6 Síntese e Análise de Antenas Duplo-Refletoras para Cobertura Omnidirecional com Distribuição de Fase Uniforme e Deslocamento do Feixe de Raios no Plano de Elevação

6.1. Introdução

A inclinação do lobo principal do diagrama de radiação em relação ao horizonte pode ser uma solução para propiciar uma iluminação adequada da área de cobertura, evitando interferência nos sistemas adjacentes e, conseqüentemente, aumentando a eficiência espectral. Para um sistema de duplo-refletores composto por um subrefletor parabólico e um refletor principal cônico, a inclinação do lobo pode ser obtida pelo ajuste da inclinação do ângulo do cone. Entretanto, como comentado anteriormente, a utilização do subreflertor parabólico afeta substancialmente a perda de retorno da antena [18]. Alternativamente, em [18-29] os autores apresentam uma técnica de projeto desse sistema de duplo-refletores formado por geratrizes cônicas confocais com eixo deslocado, onde a presenca da cáustica anular entre os refletores permite minimizar a interferência entre o subrefletor e o alimentador. Para os diversos tipos de configuração e ângulo de inclinação do máximo do diagrama, os parâmetros da geometria dos refletores podem ser ajustados para obter um compromisso entre maximização da eficiência e a busca por uma configuração mais compacta [22, 24]. Do ponto de vista industrial, para atender diferentes tipos de cobertura associadas a ângulos de inclinação do máximo do diagrama, seria interessante disponibilizar um conjunto de antenas formado por pares distintos de refletor e subrefletor. Entretanto, uma redução no custo de manufatura deste conjunto de soluções pode ser obtida utilizando o mesmo refletor principal para todas as antenas deste conjunto e modelando o subrefletor para redirecionar o máximo do diagrama. Esta estratégia se torna efetiva na medida em que o custo de fabricação do subrefletor é menor que o do refletor principal. Entretanto, esta redução de custo seria obtida em detrimento do desempenho e da minimização do volume.

Neste capítulo é apresentado um estudo exploratório sobre o desempenho de um conjunto de soluções que utilizam um mesmo refletor principal, descrito por uma geratriz circular, onde o subrefletor é modelado para redirecionar o máximo do diagrama em uma direção α em relação ao horizonte. O redirecionamento do feixe é obtido através do modelamento do subrefletor para gerar fase constante sobre uma abertura cônica de largura W_A', onde o cone tem eixo coincidente com eixo de simetria do sistema de refletores, conforme mostrado na Figura 6.1. Como referências deste estudo, serão utilizados os refletores principais associados aos exemplos de antenas identificadas no Capítulo 5. Novamente, o máximo de diretividade será calculado através do Método da Abertura, onde os campos sobre a abertura cônica serão aproximados aplicando o princípio de conservação de energia em um tubo de raios emitido por uma fonte pontual situada sobre a origem do sistema.

Figura 6.1 – Geometria do deslocamento de feixe no plano de elevação.

6.2. Síntese Ótica do Subrefletor para Fase Uniforme na Abertura com Feixe Deslocado no Plano de Elevação

Para as antenas omnidirecionais de duplo-refletores, a formulação apresentada no Capítulo 5 considera que os raios coplanares que cruzam a

abertura da antena sejam paralelos a um eixo cartesiano de referência e ortogonais à abertura [35]. No espaço, estes raios formam uma frente de onda cilíndrica de largura W_A . Para empregar esta formulação nos casos em que o feixe está inclinado em relação ao eixo de referência, pode-se utilizar um sistema de eixos intermediários x'z' obtido da rotação dos eixos xz de um ângulo α em torno da origem, como ilustrado na Figura 6.2. Neste sistema auxiliar, os raios que incidem perpendicularmente sobre a abertura W'_A são paralelos ao eixo de simetria do sistema, eixo z.

Figura 6.2 – Geometria do deslocamento de feixe no plano de elevação, em relação aos eixos x'z'.

A relação entre as coordenadas (x',z') e (x,z) é expressa através da seguinte transformação:

$$\begin{cases} x' = x \cos \alpha + z \sin \alpha \\ z' = z \cos \alpha - x \sin \alpha \end{cases}$$
(6.1)

Na formulação do problema, o refletor principal é conhecido e definido pela sua geratriz circular de raio R_0 , com centro no ponto (x'_0, z'_0) , e pontos extremos $L \in U$. No sistema x'z', as coordenadas do centro do círculo que define a geratriz circular são dadas por:

$$\begin{cases} x'_0 = x_0 \cos \alpha + z_0 \operatorname{sen} \alpha \\ z'_0 = z_0 \cos \alpha - x_0 \operatorname{sen} \alpha \end{cases}$$
(6.2)

Para um deslocamento de feixe em um ângulo α , é possível definir os pontos extremos da abertura A_L e A_U , onde a largura da abertura ortogonal a direção dos raios que incidem sobre o refletor principal na direção α é dada por:

$$W'_{A} = \left| \frac{1}{2} \left(D_{M} - D_{B} \right) \operatorname{sen} \alpha + W_{A} \cos \alpha \right|$$
(6.3)

onde W_A é a largura da abertura para $\alpha = 0^{\circ}$, D_M e D_B são os diâmetros da base e do topo do refletor principal, respectivamente, como ilustrado na Figura 6.2.

Para obter fase uniforme sobre a abertura cônica, a geratriz do subrefletor deve ser modelada para que o caminho ótico C_0 de qualquer raio emitido pela fonte pontual situada sobre a origem até esta abertura seja constante. Como ilustrado na Figura 6.2, para um ponto A genérico sobre a abertura W'_A , C_0 pode ser expresso por:

$$C_0 = OS + SM + MA \tag{6.4}$$

Entretanto, assim como estabelecido no Capítulo 5, C_0 depende do tipo de mapeamento utilizado para os pontos $L \in U$ do refletor principal e, neste caso, pode ser obtido diretamente, visto que o refletor principal é conhecido.

