

Sandro Rogério Zang

## Síntese e Análise Rigorosa de Antenas Omnidirecionais de Duplo-Refletores: O Caso do Refletor Principal com Geratriz Circular

#### Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Elétrica.

Orientador: Prof. José Ricardo Bergmann

Rio de Janeiro Fevereiro de 2010 Pontifícia Universidade Católica do Rio de Janeiro



### Sandro Rogério Zang

### Síntese e Análise Rigorosa de Antenas Omnidirecionais de Duplo-Refletores: O Caso do Refletor Principal com Geratriz Circular

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. José Ricardo Bergmann Orientador Centro de Estudos em Telecomunicações /PUC-Rio

> Prof. Flavio José Vieira Hasselmann Centro de Estudos em Telecomunicações /PUC-Rio

> > Prof. Luiz Costa da Silva Consultor Independente

Prof. Fernando José da Silva Moreira UFMG

Prof. Gervásio Protásio dos Santos Cavalcante UFPA

> Prof. Jose Ricardo Descardeci UFT

**Prof. José Eugenio Leal** Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de fevereiro de 2010

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

#### Sandro Rogério Zang

Possui graduação em Engenharia Elétrica pela Universidade Federal de Santa Maria (2003), e mestrado em Engenharia Elétrica na área de concentração de Eletromagnetismo Aplicado pela Pontifícia Universidade Católica do Rio de Janeiro (2005).

Ficha Catalográfica

Zang, Sandro Rogério

Síntese e análise rigorosa de antenas omnidirecionais de duplo-refletores: O caso do refletor principal com geratriz circular / Sandro Rogério Zang; orientador: José Ricardo Bergmann. – 2010.

315 f. : il. (color.) ; 30 cm

Tese (Doutorado em Engenharia Elétrica) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2010.

Inclui bibliografia

1. Engenharia Elétrica – Teses. 2. Antenas duplorefletoras para cobertura omnidirecional. 3. Ótica Geométrica. 4. Método do Casamento de Modos. 5. Método dos Momentos. 6. Métodos híbridos. I. Bergmann, José Ricardo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título. PUC-Rio - Certificação Digital Nº 0521340/CA

À minha família.

#### Agradecimentos

Ao meu orientador Prof. José Ricardo Bergmann pelo estímulo, paciência, orientação e amizade, fundamentais em todas as etapas do desenvolvimento desse trabalho.

À minha família, em especial aos meus pais pelo amor, educação e incentivo, sem eles nada disso seria possível.

À Tatiana pelo amor, carinho e apoio incondicional nas horas mais difíceis.

Aos meus colegas do CETUC e aos amigos do PAA, em especial ao André, Diego, Fábio, Fabrício, Janaína, João Felipe, Juliana, Maiquel, Marco Aurélio, Mariana, Rafael, Pedro, Ramirez e Tiago pelo apoio, companheirismo e amizade, essenciais no dia a dia.

Aos amigos da Vice-Reitoria para Assuntos Acadêmicos, em especial à Ana Lúcia e à Célia pelo carinho e pela amizade.

À Julia e à Sheila pela amizade e pela acolhida em sua casa ao longo desses anos.

À Alcina, Ana Maria, Maria Lúcia e demais funcionários do CETUC e da PUC-Rio.

Ao Centro Tecnológico do Exército (CTEX) pelo apoio na realização de medidas eletromagnéticas em seu laboratório.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais esse trabalho não poderia ter sido realizado.

#### Resumo

Zang, Sandro Rogério; Bergmann, José Ricardo. **Síntese e Análise Rigorosa de Antenas Omnidirecionais de Duplo-Refletores: O Caso do Refletor Principal com Geratriz Circular.** Rio de Janeiro, 2010. 315p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho aborda o projeto de antenas omnidirecionais de duplorefletores, onde o refletor principal é obtido a partir de uma geratriz circular. A antena é composta de refletores circularmente simétricos e concêntricos que são alimentados por uma corneta cônica coaxial excitada pelo modo TEM para a produção de polarização vertical. Para realizar este estudo são utilizadas técnicas de síntese e de análise eletromagnética rigorosa. A técnica de análise eletromagnética rigorosa é baseada na associação do Método de Casamento de Modos para representar os campos no interior do alimentador e do Método dos Momentos para solucionar as equações integrais para o campo elétrico e para o campo magnético e determinar a corrente elétrica induzidas sobre as paredes metálicas externas e a amplitude dos modos sobre a abertura da corneta. A técnica de síntese destas antenas é baseada na aplicação dos princípios da Ótica Geométrica para modelar o subrefletor que irá produzir uma distribuição de fase uniforme em uma abertura cônica colocada em frente ao refletor principal com geratriz circular. O estudo exploratório sobre o desempenho destas antenas é dividido em três partes. Na primeira, as soluções fornecidas pela síntese ótica e aproximações para os campos na abertura são utilizadas para identificar configurações de antenas compactas ou que maximizem o ganho ao longo do plano horizontal. Entretanto, pode-se obter uma melhor iluminação da área de cobertura através da inclinação do lobo principal (down tilt). Para reduzir o custo de fabricação de um conjunto de antenas que atendam diferentes áreas de cobertura, pode-se utilizar o mesmo refletor principal e modelar os subrefletores para deslocar a direção de máximo do diagrama. Assim, em uma segunda etapa do estudo paramétrico, são considerados alguns refletores principais, e, para cada um deles, é obtida uma família de subrefletores modelados para deslocar o máximo do diagrama no plano vertical. Esta estratégia se torna efetiva na medida em que o custo de fabricação do subrefletor é menor do que o do refletor principal. Na terceira parte, utilizando o método híbrido composto pelo Método do Casamento de Modos e pelo Método dos Momentos, é feito o modelamento da corneta coaxial TEM com o objetivo de reduzir sua perda de retorno e estender sua banda de operação. Por fim, ainda utilizando este método híbrido, é feita uma análise rigorosa das antenas duplo-refletoras propostas neste trabalho, procurando otimizar o desempenho destas antenas em termos do diagrama de radiação e da perda de retorno.

#### **Palavras-chave**

Antenas duplo-refletoras para cobertura omnidirecional; Ótica Geométrica; Método do Casamento de Modos; Método dos Momentos; métodos híbridos.

