A amostra para o desgaste micro Deval constitui-se de partículas na fração granulométrica entre 10mm e 14mm. Nos ensaios, utilizou-se 70% das partículas passantes na peneira de abertura 12,5mm. As partículas são introduzidas dentro de um recipiente de aço inoxidável, onde também se adiciona 2,5 litros de água destilada e 49N (\cong 5Kg) de esferas de aço inoxidável, com diâmetro de 10mm (Figura 5.12b). O recipiente é submetido a 12 mil revoluções durante 100 minutos. O material desgastado é aquele que, após o ensaio, passa na peneira 1,9mm.

5.6. Ensaios de caracterização do enrocamento como meio granular

5.6.1. Inclinação de talude natural

Os ensaios foram executadas no Laboratório de Geotecnia do CEDEX, em Madri.

O ângulo de talude natural é definido como o ângulo que o talude do enrocamento faz com a horizontal quando é lançado sobre uma superfície plana horizontal junto a outra vertical, como por exemplo, um piso plano junto a uma parede. A altura de queda é da ordem de 10cm.

Foi determinada a inclinação do talude natural dos enrocamento de basalto da Pedreira Rio Grande, modelados a partir das curvas granulométricas de diâmetro $d_{50} = 26$, 16, 12 e 8mm.

Em cada material foram feitas, no mínimo, cinco determinações do ângulo de talude natura e apresentado pela média das cinco determinações. A diferença máxima tolerada entre os valores do ângulo de talude natural e a média dos resultados nos ensaios foi de 0,5 graus.

5.6.2. Compressão unidimensional

5.6.2.1 Ensaios executados

A Tabela 5.7 apresenta as características dos corpos de prova ensaiados em compressão unidimensional. Os valor médio das densidades relativas apresentadas na tabela é de $97,7\pm4,0\%$ nos corpos de prova densos e de $7,25\pm4,2$ nos corpos de prova fofos. Ressaltase que a determinação das densidades relativas foi feita com o uso dos pesos específicos secos máximos e mínimos do enrocamento, indicados na Tabela 5.2.

Material			Denomi-		Dados iniciais do corpo de prova			
Tino	Origem	Alteração	nação do	D/d_{max}	H	g	D _r	e.
npo	ongem	meração	ensaio		(cm)	(kN/m ³)	(%)	0
Bsalto	Marim- bondo	Campo (25 anos)	Md103	6,4	97,5	18,3	100,0	0,525
			Mf103	6,2	94,8	15,2	0,0	0,837
			Md26i	4,2	16,0	17,8	93,8	0,543
			Mf26i	4,2	16,1	14,8	9,7	0,859
	Pedreira Rio Grande	Intacto (0 anos, 0 horas de lixiviação)	Pd103	6,3	96,4	18,5	100,0	0,541
			Pf103	6,1	93,1	15,2	0,0	0,885
			Pd26i	4,2	16,1	18,3	90,7	0,541
			Pf26i	4,4	16,8	15,2	10,4	0,857
			Pd22i	4,2	16,0	22,0	92,9	0,270
			Pf22i	4,4	16,8	18,8	8,0	0,488
			Pd22u	4,2	16,1	21,8	89,8	0,278
			Pf22u	4,1	15,8	18,8	8,0	0,488
		100 h de lixiviação	L100di	4,2	16,1	18,3	91,2	0,540
			L100fi	4,2	16,1	15,2	10,7	0,856
		240 h de lixiviação	L240di	4,2	16,1	18,4	94,4	0,527
			L240fi	4,2	16,1	15,2	10,5	0,857
		600 h de lixiviação	L600di	4,2	16,1	18,3	91,0	0,540
			L600fi	4,2	16,1	15,2	11,0	0,855
		1500 h de lixiviação	L1500di	4,2	16,1	18,3	90,8	0,541
			L1500fi	4,2	16,1	15,1	10,1	0,858
		3200 h de lixiviação	L3200di	4,2	16,1	18,2	90,0	0,544
			L3200fi	4,2	16,1	15,1	9,7	0,860
		100 ciclos de umidade	U100di	4,2	16,1	18,4	94,6	0,526
			U100fi	4,2	16,1	15,2	10,5	0,857
Granito	Serra da Mesa	São	Gd22	4,4	16,7	20,5	92,4	0,252
			Gf22	4,4	16,9	17,5	2,0	0,461
			Gd22i	4,2	16,1	20,3	89,5	0,259
			Gf22i	4,0	15,4	17,8	10,5	0,441
			Gd22u	4,2	16,1	20,7	99,7	0,235
			Gf22u	4,4	16,6	17,8	11,2	0,439
			Gd26i	4,2	16,1	16,9	90,0	0,532
			Gf26i	4,2	16,1	14,2	9,4	0,815
			Gd26	4,3	16,3	16,7	85,6	0,548
			Gf26	4,4	16,5	14,0	0,2	0,848