> Para a configuração ODVC, os pontos L e U do refletor principal são mapeados nos pontos Q e R do subrefletor, respectivamente, como ilustrado na Figura 6.3. Para determinar o caminho ótico C_0 utiliza-se a trajetória conhecida do raio que passa pelo topo da abertura no ponto L incide no ponto Q do subrefletor antes de atingir a origem e expresso por:

$$C_0 = V_S + \overline{QL} + \overline{LA_L}, \tag{6.5}$$

onde,

$$V_{S} = \frac{D_{B}}{2} \tan\left(\beta_{L} + \varphi_{L}\right) - \left|Z_{B}\right|, \tag{6.6}$$

$$\overline{QL} = \frac{V_S + |Z_B|}{\operatorname{sen}(\beta_L + \varphi_L)},$$
(6.7)

е

$$\overline{LA_L} = X_A' + Z_B \operatorname{sen} \alpha - \frac{D_B}{2} \cos \alpha, \qquad (6.8)$$

sendo

$$\theta_{0_L} = \arcsin\left(\frac{|z_0 - Z_B|}{R_0}\right),\tag{6.9}$$

$$\varphi_L = \arctan\left(\frac{2|Z_B|}{D_B}\right),\tag{6.10}$$

е

$$\beta_L = 180^{\circ} - \varphi_L - \alpha - 2\theta_{0_L}.$$
 (6.11)

Figura 6.3 – Geometria do deslocamento de feixe no plano de elevação – ODVC.

Analisando a equação (6.6), observa-se que V_S aumenta com a diminuição de α , crescendo assintoticamente na medida em que $(\beta_L + \varphi_L)$ se aproxima de 90°. Quando $(\beta_L + \varphi_L) = 90°$, o raio que passa pelo topo da abertura no ponto L segue em direção ao subrefletor paralelamente ao eixo z, fazendo com que não se consiga definir V_S sobre este eixo z, o que resulta em um limite inferior para α expresso por:

$$\alpha_{MIN} = 90^{\circ} - 2\theta_{0_L} = 90^{\circ} - 2\arcsin\left(\frac{|z_0 - Z_B|}{R_0}\right)$$
 (6.12)

O limite superior α_{MAX} é determinado pela posição relativa entre os pontos L e U, extremos do refletor principal, onde à medida que α tende a α_{MAX} o tamanho da abertura W'_A tende a zero. Isto ocorre quando:

$$\alpha_{MAX} = \arctan\left(\frac{2W_A}{D_M - D_B}\right) \tag{6.13}$$

Entretanto, antes que se atinjam estes limites α_{MIN} e α_{MAX} definidos em (6.12) e (6.13), respectivamente, a superfície subrefletora pode apresentar limitações impostas pela superfície cáustica do refletor principal, discutida na Seção 5.2.3. A Figura 6.4 ilustra um exemplo do comportamento da superfície cáustica em função de α . Para $\alpha = 0$, observa-se que a porção desta superfície cáustica está distante do subrefletor. À medida que α aumenta ou diminui, esta porção da cáustica se aproxima dos subrefletores, limitando a variação de α , tendo como limites α_{MIN}^C e α_{MAX}^C , onde $\alpha_{MIN}^C > \alpha_{MIN}$ e $\alpha_{MAX}^C < \alpha_{MAX}$.

Figura 6.4 – Comportamento da superfície cáustica em função de α , para a configuração ODVC.

Para a configuração ODRC, os pontos L e U do refletor principal são mapeados nos pontos R e Q do subrefletor, respectivamente. Para determinar o caminho ótico C₀ utiliza-se a trajetória conhecida do raio que passa pelo ponto U no extremo inferior da abertura, incide no ponto Q do subrefletor antes de atingir a origem, e expresso por

$$C_0 = V_S + \overline{QU} + \overline{UA_U}, \qquad (6.14)$$

onde

$$V_{S} = \frac{D_{M}}{2} \tan\left(\beta_{U} + \varphi_{U}\right) - \left|Z_{B}\right| - W_{A}, \qquad (6.15)$$

$$\overline{QU} = \frac{D_M}{2\cos(\beta_U + \varphi_U)},\tag{6.16}$$

е

е

$$\overline{UA_U} = X'_A + (Z_B - W_A) \operatorname{sen} \alpha - \frac{D_M}{2} \cos \alpha, \qquad (6.17)$$

sendo

$$\theta_{0_U} = \arcsin\left(\frac{\left|z_0 - \left|Z_B\right| - W_A\right|}{R_0}\right),\tag{6.18}$$

$$\varphi_U = \arctan\left(\frac{2\left|Z_B - W_A\right|}{D_M}\right),\tag{6.19}$$

 $\beta_U = 180^{\circ} - \varphi_U - \alpha - 2\theta_{0_{II}}.$ (6.20)

Analisando a equação (6.15) percebe-se que V_S , novamente, aumenta com a diminuição de α , crescendo assintoticamente na medida em que $(\beta_U + \varphi_U)$ se aproxima de 90°. Quando $(\beta_U + \varphi_U) = 90°$, o raio que passa pelo extremo inferior da abertura no ponto U segue em direção ao subrefletor paralelamente ao eixo z, fazendo com que não se consiga definir V_S sobre este eixo z, o que resulta em um limite inferior para α que é expresso por:

$$\alpha_{MIN} = 90^{\circ} - 2\theta_{0_U} = 90^{\circ} - 2\arcsin\left(\frac{|z_0 - |Z_B| - W_A|}{R_0}\right)$$
(6.21)

O limite superior α_{MAX} , novamente, é determinado pela posição relativa entre os pontos *L* e *U*, extremos do refletor principal, expresso na equação (6.13). Como discutido na Seção 5.2.3 para a configuração ODRC, a superfície cáustica está localizada entre os refletores. Como ilustrado na Figura 6.5, V_S aumenta com a diminuição de α , afastando o subrefletor desta superfície cáustica, fazendo com que, neste caso, não exista limite inferior para α , além do imposto pela equação (6.21). Entretanto, à medida que α cresce o subrefletor se aproxima desta superfície cáustica, limitando a variação de α , onde, assim como para a configuração ODVC, $\alpha_{MAX}^C < \alpha_{MAX}$, sendo α_{MAX} definido em (6.13).

