

Walace Rosa Laurindo

Estudo experimental de bolhas alongadas no escoamento bifásico horizontal intermitente

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pósgraduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

> Orientador: Prof. Luis Fernando Alzuguir Azevedo Co-orientador: Dr. Igor Braga de Paula

Walace Rosa Laurindo

Estudo experimental de bolhas alongadas no escoamento bifásico horizontal intermitente

Dissertação de Mestrado apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luis Fernando Alzuguir Azevedo Orientador

Departamento de Engenharia Mecânica - PUC-Rio

Dr. Igor Braga de Paula Co-orientador

Departamento de Engenharia Mecânica - PUC-Rio

Prof. Marco van Hombeeck Universidade do Estado do Rio de Janeiro - UERJ/IPRJ

Dr. Iberê Nascentes Alves PETROBRAS S. A.

Dr. José Roberto Fagundes NettoPETROBRAS S. A.

Prof. José Eugenio Leal Coordenador Setorial do Centro

Técnico Científico - PUC-Rio

Rio de Janeiro, 04 de abril de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Walace Rosa Laurindo

Graduou-se com distinção em Engenharia Mecânica na Universidade do Estado do Rio de Janeiro em 2009, com ênfase em petróleo e gás.

Ficha Catalográfica

Laurindo, Walace Rosa

Estudo experimental de bolhas alongadas no escoamento bifásico horizontal intermitente / Walace Rosa Laurindo; orientador: Luis Fernando Alzuguir Azevedo; co-orientador: Igor Braga de Paula – 2012.

161 f.: il.(color.); 30 cm

Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2010.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Escoamento bifásico intermitente horizontal. 3. Gás-líquido. 4. Comportamento estatístico. 5. Formato da frente e da traseira da bolha alongada. 6. Processamento de imagens. I. Azevedo, Luis Fernando Alzuguir. II. de Paula, Igor Braga. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Agradecimentos

Quando o tópico a se escrever em uma dissertação é o agradecimento, é a hora de abrir um belo sorriso e relembrar as pessoas que construíram juntas pequenas "peças" dessa dissertação, cujo quebra-cabeça foi por mim montado ao longo de quase três anos, talvez os mais revolucionários na construção gradativa da minha personalidade. Sempre sonhei em encontrar um local onde o ambiente de trabalho, pesquisa e família, se fundissem em uma só aglomeração. Eis que ao final da graduação meu orientador Marco van Hombeeck, me guiou rumo ao Laboratório de engenharia de fluidos. Lá encontrei alunos de iniciação científica brilhantes, como Giulia, Pedro, Carlos, Bruno, Erick, Renata entre outros... pessoas com quem tive enorme afinidade como Juarez e Leozinho e o super engraçado Léo do SIMDUT e é claro, pessoas e engenheiros brilhantes como Guilherme, Fabão, Paulinha e Helena. Enormes agradecimentos também ao meu co-orientador Igor, o grande mentor de toda a eletrônica e sempre presente nos momentos de leve, médio e grande desespero. Devo muito dessa dissertação a sua enorme dedicação, esforço e rigor. Agradecimentos super especiais ao meu orientador, Luis Fernando, carinhosamente, Lu, o grande pilar dessa família que se tornou o laboratório, onde fui acolhido como sendo "da casa". Agradecimentos não podem faltar aos companheiros de labuta, como Daniel, Marylin e Luciana. Não se pode faltar espaço para os amigos, com perigo a grandes puxões de orelha; aí vão agradecimentos a Ceir, Saymon, Gleison, Johnny, Wallace, Giovane, Darwin e Henrik. Para não levar beliscões das amigas, aí segue os agradecimentos à Jennifer, Luciene, Adriana, Paola, Priscilla e Natali. A todo a minha família, aquele agradecimento, em especial minha tia Cilene e meu tio Ilson, que se esforçaram ao máximo para me dar a mínima estrutura necessária que a CAPES jamais sequer se preocupou em perguntar. Se desejamos um país na vanguarda da tecnologia, devemos nos preocupar em dar estrutura, incentivos e suporte ao grande patrimônio desse país que são os alunos. Agradeço a minha mãe, Maria das Graças, ao meu padrasto, muito mais que um pai, Valney, e aos irmãos Willian e Alan. Agradeço a minha avó, Dorcelina Rosa, pela convivência e por resistir aos sustos que me deu ao longo dessa dissertação. Ela foi brava, valente, e suportou tudo para me ver escrever isso aqui. Agradecimentos a teoria da existência divina. Pude sinceramente perceber que enquanto caminhava, muitas das peças do tabuleiro eram mexidas por alguém com extrema sabedoria. Por último, agradeço a você, que teve paciência para ler duas páginas de agradecimento. Siga em frente rumo a leitura minuciosa da dissertação. Foi para isso que ela foi cuidadosamente escrita e que a leia, com no mínimo metade da alegria com que a escrevi.

