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Abstract— This paper presents a nonparametric approach 

based on adjustable robust optimization to consider correlated 

nodal demand uncertainty in a joint energy and reserve 

scheduling model with security constraints. In this model, up- 

and down-spinning reserves provided by generators are 

endogenously defined as a result of the optimization problem. 

Adjustable robust optimization is used to model the worst-case 

load variation under a given user-defined uncertainty set. This 

paper generalizes recent previous work in two respects: (i) 

nonparametric correlations between nodal demands are 

accounted for in the uncertainty set, and (ii) based on the binary 

expansion linearization approach, a mixed-integer linear model is 

provided for the optimization related to the worst-case demand. 

The resulting problem is formulated as a trilevel optimization 

problem and solved by means of Benders decomposition. 

Preliminary empirical results suggest that the incorporation of 

nodal correlations can be captured by the robust scheduling 

model. 
1 

Index Terms—Adjustable Robust Optimization, Benders 

Decomposition, Binary Expansion Linearization, Energy and 

Reserve Scheduling, Correlated Nodal Demand Uncertainty. 

NOMENCLATURE 

A. Functions 

  
     Energy cost function offered by generator  . 

B. Constants 

  Conservativeness parameter. 

  
  Availability parameter that is equal to   if generator     

is unavailable under contingency state  , being   

otherwise. 

  
   Availability parameter that is equal to   if line     is 

unavailable under contingency state  , being   

otherwise. 

  
  Cost rate offered by generator   to provide down-

spinning reserve. 

   Cost of power imbalance. 

  
  Cost rate offered by generator   to provide up-spinning 

reserve. 
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 Fixed cost to turn on generator  . 

  
  Cost rate offered by generator   to provide power. 

 ̂  
 Nominal demand at bus  . 

  
 
 
 Minimum demand level at bus  . 

      Sending or origin bus of line  . 

   
 Power flow capacity of line  . 

   Bound of the  -th general polyhedral constraint. 

   Number of binary variables used in the discretization of 

  . 

     Element ( ,   ) of the Cholesky decomposition of the 

nodal-demand covariance matrix. 

  Big number used in the disjunctive constraints. 

  Number of system components. 

    Capacity of generator  . 
    Minimum power output of generator  . 

  

 
 Upper bound for the down-spinning reserve 

contribution of generator  . 

  

 
 Upper bound for the up-spinning reserve contribution 

of generator  . 
   Discretization step for   . 

      Receiving or destination bus of line  . 
    Element ( ,  ) of the matrix representing a general 

polyhedral constraint to bound the demand. 

   Reactance of line  . 
  Scaling factor for the Cholesky matrix. 

C. Decision Variables 

  Approximation of the system power imbalance in the 

Benders master problem. 

    Auxiliary variable representing the worst-case system 

power imbalance. 

    System power imbalance under the worst-case 

contingency. 

   
  Auxiliary variable used in the linearization of the 

absolute value of the power imbalance at bus   under  

contingency  . 

   
  Auxiliary variable used in the linearization of the 

absolute value of the power imbalance at bus   under 

contingency  . 

    Auxiliary variable used in the linearization of the 

absolute value of the power imbalance at bus   under 

the worst-case contingency. 

    Auxiliary variable used in the linearization of the 

absolute value of the power imbalance at bus   under 

the worst-case contingency. 

   Phase angle at bus   in the pre-contingency state. 
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  Phase angle at bus   under contingency  . 

  
  Variable equal to the product   

   . 

   
  Variable equal to the product   

    . 

   
 Demand at bus  . 

  
   

 Positive error on the demand of bus  . 

  
   

 Negative error on the demand of bus  . 

   Power flow of line   in the pre-contingency state. 

  
  Power flow of line   under contingency  . 

   Power output of generator   in the pre-contingency 

state. 

  
   Power output of generator   under contingency  . 

  
  Down-spinning reserve provided by generator  . 

  
  Up-spinning reserve provided by generator  . 

    Binary variable used in the discretization of   . 

   Binary variable that is equal to   if generator   is 

scheduled in the pre-contingency state, being 0 

otherwise. 

D. Dual Variables 

  
  Dual variable associated with the power balance 

equation at bus   under contingency  . 

  
    

 Dual variable associated with the lower bound for     

under contingency  . 

  
    

 Dual variable associated with the lower bound for     

under contingency  . 

  
  Dual variable associated with the lower bound for   

 . 