Figura 6.5 – Comportamento da superfície cáustica em função de α , para a configuração ODRC.

Dado o novo sistema de coordenadas cartesianas x'z', ilustrado na Figura 6.2, a direção dos raios emitidos pela fonte pontual situada sobre a origem é representada pela variável auxiliar γ [35] associada ao ângulo β' medido a partir do eixo Cartesiano x' e dada por:

201

$$\gamma = \cot\left(\frac{\beta'}{2}\right) \tag{6.22}$$

Como descrito em [35], a superfície do refletor principal será representada por uma função N(z'), descrita por:

$$e^{-N(z')} = \frac{2X'_M}{C_0} - \left(\frac{Z'_M}{C_0}\right)^2 + 1$$
(6.23)

onde X'_{M} e Z'_{M} representam as coordenadas dos pontos sobre o refletor principal. Através da aplicação da Lei de Snell, esta forma de representação permite estabelecer uma relação entre os raios emitidos pela fonte pontual situada sobre a origem e os pontos Z'_{M} , onde estes raios cruzam a abertura cônica W'_{A} após refletirem no subrefletor e no refletor principal. Esta relação é dada por:

$$\gamma(\beta') = \cot\left(\frac{\beta'}{2}\right) = \frac{Z'_{M}}{C_{0}} + \frac{2}{C_{0}N_{z'_{M}}}$$
(6.24)

onde N_{z_M} é a derivada primeira desta função N(z') em relação à coordenada Z'_M da abertura cônica W'_A , que, assim como feito no Capítulo 5, pode ser expressa por:

$$N_{\vec{Z}_{M}} = \frac{2Z'_{M} \left[X'_{M} - \dot{x_{0}} \right] - 2C_{0} \left(\dot{z_{0}} - Z'_{M} \right)}{\left[2C_{0}X'_{M} - \left(Z'_{M} \right)^{2} + C_{0}^{2} \right] \left[X'_{M} - \dot{x_{0}} \right]}$$
(6.25)

Substituindo (6.25) em (6.24), a equação (6.24) pode ser reexpressa por:

$$\gamma(\beta') = \cot\left(\frac{\beta'}{2}\right) = \frac{\left[2X'_{M} + C_{0}\right]\left[X'_{M} - x'_{0}\right] - Z'_{M}\left(z'_{0} - Z'_{M}\right)}{Z'_{M}\left[X'_{M} - x'_{0}\right] - C_{0}\left(z'_{0} - Z'_{M}\right)}$$
(6.26)

Nota-se que, no lado direito da equação (6.26) todos os parâmetros são conhecidos, visto que o refletor principal é conhecido. Isto permite obter

diretamente o ângulo β'_N de cada raio que sai da fonte pontual situada sobre a origem e cruza a abertura em z'_{AN} .

A formulação descrita em [35] apresenta, também, a relação entre a distância R_N da origem até um ponto qualquer sobre o subrefletor, e a função N(z') associada ao refletor principal e expressa por:

$$R_{N} = \frac{C_{0}}{2} \left\{ \frac{\left[C_{0}N_{Z'_{M}}\right]^{2} + \left[2 + Z'_{M}N_{Z'_{M}}\right]^{2}}{4e^{N(Z'_{M})} + \left[C_{0}N_{Z'_{M}}\right]^{2}} \right\}$$
(6.27)

Assim, para o raio que cruza a abertura em z'_{AN} , a determinação de β'_N e R_N permite determinar as coordenadas do ponto sobre o subrefletor, associado a este raio e expressas por:

$$\dot{X}_{S_N} = R_N \cos \beta_N \tag{6.28}$$

$$Z'_{S_N} = R_N \mathrm{sen}\beta'_N \tag{6.29}$$

A partir das equações (6.28) e (6.29), pode-se obter as coordenadas dos pontos sobre o subrefletor em termos do sistema original xz:

$$X_{S_N} = X'_{S_N} \cos \alpha - Z'_{S_N} \sin \alpha$$
(6.30)

$$Z_{S_N} = Z'_{S_N} \cos \alpha + X'_{S_N} \sin \alpha$$
(6.31)

As equações (6.30) e (6.31) determinam o subrefletor que, associado ao refletor principal conhecido, produz uma distribuição de fase uniforme na abertura cônica W'_A da antena duplo-refletora.

6.3. Desempenho Eletromagnético da Antena Omnidirecional de Duplo-Refletor com Feixe Deslocado no Plano de Elevação

Como mencionado na Seção 6.1, o Método da Abertura (ApM) [17] e [19-24] será utilizado para determinar o desempenho eletromagnético das antenas duplo-refletoras ODVC e ODRC para cobertura omnidirecional com deslocamento de feixe no plano de elevação. Utilizando as aproximações da Ótica geométrica e a formulação desenvolvida em [35], os campos na abertura cônica W'_A podem ser representados analiticamente. A integração desses campos sobre a abertura cônica permite obter os campos radiados pela antena na região de campo distante.

6.3.1. Campo na Abertura

Através da aplicação do princípio de conservação de energia, pode-se estabelecer uma relação entre a densidade de potência por ângulo sólido $I(\theta)$ radiada pela fonte pontual situada na origem e a densidade de potência $G(z_A)$, que flui normal a abertura cilíndrica W_A^P de raio X_A , ilustrada na Figura 6.6.

Para que o fluxo de potência seja constante num tubo de raios que sai da fonte pontual e atravessa esta abertura cilíndrica W_A^P deve-se ter:

$$I(\theta) \operatorname{sen} \theta d\theta d\phi = G(z_A) X_A dz_A d\phi$$
(6.32)

onde sen $\theta d\theta d\phi$ é o elemento de ângulo sólido em coordenadas polares esféricas envolvendo a fonte pontual e $X_A dz_A d\phi$ é o elemento de área sobre o cilindro de raio X_A e largura W_A^P , como ilustrado na Figura 6.6.

Figura 6.6 – Fluxo de potência em um tubo de raios para a configuração ODRC, com deslocamento de feixe no plano de elevação.