Resumo

Laurindo, Walace Rosa, Azevedo, Luis Fernando Alzuguir. **Estudo experimental de bolhas alongadas no escoamento bifásico horizontal intermitente**. Rio de Janeiro, 2012. 161p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Ao longo deste trabalho, diversas características importantes para a dinâmica do escoamento intermitente foram analisadas experimentalmente. Todos os testes foram realizados numa tubulação com 0.0508 m de diâmetro interno, em configuração horizontal, utilizando água e ar e abrangendo uma região onde o escoamento passa por uma complexa transição do regime de "bolha alongada", caracterizado por longas bolhas de gás localizadas próximo ao topo da tubulação, para o regime "golfada", caracterizado por uma intensa quantidade de bolhas dispersas de gás e bolhas alongadas com formatos distorcidos e frentes mais distantes do topo da tubulação. Nesta região verifica-se uma notável carência de técnicas experimentais capazes de extrair informações quantitativas dos fenômenos característicos desses regimes. Através de um sistema de interruptores de feixe de infravermelho, o comportamento estatístico dos comprimentos dos pistões de líquido, das frequências de passagem dos pistões e do comprimento da bolha alongada puderam ser investigados. Uma extensa comparação dos dados com trabalhos disponíveis na literatura foi realizada, validando os resultados experimentais obtidos. Em conjunto, foi utilizada a técnica óptica, não intrusiva, conhecida como técnica de sombra (shadow technique), combinada com uma câmera digital de alta taxa de aquisição de imagens. Um procedimento inovador de processamento das imagens foi desenvolvido, permitindo a extração de informações quantitativas de regimes complexos com intensa quantidade de bolhas dispersas. Resultados importantes como o abaixamento do nariz da bolha como uma função da competição entre as forças de gravidade e de inércia puderam ser verificados e confirmados quantitativamente pela primeira vez.

Palavras-chave

Escoamento bifásico intermitente horizontal; gás-líquido; comportamento estatístico; formato da frente e da traseira da bolha alongada; processamento de imagens.

Abstract

Laurindo, Walace Rosa, Azevedo, Luis Fernando Alzuguir (Advisor). **Experimental study of elongated bubbles in horizontal two-phase intermittent flow.** Rio de Janeiro, 2012. 161p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The present work experimentally studied several relevant dynamic characteristics of gas-liquid intermittent flow through a horizontal pipe. All tests were performed in a test section formed by 50.8 mm internal diameter pipe using air and water as working fluids. The tests covered a region where the flow undergoes a complex transition from "elongated bubble flow" regime, characterized by long gas bubbles located near the top of the pipe, to the "slug flow" regime, characterized by a large amount of dispersed gas bubbles in the liquid slug and elongated bubbles with distorted shapes and fronts displaced from the top of the pipe. In this region there is a notable lack of experimental techniques capable of extracting quantitative information of the characteristic dynamic phenomena involved. A set of infrared optical switches was employed to obtain statistical information on liquid piston lengths and frequency, as well as the elongated bubble lengths. An extensive comparison of the data obtained with works available in the literature was performed, validating the experimental results and the technique employed. Also, a high frame rate camera with back illumination was employed to capture images of the nose and tail of gas bubbles. An innovative procedure for image processing was developed, allowing for the extraction of original quantitative information on the complex shapes of the bubble and its relationship with flow variables. Relevant nose information such as the lowering of the bubble as a result competing gravitational and inertial forces could be verified and confirmed quanti tatively seemingly for the first time.

Keywords

Two-phase intermittent slug flow; gas-liquid; statistics behavior; shape of the front and rear of elongated bubbles; image processing.

Sumário

1 Introdução	15
1.1. Organização do trabalho	20
2 Revisão bibliográfica	21
2.1. Conceitos e fundamentos básicos	21
2.2. Uma breve discussão sobre a modelagem do escoamento	
Intermitente e o problema de fechamento	25
2.3. Formação e desenvolvimento do escoamento intermitente	27
2.3.1. Teoria não viscosa de Kelvin-Helmholtz	28
2.3.2. Teoria de instabilidade do comprimento de uma grande onda	
viscosa	29
2.3.3. Teoria de estabilidade dos pistões	29
2.3.4. Desenvolvimento	31
2.4. Velocidade média de translação da bolha alongada	33
2.5. A importância do estudo do formato da frente e da traseira da	
alongada	39
2.6. Comprimento do pistão de líquido	44
2.7. Frequência de passagem dos pistões de líquido	47
2.8. Comprimento da bolha alongada	50
3 Montagem experimental	52
3.1. Descrição geral da montagem experimental	52
3.2. Sistema de escoamento de água	56
3.3. Sistema de escoamento de ar	56
3.4. Sistema de separação	57
3.5. Estação de medição	58
3.5.1. Sistema de interruptores de feixe	59
3.5.2. Caixa de visualização	61
3.5.3. Painel de LED's	61
.5.4. Câmera	62
4 Procedimento experimental e redução de dados	64
4.1. Operação da seção de testes	64

