing but 

did  not  affect  freezing  or  escape  responses  induced 

by dPAG electrical stimulation (Oliveira et al. 2004; 

Ruiz-Martinez, de Oliveira, & Brandão, 2006). Indeed, 

dPAG post-stimulation freezing appears to be mediated 

by ascending projections, possibly relayed through the 

thalamus to forebrain structures related to the sensory 

processing of aversive stimuli. These findings suggest 

the possibility that dPAG post-stimulation freezing might 

represent an animal model of panic disorder. Therefore, 

the fact that CHF animals expressed more dPAG post- 

stimulation freezing than CLF animals might indicate 

that anticipatory anxiety could enhance the development 

of panic disorder triggered by panic attacks. 

The complex nature of the symptoms involved in 

panic disorders suggests that several brain regions may be 

implicated in this pathology. For example, brain imaging 

techniques indicated that anxiety reactions among 

patients who suffer from panic disorder recruits several 

forebrain areas such as the anterior cingulate cortex, 

hippocampus, basal ganglia, and insula (de Carvalho et 

al., 2010). Another important brain region that appears 

to be implicated in the modulation of anxiety in panic 

disorder is the amygdaloid complex. Indeed, ascending 

projections from the dPAG to the amygdaloid complex 

might represent one of the main routes responsible for 

the pathogenesis of panic disorder. Therefore, anxiety 
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reactions that are present in panic disorder might also 

recruit some forebrain structures related to anticipatory 

anxiety. Further studies are needed to elucidate whether 

activation of neural circuitries associated with the 

amygdaloid complex might play an inhibitory role in the 

occurrence of panic attack and excitatory modulation of 

structures associated with panic disorders. 
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