Nota-se que, devido à simetria azimutal deste problema e utilizando o Jacobiano da transformação $\theta(z_A)$, a dependência em relação à ϕ pode ser desconsiderada, permitindo reescrever a Equação (6.32) como:

$$G(z_A) = \frac{I(\theta) \operatorname{sen}\theta}{X_A} \frac{d\theta}{dz_A}$$
(6.33)

A equação (6.33) foi escrita no sistema de eixos cartesianos xz. Entretanto, para que se possa utilizar a formulação desenvolvida em [35] e, conseqüentemente, determinar uma expressão analítica para o campo elétrico na abertura da antena duplo-refletora, é necessário fazer a transformação para o sistema de eixos cartesianos auxiliar x'z'. Considerando que:

$$dz_A = \frac{dz_A}{\cos \alpha},\tag{6.34}$$

$$G(z_A) = G'(z'_A) \cos \alpha, \qquad (6.35)$$

$$\theta = 90^{\circ} + \alpha - \beta', \tag{6.36}$$

$$d\theta = d\beta', \tag{6.37}$$

$$G'(z'_{A}) = I(\theta(z')) \frac{\operatorname{sen}(\theta(z'))}{X_{A}} \frac{d\beta'}{dz'_{A}}$$
(6.38)

A partir de (5.38) pode-se expressar a amplitude do campo elétrico sobre a abertura cônica W'_A como:

$$\left|\vec{E}_{A}\left(\vec{z}_{A}\right)\right| = F_{A}'\left(\vec{z}_{A}\right)\sqrt{\frac{2Z_{TEM}I\left(\theta\left(z'\right)\right)}{X_{A}}}$$
(6.39)

onde

$$F'_{A}\left(z'_{A}\right) = \sqrt{\operatorname{sen}\left(\theta\left(z'\right)\right)\frac{d\beta'}{dz'_{A}}}$$
(6.40)

Para a validade da equação (6.39) é considerado que para $0 \le \theta \le \theta_E$ não haja a presença dos lóbulos secundários do diagrama de radiação do alimentador. Assim como feito no capítulo anterior, $F'_A(z'_A)$ é obtida analiticamente em termos dos parâmetros do refletor principal. Portanto, de maneira análoga ao que foi feito na Seção 5.3.1, tem-se:

$$\operatorname{sen}(\theta(z')) = \frac{\eta^2 - 1}{\eta^2 + 1}$$
 (6.41)

е

$$\frac{d\beta'}{dz_A'} = \left(\frac{2}{\gamma^2 + 1}\right) \left[\frac{N_{Z'}^2 - 2N_{Z'Z'}}{C_0 N_{Z'}^2}\right]$$
(6.42)

Nota-se que, para obter-se um equacionamento mais simples, é utilizada na equação (6.41) a variável $\eta(\theta'(z'))$ para representar a direção de um raio qualquer que emerge da fonte pontual situada sobre a origem, medida em relação ao eixo x, onde $\theta' = 90^{\circ} - \theta$, já para a equação (6.42) é utilizada a variável $\gamma(\beta'(z'))$, medida em relação ao eixo x'. A relação entre $\eta(\theta'(z'))$ e $\gamma(\beta'(z'))$ é dada por:

$$\eta(\theta(z')) = \frac{\gamma(\beta(z'))\zeta(\alpha) + 1}{\gamma(\beta(z')) - \zeta(\alpha)}$$
(6.43)

onde

$$\zeta(\alpha) = \cot\left(\frac{\alpha}{2}\right) \tag{6.44}$$

Para o caso do refletor obtido a partir de uma geratriz com formato circular, $N_{Z'}$ é expressa analiticamente em (6.25) e $N_{Z'Z'}$ é a derivada segunda da função $N(Z'_M)$ em relação à coordenada Z'_M , expressa por:

$$N_{Z'Z'} = \left\{ 2 \left[2C_0 X'_M - (Z'_M)^2 + C_0^2 \right] (X'_M - x'_0) \left[C_0 - x'_0 + X'_M + Z'_M \left[\frac{(Z'_M - z'_0)}{(x'_0 - X'_M)} \right] \right] \right\} - \left[2Z'_M (X'_M - x'_0) - 2C_0 (z'_0 - Z'_M) \right] \times \left[2Z'_M (x'_0 - X'_M) + \left[C_0^2 - 2x'_0 C_0 + 4C_0 X'_M - (Z'_M)^2 \right] \left[\frac{(Z'_M - z'_0)}{(x'_0 - X'_M)} \right] \right] \right\}$$
(6.45)
$$\left\{ \left[2C_0 X'_M - (Z'_M)^2 + C_0^2 \right]^2 (X'_M - x'_0)^2 \right\}^{-1}$$

Substituindo (6.41) e (6.42) em (6.39), tem-se:

$$\left|\vec{E}_{A}\left(z_{A}'\right)\right| = \left\{ \left[\frac{2Z_{TEM}I\left(\theta\left(\beta'\right)\right)}{X_{A}}\right] \left(\frac{\eta^{2}-1}{\eta^{2}+1}\right) \left(\frac{2}{\gamma^{2}+1}\right) \left(\frac{N_{Z'}^{2}-2N_{Z'Z'}}{C_{0}N_{Z'}^{2}}\right) \right\}^{\frac{1}{2}}$$
(6.46)

6.3.2. Campos em Região de Campo Distante

A partir da definição dos campos existentes sobre a abertura da antena duplo-refletora pode-se determinar as expressões para campo distante através da aplicação do Método da Abertura. Para isto, será suposto que todo o fluxo de energia ocorra sobre as paredes do cilindro entre $z_{A1} < z < z_{A2}$, como ilustrado na Figura 6.6, caracterizando uma abertura de dimensões W_A^P , onde

$$Z_{A1} = Z_B - \left(X_A - \frac{D_B}{2}\right) \operatorname{sen}\alpha$$
(6.47)

е

$$Z_{A2} = Z_B - W_A - \left(X_A - \frac{D_M}{2}\right) \operatorname{sen} \alpha$$
(6.48)