  
  Dual variable associated with the lower bound for   

 . 

  
  Dual variable associated with the upper bound for   

 . 

  
  Dual variable associated with the upper bound for   

 . 

  
  Dual variable associated with the equation relating 

power flow and phase angles for line   under 

contingency  . 

E. Sets 

  Set of contingency indexes. 

  Set of generator indexes. 

   Set of indexes of generators connected to bus  . 

   Set of transmission line indexes. 

   Set of bus indexes. 

  Set of polyhedral constraints to bound the demand. 

I. INTRODUCTION 

HE determination of adequate levels of reserves is an 

issue of major concern in power system operation with 

high impact on power system security and energy prices [1]. 

Spinning reserves are part of the ancillary services that 

provide the system with the ability to withstand load variations 

as well as the most relevant contingencies [2]. The joint 

schedule of energy and reserves is one way to capture the 

interactions between both commodities [2], [3].  

Most power systems worldwide operate under the well-

known deterministic security criteria     and     [4]. 

Deterministic contingency-constrained models, which 

explicitly represent the operation under each credible 

contingency, are generally used to define optimal levels of 

reserves. Relevant applications of such models to co-optimize 

energy and reserves can be found in [2], [3], [5]. 

Stochastic models [6] are also used in generation 

scheduling. They aim to capture probabilistic structures 

present in the underlying uncertainty process, e.g., correlations 

between nodal demand and renewable injections, by means of 

scenarios and their probabilities. Their main goal is to 

optimize the level of resources, e.g., energy and reserves, 

taking advantage of the uncertainty structure while ensuring 

the system security in a probabilistic fashion.  

Robust optimization models for generation scheduling have 

recently drawn a great deal of attention [5], [7], [8]. As a 

distinctive feature, uncertainty is characterized in an 

endogenous way, thereby avoiding the need for modeling the 

system operation under each contingency or scenario. To that 

end, robust counterparts are formulated as multi-level 

optimization programs. Robust models find a solution that is 

feasible for all possible realizations of the uncertainty in a 

given polyhedral uncertainty set [9]. The polyhedral 

uncertainty set allows controlling the conservativeness level of 

the model by means of a user-defined parameter. Such 

parameter constrains the number of uncertainty coefficients 

that can deviate from their nominal value.  

Recent works [7], [8] employ the two-stage or adjustable 

robust optimization (ARO) approach to deal with nodal-

injection uncertainty in unit commitment. In [7], a Benders 

decomposition procedure is proposed to solve the resulting 

bilevel program. In addition, Monte Carlo sampling is used to 

assess the quality of the solutions. In [8], a more general 

model is also addressed by Benders decomposition. However, 

upper bounds for the Benders procedure are obtained through 

an iterative heuristic algorithm. Hence, global optimality is not 

guaranteed. Both works, [7], [8], make use of a polyhedral 

uncertainty set disregarding the possibility of considering the 

correlation effect between nodal demands or injections.  

In the present work, we extend the uncertainty set described 

in [8] in order to consider a nonparametric correlation between 

nodal demands. To that end, the Cholesky decomposition of 

the nodal-demand covariance matrix is used without changing 

the model complexity. Furthermore, bilinear products of 

continuous variables are linearized within a user-defined 

precision through the binary expansion approach proposed in 

[10]. Finally, we present an ARO model capable of capturing 

the effect of nonparametric correlations between nodal 

demands to determine the least-cost schedule of energy and 

up- and down-spinning reserves. The joint effect of 

contingencies and demand uncertainty is also examined 

through the consideration of a deterministic security criterion. 

II. AN ADJUSTABLE ROBUST OPTIMIZATION FORMULATION 

FOR THE ENERGY AND RESERVE SCHEDULING PROBLEM 

The proposed problem determines the optimal generation 

schedule and reserve allocation so that the uncertain power 

demand is supplied under both normal and contingency states. 

Unlike [7] and [8], spatial correlation among nodal demands is 

explicitly modeled. In addition, contingencies are associated with 

a deterministic security criterion. For expository purposes, a 

single period is considered. The extension to a multiperiod 

framework can be achieved based on the findings of [8]. The 

joint scheduling of energy and reserves can be formulated as 

the following trilevel optimization model:  

T 
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The goal of the upper-level problem (1)-(9) is to minimize 

the total cost including the production cost, up- and down-

spinning reserve costs, and the system imbalance cost, for 

which a sufficiently large imbalance penalty cost is used (1). 