#### Abstract

Zang, Sandro Rogério; Bergmann, José Ricardo (Advisor). **Synthesis and Rigorous Analysis of Omnidirectional Dual-Reflector Antennas: The Case of the Main Reflector with Circular Generatrix.** Rio de Janeiro, 2010. 315p. Doctoral Thesis - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents a design study of omnidirectional dual-reflector antennas, where the main reflector is obtained from a circular generatrix. The antenna is composed of two concentric circularly symmetric reflectors and it is fed by a coaxial conical horn excited by TEM mode to produce vertical polarization. To obtain the subreflector surface, the study employs a GO synthesis technique to shape the subreflector in order to produce a uniform phase distribution in a conical aperture placed in front of the main reflector. To validate the results, it is employed a rigorous electromagnetic analysis technique based on the association of Mode Matching Technique to represent the fields inside the horn and Method of Moments to solve the integral equations of electric and magnetic fields. The solution of Method of Moments yields the induced electric current on the outer surface of the horn and the amplitude of the modes on the aperture of the horn. The exploratory study is divided in three parts. First, by using the GO approximations for the aperture fields, the geometry parameters are explored to identify compact antenna configurations that maximize the gain along the horizontal plane. However, a more uniform coverage of the ground can be obtained by tilting the main lobe. Thus, in a second step of the parametric study, it is considered a family of designs with the same main reflector and a set of subreflectors that are designed for different tilt angle of main lobe. This strategy is effective to reduce the manufacturing costs of a family of antennas designed to provide different coverage. Third, by using the hybrid method, the

TEM coaxial horn is shaped to reduce the return loss and extend its operating band, and, finally, the overall antennas performance is optimized by controlling radiation pattern and return loss.

### Keywords

Dual-reflector antennas for omnidirectional coverage; Geometrical Optics; Mode Matching Techniques; Method of Moments; hybrids methods.

## Sumário

| 1 Introdução                                                            | 29  |
|-------------------------------------------------------------------------|-----|
| 1.1. Contextualização do Problema                                       | 29  |
| 1.2. Objetivos e Organização do Trabalho                                | 40  |
|                                                                         |     |
| 2 Método do Casamento de Modos                                          | 46  |
| 2.1. Introdução                                                         | 46  |
| 2.2. Matriz de Espalhamento de uma Descontinuidade de                   |     |
| Seção Transversal de Guia de onda coaxial                               | 48  |
| 2.2.1. Cálculo dos Elementos da Matriz [P], para $l = 0$                | 56  |
| 2.2.2. Cálculo dos Elementos da Matriz [ <i>R</i> ] para $l = 0$        | 60  |
| 2.2.3. Cálculo dos Elementos da Matriz [Q], para $l = 0$                | 62  |
| 2.3. Cascateamento Progressivo das Matrizes de Espalhamento de          |     |
| Várias Descontinuidades                                                 | 63  |
| 2.3.1. Matriz de Espalhamento de um Trecho de Guia de Onda Coaxial liso | 63  |
| 2.3.2. Matriz de Espalhamento da Associação em Cascata                  |     |
| de duas Descontinuidades                                                | 65  |
| 2.4. Validação do Algoritmo Numérico Implementado                       | 69  |
| 2.4.1. Primeiro caso                                                    | 69  |
| 2.4.2. Segundo caso                                                     | 71  |
|                                                                         |     |
| 3 Espalhamento eletromagnético de Corpos de Revolução                   | 74  |
| 3.1. Introdução                                                         | 74  |
| 3.2. Geometria do Corpo de Revolução                                    | 75  |
| 3.3. Equações Integrais do Campo Elétrico e do Campo Magnético          | 76  |
| 3.4. Método dos Momentos                                                | 80  |
| 3.4.1. Equação matricial                                                | 80  |
| 3.5. Funções de Base e de Teste                                         | 86  |
| 3.6. Avaliação Numérica das Matrizes Impedância e Admitância            | 91  |
| 4 Método Híbrido                                                        | ga  |
| 4.1 Matriz de Espalhamento da Combinação das Equações                   | 00  |
| Integrais de Campo Elétrico e Magnético                                 | 100 |
|                                                                         | 100 |

| 4.2. Perda de Retorno para o Método Híbrido                           | 101 |
|-----------------------------------------------------------------------|-----|
| 4.3. Campo Distante                                                   | 102 |
| 4.4. Resultados Numéricos e Validação do Algoritmo                    |     |
| Computacional Implementado                                            | 106 |
| 4.4.1. Guia de Onda Coaxial Aberto                                    | 106 |
| 4.4.2. Guia de Onda Coaxial Aberto com uma Descontinuidade Interna    | 114 |
| 4.4.3. Guia de Onda Coaxial Aberto com duas Descontinuidades Internas | 119 |
| 4.4.4. Guia de Onda Coaxial Aberto com três Descontinuidades Internas | 123 |
| 4.4.5. Corneta Coaxial com Rampa apenas no Condutor Elétrico Externo  | 127 |
| 4.4.6. Corneta Coaxial Apresentada em [18]                            | 132 |
| 5 Síntese e Análise de Antenas Duplo-Refletoras Circularmente         |     |
| Simétricas para Cobertura Omnidirecional Utilizando a Ótica           |     |
| Geométrica e o Método da Abertura                                     | 141 |
| 5.1. Introdução                                                       | 141 |
| 5.2. Síntese Ótica do Subrefletor para Fase Uniforme na Abertura      |     |
| da Antena Duplo-Refletora                                             | 143 |
| 5.2.1. Equação de Mapeamento                                          | 146 |
| 5.2.2. Considerações sobre as Raízes da Equação de Mapeamento         | 154 |
| 5.2.3. Superfície Cáustica                                            | 156 |
| 5.3. Desempenho Eletromagnético da Antena Omnidirecional de           |     |
| Duplo-Refletor                                                        | 162 |
| 5.3.1. Expressão Analítica para o Campo na Abertura                   | 163 |
| 5.3.2. Definição da Fonte                                             | 166 |
| 5.3.3. Campos Radiados pela Antena Duplo-Refletora na Região          |     |
| de Campo Distante                                                     | 169 |
| 5.4. Estudo Paramétrico                                               | 173 |
| 5.4.1. Configuração ODVC                                              | 173 |
| 5.4.2. Configuração ODRC                                              | 184 |
| 6 Síntese e Análise de Antenas Duplo-Refletoras para Cobertura        |     |
| Omnidirecional com Distribuição de Fase Uniforme e Deslocamento       |     |
| do Feixe de Raios no Plano de Elevação                                | 193 |
| 6.1. Introdução                                                       | 193 |
| 6.2. Síntese Ótica do Subrefletor para Fase Uniforme na Abertura      |     |
| com Feixe Deslocado no Plano de Elevação                              | 194 |
| 6.3. Desempenho Eletromagnético da Antena Omnidirecional              |     |