4.2. Sistema de interruptores de feixe	65
4.2.1. Cálculo dos parâmetros de interesse	68
4.3. Algumas definições básicas de estatística	71
4.3.1. Média	71
4.3.2. Medidas de variação	71
4.3.3. Intervalos de confiança	72
4.3.4. Critério de convergência para o tamanho das amostras	76
4.3.5. Desvio médio absoluto	76
5 Descrição da técnica de medição e processamento de imagens	78
5.1. Técnica de sombra	78
5.2. Configuração experimental da técnica	79
5.3. Processamento de imagens	81
5.3.1. Processamento de imagens da frente da bolha alongada	82
5.3.2. Processamento de imagens da traseira da bolha alongada	89
6 Resultados	92
6.1. Matriz de testes	92
6.2. Comparação entre os métodos de medição utilizados	96
6.3. Comprimento do pistão de líquido	98
6.4. Frequência de passagem dos pistões de líquido	105
6.5. Comprimento da bolha alongada	109
6.6. Velocidade de translação da frente da bolha	112
6.7. Análise da mudança do formato do nariz e da traseira da bolha	119
6.7.1. Análise da mudança do formato do nariz da bolha	119
6.7.1. Análise da mudança do formato da traseira da bolha	125
7 Conclusões	130
8 Bibliografia	134
Apêndice	141
A Metodologia para a avaliação de incertezas	141
A.1. Avaliação das incertezas nas varáveis medidas pelo sensor	141
A.2. Tabelas com as estimativas das incertezas das variáveis	
medidas pelo sensor	143

A.3. Histogramas do comprimento do pistao de liquido, da	
frequência de passagem dos pistões e comprimento da bolha alongada	148
A.4. Avaliação das incertezas nas variáveis medidas pelo	
processamento de imagens	159

Lista de Variáveis

Letras Latinas

a, b, c - constantes da solução de Benjamin

 a_1 , a_2 , a_3 - constantes da correlação de Fossa

A - área da seção transversal da tubulação

c' - fator de calibração

C, C', C_{∞} - coeficiente relacionado à contribuição da velocidade de mistura, velocidade de translação da onda, parâmetro adimensional

d - distância

D - diâmetro interno da tubulação

Eo - número de Eötvos

f - frequência média de passagem

Fr - número de Froude

g, g' - aceleração da gravidade, aceleração da gravidade modificada

 $h,\ h',\ \hat{h}$ - altura média do filme de líquido , altura instantânea do filme de líquido, amplitude da onda

i, i' - contador do número de fases, número imaginário

j - velocidade superficial

k, k' - contador do somatório, número de onda

L - comprimento

n - número total de dados experimentais

N - tamanho da amostra

Q - vazão volumétrica

R, R' - coeficiente de determinação, coordenada de linha de corrente na solução de Benjamin

Re - número de Reynolds

s - desvio padrão

S - escorregamento

St - número de Strouhal

t, t' - tempo, parâmetro da distribuição de t-de Student

u - velocidade média

- x coordenada axial
- y coordenada transversal

Letras gregas

- α fração volumétrica
- λ , λ' fração de volume (holdup), comprimento de onda
- π número pi
- θ inclinação
- μ viscosidade
- ρ massa específica
- σ tensão superficial
- Σ parâmetro de tensão superficial
- Δ variação
- Γ número de viscosidade inverso
- χ variável qualquer

Subscritos

- b bolhas dispersas
- B bolha alongada
- correl correlação
- crit crítico (a)
- d deslizamento
- ent entrada
- exp experimental
- f filme de líquido
- G fase gasosa
- L fase líquida
- m mistura
- max máximo (a)
- S pistão de líquido
- sai saída
- T traseira da bolha alongada
- u célula unitária

Siglas

 $CMOS-Complementary\ Metal-Oxide-Semiconductor$

CV - Coeficiente de Variação

DMA - Desvio Médio Absoluto

FEP - $Fluorinated\ Ethylene\ Propylene$

LED - Light Emitting Diode

VOF - Volume of Fluid