Based on the formulation presented in [2], expressions (2)-(9) 

model energy and reserve scheduling for the pre-contingency 

state. Expressions (2) and (3) define a dc-power flow model, 

(4)-(6) ensure that the levels of energy and reserves lie in the 

feasible generation region of each scheduled unit, and (7) and 

(8) set the reserve limits. Finally, the binary nature of the 

scheduling on/off variables is imposed in (9). 

The middle-level problem (10)-(15) represents the worst-

case demand scenario that maximizes the system load 

imbalance (10). Similar to [8], nodal demands are middle-

level decision variables lying in a given user-defined 

polyhedral region. Unlike in [8], the positive and negative 

nodal-error vectors go through a linear transformation  , 

which can be found by means of the Cholesky decomposition 

(lower triangular matrix) of the estimated covariance matrix   

[11]. A scaling factor   is added to allow the possibility of 

enlarging the error variability if needed. This is justified in 

cases where observed data exhibit well-known correlated 

patterns. Expressions (12) are general polyhedral constraints 

used to characterize bounds and other types of constraints. 

Expressions (13)-(15) limit the number of demand deviations 

among buses to a given user-defined uncertainty budget  , 

also known as the conservativeness parameter [9]. Note that if 

  is diagonal and    , the correlation of nodal demands is 

neglected and each nodal demand may deviate, at most, one 

standard deviation around its nominal value. In this setting, the 

model is reduced to that presented in [8]. 

The lower-level problem (16)-(23) identifies a new feasible 

dispatch satisfying (17)-(19) for all contingencies defining the 

security criterion, and within the energy and reserves 

scheduled in the upper-level (20). The goal of the lower-level 

is to minimize the system power imbalance (16) for the worst-

case demand realization given by the middle-level problem. 

The system power imbalance is defined as the sum over all 

buses of the largest absolute value of the nodal power 

imbalances for all contingencies considered. Constraints (21)-

(23) are related to the definition of the system power 

imbalance. 

This model is general and nonparametric, i.e., it can be used 

in different ways without associating   with a probabilistic or 

statistical model. Notwithstanding, it can still be used 

assuming a parametric multivariate Gaussian noise, in which 

case   can be interpreted as the quantile function for a given 

confidence level.  

III. SOLUTION METHODOLOGY 

The solution methodology proposed to address the mixed-

integer trilevel optimization (1)-(23) comprises two stages: (i) 

the transformation of the original problem into a bilevel 

program, and (ii) the subsequent application of Benders 

decomposition.  

A. Transformation to a bilevel program 

The two lowermost levels (10)-(23) can be reformulated as 

an equivalent single-level mixed-integer linear program (S-

MILP), leading to a bilevel programming problem. This 

transformation consists of the following steps:  
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Step 1) Based on [9], the middle-level objective function 

    is replaced in (10) by the dual lower-level objective 

function, and the lower-level problem (16)-(23) is replaced by 

its dual feasibility constraints. The two lowermost levels are 

recast as:  
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Step 2) Bilinear terms   
    in (24) are linearized through 

the binary expansion approach described in [10]. First, one set 

of the variables is discretized using equally-sized levels. Such 

discretization is then represented as the sum of binary 

variables, which can reproduce all of the discretization levels. 

In contrast to lower-level dual variables   
 , variables    

are not contingency-dependent, being the appropriate choice 

for discretization. As a result, dual sub-optimality is avoided 

while keeping the model with the minimum number of binary 

variables. Hence, assuming that, for each bus  , the nodal 

demand    is discretized into    equally-sized levels (with 

step size   ), the binary representation of    requires at least 

   ⌈      ⌉ binary variables. Thus, the discretization of    

can be represented as follows: 

     
    ∑       

  

   

  (35) 

The new    yields products between continuous variables 

  
  and binary variables    , which are subsequently linearized 

by using disjunctive inequalities [10]. Thus, a new variable, 

namely   
 , replaces   

    in (24) and the following set of 

disjunctive constraints is added to (24)-(34) (see [10] for an 

equivalent linearization procedure):   
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B. Benders decomposition procedure 

The worst-case imbalance variable     can be viewed as a 

function of the upper-level variables. Moreover, from (24), 

    is the maximum of affine functions within the middle-

level feasibility set. Therefore, it is a convex function of the 

upper-level decision variables (see [12], item 3.2.3). Under 

convexity, such function can be approximated from below by 

means of a standard Benders procedure [13] that finitely 

converges to a near-global optimal solution within a user-

defined tolerance level. 