| de Duplo-Refletor com Feixe Deslocado no Plano de Elevação      | 204 |
|-----------------------------------------------------------------|-----|
| 6.3.1. Campo na Abertura                                        | 204 |
| 6.3.2. Campos em Região de Campo Distante                       | 207 |
| 6.4. Estudo de Casos                                            | 209 |
| 6.4.1. Configuração ODVC com Deslocamento de Feixe no           |     |
| Plano de Elevação                                               | 209 |
| 6.4.2. Configuração ODRC com Deslocamento de Feixe no           |     |
| Plano de Elevação                                               | 218 |
| 7 Análise e Projeto de Antenas Duplo-Refletoras para Cobertura  |     |
| Omnidirecional Através do MMT/MoM                               | 226 |
| 7.1. Introdução                                                 | 226 |
| 7.2. Dimensionamento da Corneta Coaxial                         | 228 |
| 7.2.1. Otimização da Estrutura de Acoplamento                   | 230 |
| 7.2.2. Análise Paramétrica da Abertura da Corneta Coaxial       | 231 |
| 7.2.3. Análise Paramétrica da Corrugação                        | 238 |
| 7.3. Análise das Antenas Duplo-Refletora ODVC e ODRC            | 248 |
| 7.3.1. Configuração ODRC                                        | 248 |
| 7.3.2. Configuração ODVC                                        | 257 |
| 7.4. Análise das Antenas Duplo-Refletoras ODVC com Deslocamento |     |
| da Direção de Máxima Radiação no Plano de Elevação              | 262 |
| 8 Conclusões                                                    | 267 |
| 8.1. Conclusões sobre o Trabalho                                | 267 |
| 8.2. Sugestões para a Continuidade do Trabalho                  | 271 |
| 9 Referências Bibliográficas                                    | 273 |
| Apêndice A Campos Modais para Guias de Ondas Coaxiais           | 280 |
| A.1. Solução da Equação Homogênea em Coordenadas Cilíndricas    | 280 |
| A.2. Modo Transversal Magnético TM <sup>Z</sup>                 | 285 |
| A.3. Modo Transversal Elétrico TE <sup>z</sup>                  | 290 |
| A.4. Modo Transversal Eletromagnético TEM <sup>z</sup>          | 295 |
| A.5. Modos TM <sup>Z</sup> e TE <sup>Z</sup> para $l = 0$       | 296 |
|                                                                 |     |

Apêndice B Limitações Teóricas do MMT Aplicado na Análise de Estruturas Coaxiais

298

| Apêndice C Solução de Referência: MoM+IBC                     | 302 |
|---------------------------------------------------------------|-----|
| C.1. Impedance Boundary Condition – IBC                       | 302 |
| C.2. Solução da Equação Integral do Campo Elétrico (EFIE)     |     |
| através do Método dos Momentos (MoM)                          | 304 |
|                                                               |     |
| Apêndice D Avaliação Numérica e Tratamento das singularidades |     |
| das Integrais das Matrizes Impedância e Admitância            | 306 |
| D.1. Avaliação Numérica das Integrais das Matrizes Z e Y      | 306 |
| D.2. Tratamento das Singularidades                            | 308 |
|                                                               |     |
| Apêndice E Técnica de Otimização                              | 314 |

## Lista de figuras

| Figura 1.1 – Geometria da antena duplo-refletora para cobertura           |    |
|---------------------------------------------------------------------------|----|
| omnidirecional, composta por um subrefletor parabólico e um               |    |
| refletor principal cônico (PACO).                                         | 32 |
| Figura 1.2 – Antenas duplo-refletoras omnidirecionais.                    | 34 |
| Figura 1.3 – Geometria da antena duplo-refletora circularmente            |    |
| simétrica para cobertura omnidirecional, com refletor principal           |    |
| obtido a partir de uma geratriz circular.                                 | 41 |
| Figura 1.4 – Corneta coaxial TEM utilizada na alimentação de uma          |    |
| antena duplo-refletora para cobertura omnidirecional.                     | 43 |
| Figura 2.1 – Estrutura de acoplamento entre dois guias de onda            |    |
| coaxiais infinitos de dimensões arbitrárias. (a) Visão espacial e         |    |
| (b) seção longitudinal da estrutura de acoplamento.                       | 47 |
| Figura 2.2 – Ilustração dos modos refletidos e transmitidos               |    |
| em cada descontinuidade de guia de onda coaxial.                          | 47 |
| Figura 2.3 – Descontinuidade em guia de onda coaxial:                     |    |
| (a) seção longitudinal e (b) seção transversal.                           | 48 |
| Figura 2.4 – Ilustração das amplitudes dos campos incidentes              |    |
| e espalhados na descontinuidade ( $z = 0$ ).                              | 49 |
| Figura 2.5 – Descontinuidade decrescente em guia de onda coaxial.         | 55 |
| Figura 2.6 – (a) representação das duas matrizes de espalhamento          |    |
| conectadas, (b) representação da matriz de espalhamento geral             |    |
| obtida pelo cascateamento.                                                | 65 |
| Figura 2.7 – Estrutura de acoplamento entre dois guias de onda            |    |
| coaxiais de dimensões distintas.                                          | 70 |
| Figura 2.8 – $ S11_{00} $ para a estrutura de acoplamento da Figura 2.7.  | 71 |
| Figura 2.9 – Estrutura de acoplamento entre dois guias de onda            |    |
| coaxiais de dimensões iguais, utilizando carregamento dielétrico.         | 72 |
| Figura 2.10 – $ S11_{00} $ para a estrutura de acoplamento da Figura 2.9. | 73 |
| Figura 3.1 – Geometria do BOR, visão espacial.                            | 74 |
| Figura 3.2 – Geometria do BOR, visão longitudinal.                        | 75 |
| Figura 3.3 – BOR representando uma estrutura coaxial de irradiação.       | 76 |
| Figura 3.4 – Densidade de corrente magnética induzida sobre a abertura.   | 77 |
| Figura 3.5 – Problema equivalente externo.                                | 77 |

| Figura 3.6 – Representação das funções triangulares ao longo da            |     |
|----------------------------------------------------------------------------|-----|
| curva geratriz.                                                            | 88  |
| Figura 3.7 – Representação dos meios triângulos.                           | 88  |
| Figura 3.8 – Representação das funções triangulares associadas             |     |
| a corrente superficial equivalente magnética ao longo da abertura e        |     |
| dos coeficientes da expansão modal $B_{lk}$ para o modo TEM.               | 89  |
| Figura 4.1 – Guia de onda coaxial aberto, visão espacial.                  | 107 |
| Figura 4.2 – Guia de onda coaxial aberto, corte longitudinal.              | 107 |
| Figura 4.3 – Análise de convergência para a perda de retorno para a        |     |
| estrutura da Figura 4.1 em função do número de segmentos                   |     |
| utilizados na discretização do BOR.                                        | 109 |
| Figura 4.4 – Análise de convergência para a perda de retorno para          |     |
| a estrutura da Figura 4.1 em função do número de modos TM.                 | 110 |
| Figura 4.5 – Análise de convergência para a perda de retorno para          |     |
| a estrutura da Figura 4.1 em função do número de segmentos                 |     |
| utilizados na discretização da abertura do BOR.                            | 111 |
| Figura 4.6 – Perda de retorno para a estrutura da Figura 4.1.              | 112 |
| Figura 4.7 – Diagrama de radiação para a estrutura da Figura 4.1 em 1 GHz. | 113 |
| Figura 4.8 – Diagrama de radiação para a estrutura da Figura 4.1 em 3 GHz. | 113 |
| Figura 4.9 – Diagrama de radiação para a estrutura da Figura 4.1 em 6 GHz. | 114 |
| Figura 4.10 – Guia de onda coaxial aberto com uma descontinuidade          |     |
| interna, visão espacial.                                                   | 115 |
| Figura 4.11 – Guia de onda coaxial aberto com uma descontinuidade          |     |
| interna, corte longitudinal.                                               | 116 |
| Figura 4.12 – Análise de convergência para a perda de retorno para a       |     |
| estrutura da Figura 4.10 em função do número de modos TM.                  | 116 |
| Figura 4.13 – Perda de retorno para a estrutura da Figura 4.10.            | 117 |
| Figura 4.14 – Diagrama de radiação para a estrutura da Figura 4.10         |     |
| em 1 GHz.                                                                  | 118 |
| Figura 4.15 – Diagrama de radiação para a estrutura da Figura 4.10         |     |
| em 3 GHz.                                                                  | 118 |
| Figura 4.16 – Diagrama de radiação para a estrutura da Figura 4.10         |     |
| em 6 GHz.                                                                  | 119 |
| Figura 4.17 – Guia de onda coaxial aberto com duas descontinuidades        |     |
| internas, visão espacial.                                                  | 120 |
| Figura 4.18 – Guia de onda coaxial aberto com duas descontinuidades        |     |