Isto permite substituir a distribuição de campos por correntes equivalentes, elétrica e magnética, situadas sobre esta abertura cilíndrica. Estas distribuições de correntes são dadas por:

$$\vec{J}_{S} = \hat{\imath}_{\rho} \times \vec{H}_{A}(z_{A}) = \frac{1}{\eta} E_{A}(z_{A}') \hat{\imath}_{z}$$
(6.49)

$$\vec{M}_{S} = -\hat{\imath}_{\rho} \times \vec{E}_{A}(z_{A}) = -\cos\alpha E_{A}(z_{A}')e^{-iu}\hat{\imath}_{\phi}$$
(6.50)

onde $E_A(z'_A)$ é expresso em (6.46), u é o caminho ótico percorrido pelo raio que sai da fonte pontual situada sobre a origem e incide sobre a abertura cilíndrica W^P_A e expresso por $u = C_0 - d_N$. A partir das Equações (6.49) e (6.50), a obtenção da componente de campo elétrico na região de Fraunhofer segue o mesmo desenvolvimento apresentado na Seção 5.3.3, sendo expressa por:

$$E_{\theta} = \left[\frac{-i\pi\rho_A}{\lambda}\right] \left[\frac{e^{-ikr}}{r}\right] B(\theta) U(\theta)$$
(6.51)

onde

$$B(\theta) = \left[\operatorname{sen} \theta J_0(k\rho_A \operatorname{sen} \theta) + i \cos \alpha J_1(k\rho_A \operatorname{sen} \theta) \right]$$
(6.52)

$$U(\theta) = \int_{z_{A2}}^{z_{A1}} E_A(z'_A) e^{-i(kz\cos\theta + u)} dz$$
 (6.53)

Caso a amplitude e fase do campo elétrico sobre a abertura W'_A sejam uniformes, a diretividade máxima é expressa na equação (5.73), porém, considerando-se a abertura efetiva W'_A .

6.4. Estudo de Casos

Nesta seção as técnicas descritas anteriormente serão utilizadas para a análise de desempenho eletromagnético de antenas duplo-refletoras ODVC e ODRC, em função do deslocamento de feixe no plano de elevação de um ângulo α . Neste estudo comparativo, o refletor principal será mantido constante e, para cada valor de α , o subrefletor será modelado para obter-se um caminho ótico constante ao longo de uma abertura cônica. Como referências serão utilizadas as configurações apresentadas na Seção 5.4 e o refletor principal será caracterizado pelos parâmetros (V_S^I, θ_E^I) para o caso ODVC e (D_S^I, θ_E^I) para o caso ODVC e caso ODRC. O modelo de fonte é descrito na Seção 5.3.2.

6.4.1. Configuração ODVC com Deslocamento de Feixe no Plano de Elevação

Para a análise de desempenho da configuração ODVC em função de α , inicialmente, será considerado o refletor principal da antena que apresentou ganho próximo ao máximo, obtido para $\theta_E^I = 50^\circ$ e $V_S^I = 7,75\lambda$ e retirado da análise paramétrica abordada na Seção 5.4.1. Para $\alpha = 0$, a Tabela 6.1 lista o volume e as dimensões deste sistema de duplo-refletores, bem como o ganho G_0 e as eficiências de transbordamento ε_S , de iluminação da abertura ε_I e total ε_T , considerando o máximo do diagrama de radiação na linha do horizonte. Para este refletor principal, os limites impostos pela superfície cáustica, discutidos na Seção 6.2, são $\alpha_{MIN}^C = -7, 4^\circ$ e $\alpha_{MAX}^C = 24, 5^\circ$.

Dimens	sões	Desempenho		
$D_S(\lambda)$	16,23	$\mathcal{E}_{S}(\%)$	96,035	
$R_0(\lambda)$	176,754	$\mathcal{E}_{I}(\%)$	83,58	
$D_M(\lambda)$	28,032	\mathcal{E}_T (%)	80,27	
$Vol(10^3\lambda^3)$	6,816	$G_0(dBi)$	12,055	

Tabela 6.1 – Estudo de casos para a configuração ODVC, considerando o refletor principal referente à $V_S^I = 7,75\lambda$ e $\theta_E^I = 50^\circ$.

Para um conjunto de valores de α no intervalo $[-6^{\circ}, 6^{\circ}]$, a Figura 6.7 ilustra o comportamento geométrico do subrefletor e a Tabela 6.2 lista as dimensões dos sistemas de duplo-refletores, volume, largura da abertura W_A^P , ganho e as eficiências de transbordamento ε_s , de iluminação da abertura ε_I e total ε_T . Nota-se que, enquanto θ_E cresce com α , o diâmetro D_S do subrefletor tem um máximo próximo de $\alpha = 0$. Para $\alpha < 0$, apesar de o diâmetro D_S diminuir com α , o volume da antena aumenta devido ao aumento assintótico de V_S . Para $\alpha > 0$, tanto o diâmetro D_S quanto V_S diminuem, o que resulta na redução do volume.

Figura 6.7 – Comportamento geométrico do subrefletor, para o refletor principal da configuração ODVC de dimensões listadas na Tabela 6.1.

α	-6°	-4°	-2°	0°	2°	4°	6°
$W_{A}^{'}(\lambda)$	11,285	10,87	10,441	10	9,546	9,082	8,605
$V_S(\lambda)$	24,521	14,285	10,061	7,75	6,29	5,281	4,541
$D_{S}(\lambda)$	11,633	14,87	15,91	16,23	16,198	15,94	15,505
θ_E	13,32°	28°	40,22°	50 *	57,59°	63,23°	67,41°
$\mathcal{E}_{S}(\%)$	4,88	45,98	83,9	96,03	98,09	98,24	98,26
$\mathcal{E}_{I}(\%)$	79,71	84,64	87,5	83,58	73,58	62,56	53,15
$\mathcal{E}_T(\%)$	3,89	38,92	73,41	80,27	72,18	61,46	52,23
$G_0(dBi)$	-1,09	8,912	11,668	12,055	11,595	10,896	10,19
$Vol(10^3\lambda^3)$	11,287	9	7,68	6,816	6,191	5,702	5,3

Tabela 6.2 – Comportamento geométrico e eletromagnético, para o refletor principal da configuração ODVC de dimensões listadas na Tabela 6.1.