In the proposed Benders decomposition procedure, an upper 

bound    is provided by the master problem, which 

comprises (1)-(9), where     is replaced by a new decision 

variable   that represents the maximum within a set of affine 

functions, i.e., the Benders cuts. In addition, the subproblem, 

namely S-MILP, provides a lower bound   . The proposed 

methodology works as follows (symbols with superscript ( ) 

are used to indicate the optimal value of a specific variable at 

iteration  ): 

1) Initialization.  

 Initialize the iteration counter:    ; 

 Solve the master problem without cuts. This step 

provides   
   

,    
    

,   
    

, and a lower bound for the 

optimal cost    ∑ (  
 (  

   
   

   
)    

   
    

    

  
   

    
). 

2) Subproblem solution. Solve the subproblem for the given 

  
   

,   
    

, and   
    

. This step provides an upper bound 

for the optimal cost    ∑ (  
 (  

      
   )     

  
   

       
   

    )      
      and a new Benders cut for 

the next iteration lower bound   ∑ [∑   
      

   
        

∑   
          –∑   

           ∑   
      

       
        

  ∑   
    

  
       

      ].  

3) Iteration counter updating.      . 

4) Master problem solution. Solve the full master problem. 

This step provides   
   

,   
    

,   
    

,     , and a lower 

bound for the optimal cost    ∑ (  
 (  

   
   

   
)     

  
   

    
   

   
    

)          
5) Convergence checking. If a solution with a level of 

accuracy   has been found, i.e., 
       

  
  , then stop, 

otherwise go to step 2. 

IV. CASE STUDY 

The three-bus system shown in Fig. 1 is used to illustrate 

how the proposed model is able to capture the economic effect 

of considering the correlation between nodal demands. To that 

end, we run the model for different correlation levels between 

nodal demands. Generators offer linear cost functions of the 

form   
           

 
     

   . Nodal demands may deviate 

from the nominal value in the range between plus and minus 

one standard deviation, which is set equal to 0.31 pu. Thus, 

    and the entries of the main diagonal of   are set to 

     . The discretization step for nodal demands is         
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pu. The model has been implemented using Xpress-MP 7.2 

under MOSEL [14]. 

 
Fig. 1. Three-bus system. 

Results are shown in Table I considering both no security 

criterion and an     criterion. The overall energy and 

reserve costs are presented in percentage of the reference case, 

where the correlation between nodal demands (listed in the 

first column) is assumed to be zero. The system imbalance is 

provided in percentage of the system load. Since there are only 

two uncertainty factors, the conservativeness parameter   is 

set to  . 
TABLE I 

SCHEDULING COSTS AND LOAD SHED 

 
With no security 

criterion 
With an      security criterion 

Correlation 
Energy 

Cost 
Reserve 

Cost 
Energy 

Cost 
Reserve 

Cost 
System Imbalance 

(% load) 

-1 100% 46% 87% 85% 0% 

-0.5 100% 82% 91% 99% 0% 

0 *8,120.0 *384.0 *11,340.0 *1,564.0 0% 

0.5 100% 114% 128% 104% 0% 

1.0 103% 143% 141% 106% 4% 
*Reference values shown in $. 

As shown in Table 1, the joint scheduling of energy and 

reserves is valuable in the presence of correlated nodal 

demands. For the case where no security criterion is enforced, 

reserves are the resources that mostly compensate the load 

variability. However, in the security-constrained case where 

reserves are required to cope with credible contingencies, the 

energy schedule presents a higher dependence upon the 

demand correlation, backing up the ultimate goal of efficiently 

co-optimizing energy and reserves.  

V. CONCLUSIONS AND FUTURE RESEARCH 

The consideration of some relevant information about the 

uncertainty modeling in generation scheduling via robust 

optimization models is not explored yet. In this paper, the 

correlation between nodal demands is explicitly considered to 

provide a least-cost schedule of energy and reserves based on 

adjustable robust optimization. The resulting model is 

formulated as a trilevel program that is solved by the 

combined use of Benders decomposition, a binary expansion 

approach, and a linearization scheme based on disjunctive 

constraints. Preliminary results suggest that nodal demand 

correlation might have a relevant impact on the scheduling. 

Therefore, further research is needed to investigate the 

effectiveness of robust models to capture this and other effects 

while achieving practical, economical, and robust schedules of 

energy and reserves. 
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