| internas, corte longitudinal.                                         | 120 |
|-----------------------------------------------------------------------|-----|
| Figura 4.19 – Perda de retorno para a estrutura da Figura 4.17.       | 121 |
| Figura 4.20 – Diagrama de radiação para a estrutura da Figura 4.17    |     |
| em 1 GHz.                                                             | 122 |
| Figura 4.21 – Diagrama de radiação para a estrutura da Figura 4.17    |     |
| em 3 GHz.                                                             | 122 |
| Figura 4.22 – Diagrama de radiação para a estrutura da Figura 4.17    |     |
| em 6 GHz.                                                             | 123 |
| Figura 4.23 – Guia de onda coaxial aberto com três descontinuidades   |     |
| internas, visão espacial.                                             | 124 |
| Figura 4.24 – Guia de onda coaxial aberto com três descontinuidades   |     |
| internas, corte longitudinal.                                         | 124 |
| Figura 4.25 – Perda de retorno para a estrutura da Figura 4.23.       | 125 |
| Figura 4.26 – Diagrama de radiação para a estrutura da Figura 4.23    |     |
| em 1 GHz.                                                             | 125 |
| Figura 4.27 – Diagrama de radiação para a estrutura da Figura 4.23    |     |
| em 3 GHz.                                                             | 126 |
| Figura 4.28 – Diagrama de radiação para a estrutura da Figura 4.23    |     |
| em 6 GHz.                                                             | 126 |
| Figura 4.29 – Corneta coaxial com rampa no condutor elétrico externo, |     |
| visão espacial.                                                       | 127 |
| Figura 4.30 – Corneta coaxial com rampa no condutor elétrico externo, |     |
| corte longitudinal.                                                   | 127 |
| Figura 4.31 – Análise de convergência para a perda de retorno         |     |
| para a estrutura da Figura 4.29 em função do número de saltos         |     |
| da discretização da corneta coaxial.                                  | 128 |
| Figura 4.32 – Análise de convergência para a perda de retorno         |     |
| para a estrutura da Figura 4.29 em função do número de modos TM.      | 129 |
| Figura 4.33 – Perda de retorno para a estrutura da Figura 4.29.       | 130 |
| Figura 4.34 – Diagrama de radiação para a estrutura da Figura 4.29    |     |
| em 1 GHz.                                                             | 131 |
| Figura 4.35 – Diagrama de radiação para a estrutura da Figura 4.29    |     |
| em 3 GHz.                                                             | 131 |
| Figura 4.36 – Diagrama de radiação para a estrutura da Figura 4.29    |     |
| em 6 GHz.                                                             | 132 |
| Figura 4.37 – Corneta coaxial apresentada em [18].                    | 133 |
|                                                                       |     |

| Figura 4.38 – Dimensões da corneta coaxial apresentada em [18].      | 133 |
|----------------------------------------------------------------------|-----|
| Figura 4.39 – Análise de convergência para a perda de retorno        |     |
| em função do número de segmentos utilizados na discretização         |     |
| da curva geratriz da corneta coaxial ilustrada na Figura 4.38.       | 134 |
| Figura 4.40 – Análise de convergência para a perda de retorno        |     |
| em função do número de saltos utilizados na discretização            |     |
| da corneta coaxial ilustrada na Figura 4.38.                         | 136 |
| Figura 4.41 – Análise de convergência para a perda de retorno        |     |
| em função do número de modos TM utilizados em cada seção             |     |
| de guia de onda coaxial da corneta coaxial ilustrada na Figura 4.38. | 136 |
| Figura 4.42 – Perda de retorno para a corneta coaxial ilustrada      |     |
| na Figura 4.38, obtida a partir do MMT/MoM e do IBC/MoM.             | 137 |
| Figura 4.43 – Estrutura de acoplamento da corneta coaxial.           | 138 |
| Figura 4.44 – Perda de retorno para a corneta coaxial com            |     |
| a presença da estrutura de acoplamento.                              | 138 |
| Figura 4.45 – Diagrama de radiação da corneta coaxial com            |     |
| a presença da estrutura de acoplamento em 8,7 GHz.                   | 139 |
| Figura 4.46 – Diagrama de radiação da corneta coaxial com            |     |
| a presença da estrutura de acoplamento em 9,4 GHz.                   | 139 |
| Figura 4.47 – Diagrama de radiação da corneta coaxial com            |     |
| a presença da estrutura de acoplamento em 10 GHz.                    | 140 |
| Figura 5.1 – Geometria da antena duplo-refletora circularmente       |     |
| simétrica para cobertura omnidirecional.                             | 141 |
| Figura 5.2 – Geometria das geratrizes das superfícies refletoras.    | 143 |
| Figura 5.3 – Configuração ODRC (Omnidirectional Dual-Reflector       |     |
| Real Caustic).                                                       | 145 |
| Figura 5.4 – Configuração ODVC (Omnidirectional Dual-Reflector       |     |
| Virtual Caustic).                                                    | 146 |
| Figura 5.5 – Mapeamento dos raios que saem do alimentador e          |     |
| incidem sobre a abertura da antena duplo-refletora.                  | 147 |
| Figura 5.6 – Condições de mapeamento impostas sobre os               |     |
| extremos das curvas geratrizes.                                      | 150 |
| Figura 5.7 – Solução anômala para a equação de mapeamento –          | 155 |
| Figura 5.8 – Solução anômala para a equação de mapeamento – ODRC.    | 156 |
| Figura 5.9 – Superfície cáustica associada ao refletor principal,    |     |
| obtido a partir de uma geratriz circular.                            | 157 |