Quanto ao ganho, como era de se esperar, apresenta um máximo no entorno de $\alpha = 0$, decaindo na medida em que o máximo do diagrama deslocase deste valor, sendo mais acentuado o decaimento para valores negativos de α , como ilustrado na Figura 6.8. Observa-se na Tabela 6.2 que a variação de ganho em função de α é um compromisso entre as eficiências de iluminação da abertura ε_1 e de transbordamento ε_s . A eficiência de iluminação da abertura apresenta um máximo no entorno de $\alpha = -2^{\circ}$, enquanto que a eficiência de transbordamento decresce com α , pois o θ_E associado à solução diminui, implicando em uma queda acentuada no ganho da antena e chegando a valores menores que 0dBi para $\alpha = -6^{\circ}$. Isto ocorre porque o ganho é calculado na direção α e o ApM não considera as perdas por transbordamento da energia sobre a borda do subrefletor.

O comportamento da iluminação da abertura em função de α pode ser visualizado na Figura 6.9.(a), que mostra a distribuição de campo elétrico na abertura W_A^P da antena duplo-refletora. Observa-se que, para $\alpha = -6^\circ$, a distribuição deste campo elétrico sobre a abertura é mais uniforme, refletindo no aumento da eficiência de iluminação. Entretanto a amplitude deste campo elétrico é baixa, comparada com a obtida para os demais valores de α , pois, com a redução de θ_E , apenas uma pequena parcela da energia proveniente da fonte pontual é redirecionada ao refletor principal. À medida que α aumenta, a distribuição do campo elétrico na abertura da antena duplo-refletora fica mais

concentrada no topo da abertura W_A^P , visto que, para $\theta_E > 60^\circ$ há a incidência das regiões de baixa iluminação do diagrama do alimentador sobre a borda do subrefletor, provocando uma redução no nível de energia sobre a base da abertura, o que resulta na diminuição de ε_I .

A Figura 6.9.(b) ilustra os diagramas de radiação para três valores de α . Observa-se que, apesar da redução de ganho para $\alpha < 0$, a largura de feixe do lobo principal do diagrama de radiação diminui. Isto se deve ao aumento da abertura efetiva à medida que α diminui, visto que, apesar da eficiência de iluminação da abertura ter uma pequena queda, a abertura W_A^P aumenta.

Figura 6.8 – Ganho em função de α , para o refletor principal de dimensões listadas na Tabela 6.1 da configuração ODVC.

Figura 6.9 – (a) Amplitude do campo elétrico da GO na abertura e (b) diagramas de radiação em função de α , para o refletor principal de dimensões listadas na Tabela 6.1 da configuração ODVC.

Para ilustrar a influência da escolha dos parâmetros V_S^I e θ_E^I na determinação do refletor principal e, conseqüentemente, no desempenho eletromagnético e na geometria das antenas duplo-refletoras obtidas em função de α , serão analisados alguns casos obtidos a partir da variação destes parâmetros V_S^I e θ_E^I . Inicialmente, serão considerados os refletores principais obtidos para V_S^I = 5,5 e 9,0 λ , sendo θ_E^I = 50°. A Tabela 6.3 lista as dimensões destas antenas duplo-refletoras e, também, os limites α_{MIN}^C e α_{MAX}^C .

	$\theta_E^I = 50^\circ$				
	$V_S^I = 5, 5\lambda$	$V_S^I = 9,0\lambda$			
$D_{S}(\lambda)$	12,272	18,2704			
$R_0(\lambda)$	96,067	340,107			
$D_{M}(\lambda)$	32,704	26,329			
$Vol(10^3\lambda^3)$	6,488	7,323			
α_{MIN}^{C}	-7,8°	-8,2°			
α_{MAX}^{C}	6,7°	32,9°			

Tabela 6.3 – Dimensões para as estruturas iniciais do estudo de casos para a configuração ODVC, referente à variação de V_s^I .

Para diferentes valores de α , as Figuras 6.10.(a)-(f) ilustram o ganho, as eficiências de iluminação da abertura (ε_I) e de transbordamento (ε_S), o ângulo θ_E , o volume, e os parâmetros V_S e D_S . Quanto ao volume, ilustrado na Figura 6.10.(e), observa-se que, à medida que α aumenta, as três curvas convergem para valores menores de volume. Para $\alpha < 0$, valores menores de V_S^I resultam em antenas mais compactas, visto que, como ilustrado na Figura 6.10.(f), V_S e D_S diminuem, entretanto, quanto menor for V_S^I maior será a limitação imposta pela superfície cáustica, pois o raio (R_0) do refletor principal diminui com V_S^I , fazendo com que a superfície cáustica se aproxime do refletor principal e, conseqüentemente, do subrefletor.

Quanto ao ganho, ilustrado na Figura 6.10.(a), o uso de um refletor principal associado à $V_S^I = 5,5\lambda$ (menor) provoca um deslocamento do ponto de máximo ganho para valores menores de α , além de reduzir a faixa de valores

de α devido à diminuição de α_{MAX}^C . Entretanto, o uso de um refletor principal associado à $V_S^I = 9\lambda$ (maior) produz um deslocamento do ponto de máximo ganho menor que o anterior. Os mecanismos de decaimento das curvas de ganho são idênticos aos descritos no caso de referência para $V_S^I = 7,75\lambda$.

Variando θ_E^I e mantendo $V_S^I = 7,75\lambda$, as Figuras 6.11.(a)-(f) descrevem o desempenho das antenas para valores de α no intervalo $\left[-6^\circ, 12^\circ\right]$. A Tabela 6.4 lista as dimensões das antenas duplo-refletoras referentes à θ_E^I e V_S^I e, também, os limites α_{MIN}^C e α_{MAX}^C . Diferentemente da variação de V_S^I , o ângulo α de máximo ganho, ilustrado na Figura 6.11.(a), mostra-se mais sensível a variação de θ_E^I , crescendo com a diminuição de θ_E^I . Além disto, o comportamento do ganho mostra-se mais estável com a variação de α . Para valores de α entre $\left[0^\circ, 12^\circ\right]$, enquanto que o ganho varia de 2 dB para $\theta_E^I = 40^\circ$, para $\theta_E^I = 60^\circ$ o ganho varia mais de 4 dB. Como ilustrado na Figura 6.11.(f), observa-se que o diâmetro do subrefletor não apresenta grandes variações para os valores de α considerados, o que implica em um aumento de θ_E com o aumento de α , devido à diminuição de V_S .