| Figura 5.10 – Superfície cáustica associada ao refletor principal,                         |     |
|--------------------------------------------------------------------------------------------|-----|
| obtido a partir de uma geratriz circular – visão tridimensional.                           | 157 |
| Figura 5.11 – Traçado de raios para a configuração ODVC,                                   |     |
| considerando um refletor principal côncavo.                                                | 158 |
| Figura 5.12 – Traçado de raios para a configuração ODRC.                                   | 159 |
| Figura 5.13 – Anomalia associada à superfície cáustica, inerente ao                        |     |
| formato circular da geratriz do refletor principal, para a configuração ODVC.              | 160 |
| Figura 5.14 – Anomalia associada à superfície cáustica, inerente ao                        |     |
| formato circular da geratriz do refletor principal, para a configuração ODRC.              | 160 |
| Figura 5.15 – Geometria da geratriz da superfície cáustica.                                | 161 |
| Figura 5.16 – Fluxo de potência para um tubo de raios com incidência                       |     |
| normal à abertura, para a configuração ODRC.                                               | 163 |
| Figura 5.17 – Corneta coaxial utilizada como alimentador das                               |     |
| antenas duplo-refletoras para cobertura omnidirecional.                                    | 166 |
| Figura 5.18 – Diagrama do alimentador para freqüência central,                             |     |
| 9,3 GHz, considerando $R_a = 0,45\lambda_0$ e $R_b = 0,90\lambda_0$ .                      | 168 |
| Figura 5.19 – Diagrama do alimentador para freqüência central,                             |     |
| 9,3 GHz, considerando $R_a = 0,46\lambda_0$ e $R_b = 0,93\lambda_0$ .                      | 168 |
| Figura 5.20 – Estudo paramétrico do ganho, para a configuração ODVC.                       | 174 |
| Figura 5.21 – Eficiência de transbordamento ( <i>Spillover</i> ) em função de $\theta_E$ . | 175 |
| Figura 5.22 – Eficiência de iluminação da abertura, para a configuração                    |     |
| ODVC.                                                                                      | 175 |
| Figura 5.23 – Módulo do campo elétrico da GO na abertura, para a                           |     |
| configuração ODVC.                                                                         | 176 |
| Figura 5.24 – Traçado de raios para a configuração ODVC,                                   |     |
| sendo $V_S = 4,0\lambda$ e $\theta_E = 60^{\circ}$ .                                       | 177 |
| Figura 5.25 – Traçado de raios para a configuração ODVC,                                   |     |
| sendo $V_S = 7,75\lambda$ e $\theta_E = 60^\circ$ .                                        | 177 |
| Figura 5.26 – Traçado de raios para a configuração ODVC,                                   |     |
| sendo $V_S = 7,75\lambda$ e $\theta_E = 50^\circ$ .                                        | 178 |
| Figura 5.27 – Estudo paramétrico do ganho, para a configuração                             |     |
| ODVC – região de máximo ganho.                                                             | 179 |
| Figura 5.28 – Definição do volume ocupado pela antena duplo-refletora.                     | 179 |
| Figura 5.29 – Estudo paramétrico do volume, para a configuração ODVC.                      | 180 |

| Figura 5.30 – Estudo paramétrico de $D_M$ , para a configuração ODVC.                      | 181 |
|--------------------------------------------------------------------------------------------|-----|
| Figura 5.31 – Estudo paramétrico de $D_S$ , para a configuração ODVC.                      | 181 |
| Figura 5.32 – Geratrizes dos refletores, para a configuração                               |     |
| ODVC, considerando $\theta_E = 70^\circ$ e $V_S = 3,5\lambda, 5\lambda$ e 7,75 $\lambda$ . | 182 |
| Figura 5.33 – Estudo paramétrico do volume, para a configuração                            |     |
| ODVC – Região de ganho máximo.                                                             | 183 |
| Figura 5.34 – Estudo paramétrico do raio da geratriz do refletor principal,                |     |
| R <sub>0</sub> , para a configuração ODVC.                                                 | 183 |
| Figura 5.35 – Estudo paramétrico do ganho, para a configuração ODRC.                       | 185 |
| Figura 5.36 – Eficiência de iluminação da abertura, para a                                 |     |
| configuração ODRC.                                                                         | 185 |
| Figura 5.37 – Módulo do campo elétrico da GO na abertura, para a                           |     |
| configuração ODRC.                                                                         | 186 |
| Figura 5.38 – Traçado de raios para a configuração ODRC,                                   |     |
| sendo $D_S = 17\lambda$ e $\theta_E = 60^\circ$ .                                          | 187 |
| Figura 5.39 – Traçado de raios para a configuração ODRC,                                   |     |
| sendo $D_S = 40\lambda$ e $\theta_E = 60^\circ$ .                                          | 187 |
| Figura 5.40 – Traçado de raios para a configuração ODVC,                                   |     |
| sendo $D_S = 40\lambda$ e $\theta_E = 50^{\circ}$ .                                        | 188 |
| Figura 5.41 – Estudo paramétrico do ganho, para a configuração                             |     |
| ODRC – região de ganho máximo.                                                             | 189 |
| Figura 5.42 – Estudo paramétrico do volume, para a configuração ODRC.                      | 190 |
| Figura 5.43 – Estudo paramétrico de $D_M$ , para a configuração ODRC.                      | 190 |
| Figura 5.44 – Estudo paramétrico de $V_S$ , para a configuração ODRC.                      | 191 |
| Figura 5.45 – Estudo paramétrico do volume, para a configuração                            |     |
| ODRC – Região de ganho máximo.                                                             | 192 |
| Figura 5.46 – Estudo paramétrico do raio da geratriz do refletor principal,                |     |
| R <sub>0</sub> , para a configuração ODRC.                                                 | 192 |
| Figura 6.1 – Geometria do deslocamento de feixe no plano de elevação.                      | 194 |
| Figura 6.2 – Geometria do deslocamento de feixe no plano de elevação,                      |     |
| em relação aos eixos $x'z'$ .                                                              | 195 |
| Figura 6.3 – Geometria do deslocamento de feixe no plano de                                |     |
| elevação – ODVC.                                                                           | 197 |

| Figura 6.4 – Comportamento da superfície cáustica em função de $\alpha$ ,               |     |
|-----------------------------------------------------------------------------------------|-----|
| para a configuração ODVC.                                                               | 199 |
| Figura 6.5 – Comportamento da superfície cáustica em função de $lpha$ ,                 |     |
| para a configuração ODRC.                                                               | 201 |
| Figura 6.6 – Fluxo de potência em um tubo de raios para a configuração                  |     |
| ODRC, com deslocamento de feixe no plano de elevação.                                   | 205 |
| Figura 6.7 – Comportamento geométrico do subrefletor, para o refletor                   |     |
| principal da configuração ODVC de dimensões listadas na Tabela 6.1.                     | 210 |
| Figura 6.8 – Ganho em função de $lpha$ , para o refletor principal de                   |     |
| dimensões listadas na Tabela 6.1 da configuração ODVC.                                  | 212 |
| Figura 6.9 – (a) Amplitude do campo elétrico da GO na abertura e (b)                    |     |
| diagramas de radiação em função de $lpha$ , para o refletor principal de                |     |
| dimensões listadas na Tabela 6.1 da configuração ODVC.                                  | 213 |
| Figura 6.10 – Análise da geometria e de desempenho eletromagnético                      |     |
| em função de $\alpha$ , para a configuração ODVC, considerando $\theta_E^I$ = 50°       |     |
| <b>e</b> $V_S^I = 5, 5, 7, 75 \text{ e } 9\lambda$ .                                    | 216 |
| Figura 6.11 – Análise da geometria e de desempenho eletromagnético                      |     |
| em função de $\alpha$ , para a configuração ODVC, considerando $V_S^I$ = 7,75 $\lambda$ |     |
| <b>e</b> $\theta_E^I = 40^\circ$ , $50^\circ$ e $60^\circ$ .                            | 217 |
| Figura 6.12 – Comportamento geométrico do subrefletor, para o refletor                  |     |
| principal da configuração ODRC de dimensões listadas na Tabela 6.5.                     | 219 |
| Figura 6.13 – Ganho em função de $lpha$ , para o refletor principal de                  |     |
| dimensões listadas na Tabela 6.5 da configuração ODRC.                                  | 220 |
| Figura 6.14 – (a) Amplitude do campo elétrico da GO na abertura                         |     |
| e (b) diagramas de radiação em função de $lpha$ , para o refletor                       |     |
| principal de dimensões listadas na Tabela 6.5 da configuração ODRC.                     | 221 |
| Figura 6.15 – Análise da geometria e de desempenho eletromagnético                      |     |
| em função de $\alpha$ , para a configuração ODRC, considerando $\theta_E^I = 49^\circ$  |     |
| <b>e</b> $D_S^I = 20$ , 30 e 40 $\lambda$ .                                             | 224 |
| Figura 6.16 – Análise da geometria e de desempenho eletromagnético                      |     |
| em função de $\alpha$ , para a configuração ODRC, considerando $D_S^I = 40\lambda$      |     |
| <b>e</b> $\theta_E^I = 40^\circ, \ 49^\circ \ \text{e} \ 60^\circ.$                     | 225 |
| Figura 7.1 – Geometria tridimensional da antena duplo-refletora para                    |     |
| cobertura omnidirecional alimentada por uma corneta coaxial TEM.                        | 227 |

| Figura 7.2 – Visão tridimensional da corneta coaxial apresentada em [18].                             | 229 |
|-------------------------------------------------------------------------------------------------------|-----|
| Figura 7.3 – Dimensões da corneta coaxial apresentada em [18].                                        | 229 |
| Figura 7.4 – Perda de retorno resultante do processo de otimização                                    |     |
| do acoplador.                                                                                         | 231 |
| Figura 7.5 – Perda de retorno da corneta coaxial para (a) $R_b = 29,1mm$                              |     |
| $(0,90\lambda_0)$ , (b) $R_b = 29,746mm$ $(0,92\lambda_0)$ e (c) $R_b = 30,392mm$ $(0,94\lambda_0)$ . | 233 |
| Figura 7.6 – Diagrama de radiação da corneta coaxial para a freqüência                                |     |
| de 8 GHz, considerando $R_b = 29,1mm (0,90\lambda_0)$ .                                               | 236 |
| Figura 7.7 – Diagrama de radiação da corneta coaxial para a freqüência                                |     |
| de 9,3 GHz, considerando $R_b = 29,1mm (0,90\lambda_0)$ .                                             | 236 |
| Figura 7.8 – Diagrama de radiação da corneta coaxial para a freqüência                                |     |
| de 10,5 GHz, considerando $R_b = 29,1mm  (0,90\lambda_0)$ .                                           | 237 |
| Figura 7.9 – Amplitude das componentes transversais do campo elétrico                                 |     |
| modal presentes na abertura da corneta coaxial para 10,5 GHz,                                         |     |
| considerando $R_a = 11,31mm \ (0,35\lambda_0)$ e $R_b = 29,1mm \ (0,90\lambda_0)$ .                   | 237 |
| Figura 7.10 – Amplitude das componentes transversais do campo elétrico                                |     |
| modal presentes na abertura da corneta coaxial para 10,5 GHz,                                         |     |
| considerando $R_a = 14,5mm (0,45\lambda_0)$ e $R_b = 29,1mm (0,90\lambda_0)$ .                        | 238 |
| Figura 7.11 – Perda de retorno da corneta coaxial em função de $P_C$ .                                | 240 |
| Figura 7.12 – Diagrama de radiação da corneta coaxial para a freqüência                               |     |
| de 8 GHz, em função de $P_C$ .                                                                        | 240 |
| Figura 7.13 – Diagrama de radiação da corneta coaxial para a freqüência                               |     |
| de 9,3 GHz, em função de $P_C$ .                                                                      | 241 |
| Figura 7.14 – Diagrama de radiação da corneta coaxial para a freqüência                               |     |
| de 10,5 GHz, em função de $P_c$ .                                                                     | 241 |
| Figura 7.15 – Corrente elétrica superficial equivalente da corneta coaxial                            |     |
| para a freqüência de 8 GHz, considerando $P_C = 6,78mm (0,21\lambda_0)$ .                             | 242 |
| Figura 7.16 – Corrente elétrica superficial equivalente da corneta coaxial                            |     |
| para a freqüência de 8 GHz, considerando $P_C = 8,7mm (0,27\lambda_0)$ .                              | 243 |
| Figura 7.17 – Amplitude das componentes transversais do campo elétrico                                |     |
| modal presentes na abertura da corneta coaxial para 8 GHz,                                            |     |
| considerando $P_C = 6,78mm (0,21\lambda_0)$ .                                                         | 244 |