 $V_{\rm S}^I = 7,75\lambda$ $\theta_E^I = 40^\circ$ $\theta_E^I = 60^\circ$ $D_S(\lambda)$ 12,546 19,885 $R_0(\lambda)$ 655,447 112,267 $D_M(\lambda)$ 29,644 26,304 $Vol(10^3\lambda^3)$ 6,483 7,248 α_{MIN}^{C} -5,7° -8,6° α_{MAX}^C 14,7° 36,3°

Tabela 6.4 – Dimensões para as estruturas iniciais do estudo de casos para a configuração ODVC, referentes à variação de θ_E^l .

Para a construção de um conjunto de antenas para atender uma faixa de valores de α entre $\begin{bmatrix} 0^{\circ}, 12^{\circ} \end{bmatrix}$, a utilização de V_S^I no entorno de 7,75 λ e $\theta_E^I < 50^{\circ}$

Figura 6.10 – Análise da geometria e de desempenho eletromagnético em função de α , para a configuração ODVC, considerando $\theta_E^I = 50^\circ$ e $V_S^I = 5, 5, 7, 75$ e 9λ .

Figura 6.11 – Análise da geometria e de desempenho eletromagnético em função de α , para a configuração ODVC, considerando $V_S^I = 7,75\lambda$ e $\theta_E^I = 40^\circ$, 50° e 60° .

6.4.2. Configuração ODRC com Deslocamento de Feixe no Plano de Elevação

O procedimento de análise do desempenho eletromagnético da configuração ODRC em função de α é semelhante ao feito na seção anterior para a configuração ODVC. Novamente, como referência inicial, será considerado o refletor principal da antena que apresentou ganho próximo ao máximo, obtido para $\theta_E^I = 49^\circ$ e $D_S^I = 40\lambda$ e retirado da análise paramétrica abordada na Seção 5.4.2. Para $\alpha = 0$, a Tabela 6.5 lista o volume e as dimensões deste sistema de duplo-refletores, bem como o ganho (G_0) e as eficiências de transbordamento (ε_S), de iluminação da abertura (ε_I) e total (ε_T), considerando o máximo do diagrama de radiação na linha do horizonte. Como discutido na Seção 6.2, para a configuração ODRC, a superfície cáustica limita a variação de α apenas para $\alpha > 0$, sendo que, para este refletor principal, este limite máximo ocorre em $\alpha_{MAX}^C = 10, 2^\circ$. O limite inferior é definido na equação (6.21) e dado por $\alpha_{MIN} = -14, 2^\circ$.

Dimens	sões	Desempenho		
$V_S(\lambda)$	24,246	$\varepsilon_{S}(\%)$	95,42	
$R_0(\lambda)$	23,5566	$\mathcal{E}_{I}(\%)$	85,79	
$D_M(\lambda)$	17,33	$\mathcal{E}_T(\%)$	81,86	
$Vol(10^3\lambda^3)$	28,82	$G_0(dBi)$	12,14	

Tabela 6.5 – Estudo de casos para a configuração ODRC, considerando $D_S^I = 40\lambda$ e $\theta_E^I = 49^\circ$.

Para um conjunto de valores de α no intervalo $[-4^{\circ}, 10^{\circ}]$, a Figura 6.12 ilustra o comportamento geométrico do subrefletor e a Tabela 6.6 lista as dimensões dos sistemas de duplo-refletores, volume, largura da abertura (W_A^P) , ganho e as eficiências de transbordamento (ε_s) , de iluminação da abertura (ε_I) e total (ε_T) . Nota-se que, ao contrário da ODVC, à medida que α diminui, aumentam todos os parâmetros que definem o subrefletor $(V_S, D_S \in \theta_E)$, fazendo com que o subrefletor e o volume da antena cresçam assintoticamente, resultando em estruturas muito maiores, quando comparadas com a configuração ODVC, considerando $\alpha < 0$.

Figura 6.12 – Comportamento geométrico do subrefletor, para o refletor principal da configuração ODRC de dimensões listadas na Tabela 6.5.

α	-4°	-2°	0°	2°	4°	6°	8°	10°
$W_{A}^{'}(\lambda)$	10,496	10,254	10	9,733	9,455	9,165	8,864	8,552
$V_{S}(\lambda)$	38,164	30,081	24,246	19,827	16,356	13,552	11,234	9,281
$D_{S}(\lambda)$	64,319	50,162	40	32,37	26,454	21,754	17,955	14,844
$ heta_E$	52,3	50,62°	49 *	47,44°	45,96°	44,58°	43,3°	42,2°
$\mathcal{E}_{S}(\%)$	97,03	96,35	95,424	94,2	92,75	91,1	89,41	87,49
$\mathcal{E}_{I}(\%)$	86,61	86,83	85,78	85,8	84,31	81,83	77,73	70,1
$\mathcal{E}_T(\%)$	84,04	83,67	81,86	80,83	78,2	74,55	69,5	62,1
$G_0(dBi)$	12,255	12,236	12,14	12,086	11,943	11,735	11,43	10,94
$Vol(10^3\lambda^3)$	107,89	52,863	28,82	17,118	10,91	7,389	5,27	3,935

Tabela 6.6 – Comportamento geométrico e eletromagnético, para o refletor principal da configuração ODRC de dimensões listadas na Tabela 6.5.

Quanto ao ganho, apesar da eficiência de iluminação da abertura ε_I ter um máximo no entorno de $\alpha = -2^{\circ}$, as eficiências de transbordamento ε_S , total ε_T e, conseqüentemente, o ganho diminuem com o aumento de α . A eficiência de transbordamento decresce com α , pois o θ_E associado à solução diminui, também. O comportamento da iluminação da abertura em função de α pode ser visualizado na Figura 6.14.(a) que mostra a distribuição de campo elétrico na abertura W_A^P da antena duplo-refletora. Observa-se que, à medida que α aumenta, W_A^P diminui e a distribuição deste campo elétrico sobre a abertura é menos uniforme, se concentrando na base desta abertura e resultando na queda da eficiência de iluminação ε_I .