| Figura 7.18 – Amplitude das componentes transversais do campo elétrico     |     |
|----------------------------------------------------------------------------|-----|
| modal presentes na abertura da corneta coaxial para 8 GHz,                 |     |
| considerando $P_C = 8,7mm (0,27\lambda_0)$ .                               | 244 |
| Figura 7.19 – Amplitude do campo elétrico modal presente na abertura       |     |
| da corneta coaxial para 8 GHz, considerando $P_C = 6,78mm (0,21\lambda_0)$ |     |
| <b>e</b> $P_C = 8,7mm \ (0,27\lambda_0)$ .                                 | 245 |
| Figura 7.20 – Perda de retorno da corneta coaxial em função de $L_C$ .     | 246 |
| Figura 7.21 – Diagrama de radiação da corneta coaxial para a freqüência    |     |
| de 8 GHz, em função de $L_C$ .                                             | 246 |
| Figura 7.22 – Diagrama de radiação da corneta coaxial para a freqüência    |     |
| de 9,3 GHz, em função de $L_C$ .                                           | 247 |
| Figura 7.23 – Diagrama de radiação da corneta coaxial para a freqüência    |     |
| de 10,5 GHz, em função de $L_C$ .                                          | 247 |
| Figura 7.24 – Diagramas de radiação para a antena duplo-refletora          |     |
| ODRC do Caso I, obtidos a partir do ApM e do MMT/MoM, para a               |     |
| freqüência de 9,3 GHz.                                                     | 250 |
| Figura 7.25 – Comparação entre a perda de retorno da antena duplo-         |     |
| refletora ODRC do Caso I e da corneta coaxial utilizada como alimentador.  | 251 |
| Figura 7.26 – Comparação entre a perda de retorno da antena duplo-         |     |
| refletora ODRC do Caso I com e sem a presença do refletor principal.       | 252 |
| Figura 7.27 – Comparação entre a perda de retorno das antenas duplo-       |     |
| refletoras ODRC dos <i>Casos I e II</i> e da corneta coaxial.              | 253 |
| Figura 7.28 – Diagramas de radiação para as antenas duplo-refletoras       |     |
| ODRC dos <i>Casos I e II</i> , para 8 GHz.                                 | 255 |
| Figura 7.29 – Diagramas de radiação para as antenas duplo-refletoras       |     |
| ODRC dos <i>Casos I e II</i> , para 9,3 GHz.                               | 256 |
| Figura 7.30 – Diagramas de radiação para as antenas duplo-refletoras       |     |
| ODRC dos <i>Casos I e II</i> , para 10,5 GHz.                              | 256 |
| Figura 7.31 – Fase do diagramas de radiação da corneta coaxial utilizada   |     |
| como alimentador, para a freqüência de 10,5 GHz.                           | 257 |
| Figura 7.32 – Diagramas de radiação para a antena duplo-refletora          |     |
| ODVC de dimensões listadas na Tabela 7.8, obtidos a partir do              |     |
| ApM e do MMT/MoM, para a freqüência de 9,3 GHz.                            | 258 |
| Figura 7.33 – Comparação entre a perda de retorno da antena duplo-         |     |
|                                                                            |     |

| refletora ODVC de dimensões listadas na Tabela 7.8 e da                                                     |     |  |
|-------------------------------------------------------------------------------------------------------------|-----|--|
| corneta coaxial utilizada como alimentador.                                                                 | 259 |  |
| Figura 7.34 – Comparação entre a perda de retorno da antena duplo-                                          |     |  |
| refletora ODVC de dimensões listadas na Tabela 7.8 com e sem a                                              |     |  |
| presença do refletor principal.                                                                             | 260 |  |
| Figura 7.35 – Diagramas de radiação para a antena duplo-refletora ODVC                                      |     |  |
| de dimensões listadas na Tabela 7.8, para as freqüências de 8 e 10,5 GHz.                                   | 261 |  |
| Figura 7.36 – Antenas duplo-refletoras ODVC de dimensões listadas na                                        |     |  |
| Tabela 7.11, considerando $\alpha = 0^{\circ}$ , $6^{\circ}$ e $12^{\circ}$ .                               | 263 |  |
| Figura 7.37 – Comparação entre a perda de retorno das antenas duplo-                                        |     |  |
| refletoras ODVC de dimensões listadas na Tabela 7.11, considerando                                          |     |  |
| $\alpha = 0^{\circ}$ , $6^{\circ}$ e $12^{\circ}$ , e da corneta coaxial utilizada como alimentador.        | 264 |  |
| Figura 7.38 – Diagramas de radiação para as antenas duplo-refletoras                                        |     |  |
| ODVC de dimensões listadas na Tabela 7.11, considerando $\alpha = 0^{\circ}$ , $6^{\circ}$ e $12^{\circ}$ , |     |  |
| para a freqüência de 8 GHz.                                                                                 | 265 |  |
| Figura 7.39 – Diagramas de radiação para as antenas duplo-refletoras                                        |     |  |
| ODVC de dimensões listadas na Tabela 7.11, considerando $\alpha = 0^{\circ}$ , $6^{\circ}$ e $12^{\circ}$ , |     |  |
| para a freqüência de 9,3 GHz.                                                                               | 266 |  |
| Figura 7.40 – Diagramas de radiação para as antenas duplo-refletoras                                        |     |  |
| ODVC de dimensões listadas na Tabela 7.11, considerando $\alpha = 0^{\circ}$ , $6^{\circ}$ e $12^{\circ}$ , |     |  |
| para a freqüência de 10,5 GHz.                                                                              | 266 |  |
| Figura A.1 – Geometria do problema proposto. (a) seção de guia de onda                                      |     |  |
| coaxial e (b) sistema de coordenadas cilíndricas.                                                           | 280 |  |
| Figura A.2 – Representação dos vetores unitários em coordenadas                                             |     |  |
| cilíndricas para dois pontos distintos $(\rho_1,\phi_1,z_1) \in (\rho_2,\phi_2,z_2)$ .                      | 281 |  |
| Figura A.3 – $f_{c_{lm}}^{TM}$ em função de $a/b$ para os primeiros modos $TM_{lm}^{z}$ ,                   |     |  |
| obtidos através da solução numérica da equação (A.39),                                                      |     |  |
| considerando $b = 15mm$ .                                                                                   | 290 |  |
| Figura A.4 – Distribuição das componentes transversais de campo no                                          |     |  |
| interior do guia de onda coaxial para o modo $TM_{01}^z$ .                                                  | 290 |  |
| Figura A.5 – $f_{c_{lm}}^{TE}$ em função de $a/b$ para os primeiros modos $TE_{lm}^{z}$ ,                   |     |  |
| obtidos através da solução numérica da equação (A.75),                                                      |     |  |
| considerando $b = 15mm$ .                                                                                   | 294 |  |
| Figura A.6 – Distribuição das componentes transversais de campo no                                          |     |  |

| interior do guia de onda coaxial para os modos (a) $TE_{11}^z$ e (b) $TE_{21}^z$ . | 294 |
|------------------------------------------------------------------------------------|-----|
| Figura A.7 – Distribuição das componentes transversais de campo no                 |     |
| interior do guia de onda coaxial para o modo $TEM^z$ .                             | 296 |
| Figura B.1 – Estrutura de acoplamento entre dois guias de onda                     |     |
| coaxiais de dimensões diferentes.                                                  | 298 |
| Figura B.2 – Estrutura de acoplamento com deslocamento $G$                         |     |
| no cilindro condutor central (a) para a direita e (b) para a esquerda.             | 299 |
| Figura C.1 – Representação da IBC como parede de absorção                          |     |
| do modo TEM.                                                                       | 303 |
| Figura E.1 – Visualização da função objetivo $F(x)$ .                              | 315 |

### Lista de tabelas

| Tabela 2.1 – Dimensões da estrutura de acoplamento da Figura 2.7.                               | 70  |
|-------------------------------------------------------------------------------------------------|-----|
| Tabela 2.2 – Dimensões da estrutura de acoplamento da Figura 2.9.                               | 72  |
| Tabela 6.1 – Estudo de casos para a configuração ODVC,                                          |     |
| considerando o refletor principal referente à $V_S^I = 7,75\lambda$ e $\theta_E^I = 50^\circ$ . | 209 |
| Tabela 6.2 – Comportamento geométrico e eletromagnético, para o                                 |     |
| refletor principal da configuração ODVC de dimensões listadas                                   |     |
| na Tabela 6.1.                                                                                  | 211 |
| Tabela 6.3 – Dimensões para as estruturas iniciais do estudo de casos                           |     |
| para a configuração ODVC, referente à variação de $V_S^I$ .                                     | 214 |
| Tabela 6.4 – Dimensões para as estruturas iniciais do estudo de casos                           |     |
| para a configuração ODVC, referentes à variação de $ 	heta^I_{\! E}  .$                         | 215 |
| Tabela 6.5 – Estudo de casos para a configuração ODRC,                                          |     |
| considerando $D_S^I = 40\lambda$ e $\theta_E^I = 49^\circ$ .                                    | 218 |
| Tabela 6.6 – Comportamento geométrico e eletromagnético, para o                                 |     |
| refletor principal da configuração ODRC de dimensões listadas                                   |     |
| na Tabela 6.5.                                                                                  | 219 |
| Tabela 6.7 – Dimensões para as estruturas iniciais do estudo de casos                           |     |
| para a configuração ODRC, referente à variação de $D_S^I$ .                                     | 222 |
| Tabela 6.8 – Dimensões para as estruturas iniciais do estudo de casos                           |     |
| para a configuração ODRC, referentes à variação de $ 	heta^I_{\! E}  .$                         | 223 |
| Tabela 7.1 – Dimensões em milímetros da estrutura de acoplamento,                               |     |
| abertura e corrugação da corneta coaxial apresentada em [18].                                   | 230 |
| Tabela 7.2 – Dimensões em milímetros da estrutura de acoplamento                                |     |
| otimizada.                                                                                      | 230 |
| Tabela 7.3 – Análise paramétrica do diagrama de radiação em função                              |     |
| de $R_a$ e $R_b$ , para as freqüências de 8, 9,3 e 10,5 GHz.                                    | 235 |
| Tabela 7.4 – Dimensões da antena duplo-refletora ODRC do Caso I,                                |     |
| para $D_S=20\lambda_0$ e $\theta_E=45^\circ$ .                                                  | 249 |
| Tabela 7.5 – Desempenho eletromagnético da antena duplo-refletora ODRC                          |     |
| do Caso I , obtido a partir do ApM e do MMT/MoM , para 9,3 GHz.                                 | 250 |
| Tabela 7.6 – Dimensões da antena duplo-refletora ODRC                                           |     |
| do <i>Caso II</i> , considerando $D_S=24,5\lambda_0 \in \theta_E=60^\circ$ .                    | 252 |

| Tabela 7.7 – Desempenho eletromagnético das antenas duplo-refletoras                                                                 |     |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| ODRC dos <i>Casos I e II</i> , para as freqüências de 8, 9,3 e 10,5 GHz.                                                             | 255 |
| Tabela 7.8 – Dimensões da antena duplo-refletora ODVC,                                                                               |     |
| considerando $V_S=7,75\lambda_0$ e $\theta_E=50^\circ$ .                                                                             | 258 |
| Tabela 7.9 – Desempenho eletromagnético da antena duplo-refletora                                                                    |     |
| ODVC, de dimensões listadas na Tabela 7.8, obtido a partir do                                                                        |     |
| ApM e do MMT/MoM, para 9,3 GHz .                                                                                                     | 258 |
| Tabela 7.10 – Desempenho eletromagnético da antena duplo-refletora                                                                   |     |
| ODVC de dimensões listadas nas Tabelas 7.8, para as freqüências                                                                      |     |
| de 8 e 10,5 GHz.                                                                                                                     | 261 |
| Tabela 7.11 – Dimensões das antenas duplo-refletoras ODVC dadas                                                                      |     |
| em $\lambda_0$ , considerando $V_S^I = 7,75\lambda_0$ e $\theta_E^I = 40^\circ$ , para $\alpha = 0^\circ$ , $6^\circ$ e $12^\circ$ . | 263 |
| Tabela 7.12 – Desempenho eletromagnético das antenas duplo-refletoras                                                                |     |
| ODVC de dimensões listadas na Tabela 7.11, para as freqüências                                                                       |     |
| de 8, 9,3 e 10,5 GHz.                                                                                                                | 265 |
| Tabela B.1 – Dimensões dos cilindros condutores interno e externo                                                                    |     |
| para o acoplador da Figura B.1.                                                                                                      | 298 |
|                                                                                                                                      |     |

# Lista de siglas

| ABC  | Absorbing Boundary Condition                   |
|------|------------------------------------------------|
| АрМ  | Aperture Method                                |
| BOR  | Bodies of revolution                           |
| CEP  | Condutor elétrico perfeito                     |
| EFIE | Electric Field Integral Equation               |
| ER   | Estações remotas                               |
| ERB  | Estação rádio base                             |
| FBT  | Funções de base triangulares                   |
| FDD  | Frequency Division Duplexing                   |
| FDM  | Finite Difference Method                       |
| FDTD | Finite-Difference in Time-Domain               |
| FEM  | Finite Element Method                          |
| GO   | Geometrical Optics                             |
| GTD  | Geometrical Theory of Diffraction              |
| IBC  | Impedance Boundary Condition                   |
| LMDS | Local Multipoint Distribution System           |
| MFIE | Magnetic Field Integral Equation               |
| MMT  | Mode Matching Technique                        |
| МоМ  | Method of Moments                              |
| OADC | Omnidirectional Axis-Displaced Cassegrain      |
| OADE | Omnidirectional Axis-Displaced Ellipse         |
| OADG | Omnidirectional Axis-Displaced Gregorian       |
| OADH | Omnidirectional Axis-Displaced Hyperbola       |
| ODRC | Omnidirectional Dual-Reflector Real Caustic    |
| ODVC | Omnidirectional Dual-Reflector Virtual Caustic |
| PACO | Parábola mais cone                             |
| PML  | Perfect Matched Layer                          |
| PO   | Physical Optics                                |
| QAM  | Quadrature Amplitude Modulation                |
| QPSK | Quadriphase-Shift Keying                       |
| SMC  | Serviço móvel celular                          |
| TDD  | Time Division Duplexing                        |
| TE   | Transverse Electric                            |

| TEM  | Transverse Electromagnetic   |
|------|------------------------------|
| ТМ   | Transverse Magnetic          |
| VoIP | Voice over Internet Protocol |
| VPN  | Virtual Private Network      |