A Figura 6.14.(b) ilustra os diagramas de radiação para três valores de α . Como era de se esperar, observa-se que, à medida que α aumenta, a redução de ganho e da abertura efetiva da antena duplo-refletora resultam no aumento da largura de feixe do lobo principal do diagrama de radiação.

Figura 6.13 – Ganho em função de α , para o refletor principal de dimensões listadas na Tabela 6.5 da configuração ODRC.

Figura 6.14 – (a) Amplitude do campo elétrico da GO na abertura e (b) diagramas de radiação em função de α , para o refletor principal de dimensões listadas na Tabela 6.5 da configuração ODRC.

Para ilustrar a influência da escolha dos parâmetros D_S^I e θ_E^I na determinação do refletor principal e, conseqüentemente, no desempenho eletromagnético e na geometria das antenas duplo-refletoras obtidas em função de α , serão analisados alguns casos obtidos a partir da variação destes parâmetros D_S^I e θ_E^I . Inicialmente, serão considerados os refletores principais obtidos para $D_S^I = 20 \text{ e } 30\lambda$, sendo $\theta_E^I = 49^\circ$. A Tabela 6.7 lista as dimensões destas antenas duplo-refletoras e, também, os limites α_{MIN} e α_{MAX}^C .

	$ heta_E^I = 49^\circ$				
	$D_S^I = 20\lambda$	$D_S^I = 30\lambda$			
$V_{S}(\lambda)$	10,94	17,605			
$R_0(\lambda)$	21,692	22,755			
$D_{M}(\lambda)$	19,05	17,938			
$Vol(10^3\lambda^3)$	6,404	14,307			
α_{MIN}	-24,4°	-18°			
α_{MAX}^C	2,6°	7,5°			

Tabela 6.7 – Dimensões para as estruturas iniciais do estudo de casos para a configuração ODRC, referente à variação de D_S^I .

Para diferentes valores de α , as Figuras 6.15.(a)-(f) ilustram o ganho, as eficiências de iluminação da abertura (ε_I) e de transbordamento (ε_S), o ângulo θ_E , o volume, e os parâmetros V_S e D_S . Quanto ao volume, ilustrado na Figura 6.15.(e), observa-se que, à medida que α aumenta, as três curvas convergem para valores menores de volume. Para $\alpha < 0$, valores menores de D_S^I resultam em antenas mais compactas, visto que, como ilustrado na Figura 6.15.(f), V_S e D_S diminuem. Entretanto, a variação de α é limitada pela superfície cáustica, visto que, a diminuição de D_S^I requer um valor menor para V_S^I aproximando o subrefletor do refletor principal e, conseqüentemente, da superfície cáustica.

Quanto ao ganho ilustrado na Figura 6.15.(a), a diminuição de D_S^I provoca uma queda no ganho. Isto ocorre devido à queda da eficiência de iluminação da

abertura à medida que D_S^I diminui, com ilustrado na Figura 6.15.(b), visto que, a variação de θ_E em função de D_S^I é pequena e as curvas de eficiência de transbordamento, ilustradas na Figura 6.15.(c), apresentam praticamente o mesmo comportamento, não influenciando na variação de ganho em função de D_S^I .

Variando θ_E^I e mantendo $D_S^I = 40\lambda$, as Figuras 6.16.(a)-(f) descrevem o desempenho das antenas para valores de α entre $\left[-4^\circ, 10^\circ\right]$. A Tabela 6.8 lista as dimensões das antenas duplo-refletoras referentes à θ_E^I e D_S^I e, também, os limites α_{MIN} e α_{MAX}^C . De maneira geral, como ilustrado na Figura 6.16.(f), observa-se que o diâmetro do subrefletor não apresenta grandes variações para os valores de θ_E^I considerados, o que implica em um aumento de θ_E com o aumento de θ_E^I , devido à diminuição de V_S . O volume ilustrado na Figura 6.16.(e) apresenta pouca variação com θ_E^I , crescendo assintoticamente com α .

Quanto ao ganho ilustrado na Figura 6.16.(a), observa-se que para $\theta_E^I = 49^\circ$ tem-se a melhor relação entre as eficiências de transbordamento (ε_S), que aumenta com θ_E^I , e de iluminação da abertura (ε_I), que cai com o aumento de θ_E^I .

	$D_S^I = 40\lambda$				
	$\theta_E^I = 40^\circ$ $\theta_E^I = 60^\circ$				
$V_{S}(\lambda)$	29,213	20,446			
$R_0(\lambda)$	28,769	19,247			
$D_M(\lambda)$	18,448	15,916			
$Vol(10^3\lambda^3)$	31,374	28,577			
α_{MIN}	-13,3°	-14,7°			
α_{MAX}^{C}	10,8°	9,8°			

Tabela 6.8 – Dimensões para as estruturas iniciais do estudo de casos para a configuração ODRC, referentes à variação de θ_E^I .

Para a construção de um conjunto de antenas para atender uma faixa de valores de α entre $\begin{bmatrix} 0^{\circ}, 10^{\circ} \end{bmatrix}$, a utilização de D_S^I e θ_E^I no entorno de 40 λ e 49°,

respectivamente, permite obter-se um conjunto de antenas com ganho mais homogêneo que a configuração ODVC, entretanto, considerando valores pequenos de α , a configuração ODRC possui um volume maior, quando comparada com a configuração ODVC, porém, convergindo para valores próximos à medida que α aumenta.

Figura 6.15 – Análise da geometria e de desempenho eletromagnético em função de α , para a configuração ODRC, considerando $\theta_E^I = 49^\circ$ e $D_S^I = 20$, $30 e 40\lambda$.

Figura 6.16 – Análise da geometria e de desempenho eletromagnético em função de α , para a configuração ODRC, considerando $D_S^I = 40\lambda$ e $\theta_E^I = 40^\circ$, 49° e 60° .