Tabela 5.7 - Características dos corpos de prova em ensaios de compressão unidimensional.

D ... dimensão mínima do corpo de prova;

H ... altura do corpo de prova;

 D_r ... densidade relativa;

 d_{max} ... dimensão máxima da partícula;

g ... peso específico seco;

 e_o ... índice de vazios.

5.6.2.2 Equipamentos utilizados e procedimentos de ensaio e de moldagem

Os ensaios foram executados em equipamentos de grandes dimensões. Foram utilizados dois tipos de câmaras de compressão. Uma das câmaras é denominada de UNI_{100} encontra-se instalada no Laboratório de Furnas, em Goiânia. Esta câmara suporta um corpo de prova de 101,5cm de diâmetro e 100m de altura (Figura 5.14). A seção da câmara de compressão é similar à apresentada na Figura 2.14 proposta por Veiga Pinto (1982), porém com maiores dimensões. Destaca-se que as paredes da câmara UNI_{100} são comprimidas junto com o corpos de prova, reduzindo o efeito do atrito interno entre as partículas e a câmara. As Figuras 5.14a e 5.14b apresentam, respectivamente, detalhes dos anéis de duro-alumínio e de borracha que constituem a câmara. Tais anéis possibilitam, respectivamente, a baixa deformabilidade radial e a alta deformabilidade axial da câmara.

Figura 5.13 - Equipamento de compressão unidimensional de grandes dimensões UNI_{100} no Laboratório de Furnas, Goiânia.

(b) Anel de borracha (c) moldagem de corpo de prova Figura 5.14 - Moldagem dos corpos de prova na câmara UNI₁₀₀.

A aplicação do carregamento foi realizada em estágios de carga, através de um macaco hidráulico de 1470kN (150t). Em cada estágio de carregamento, esperava-se a estabilização das deformações axiais. Procurou-se manter o mesmo tempo de aplicação do carregamento em cada estágio, de aproximadamente 20 minutos. A deformação axial é a média das medidas fornecidas por dois extensômetros, diametralmente dispostos na tampa superior. Determina-se a tensão horizontal no corpo de prova através da leitura de 32 extensômetros elétricos de resistência (*strain gages*), colocados nos dois anéis centrais de alumínio.

Os corpos de prova na câmara UNI_{100} foram moldados em cinco camadas de 20cm de altura (Figura 5.14c), com controle granulométrico do material em cada camada. Os corpos de prova fofos foram moldados lançando o material com altura máxima de queda de 10cm. Para a moldagem dos corpos de prova densos, utilizou-se o compactador mostrado anteriormente na Figura 5.2. A densificação foi realizada em estágios, com duração de 2 minutos cada. O estado denso de cada camada foi considerado satisfatório quando, para dois estágios consecutivos a altura do corpo de prova se mantinha constante. Deste modo garantiu-se que a densidade do corpo de prova estivesse próxima da densidade máxima.

A segunda câmara utilizada, denominada UNI₃₀, tem seção quadrada de 30cm de lado e 18cm de altura (Figura 5.15). Esta câmara foi desenvolvida no laboratório do CEDEX, em Madri, Espanha. A câmara UNI₃₀ é constituída por dois anéis rígidos de metal intercalados por uma membrana de látex. O fundo da câmara é fixo no anel inferior. A moldagem dos corpos de prova fofos, na câmara UNI₃₀, foi similar ao processo adotado na câmara UNI₁₀₀. A densificação dos corpos de prova densos na câmara UNI₃₀ foi executada em três camadas, com o auxílio de um soquete utilizado em ensaios de Proctor modificado (peso de 44N e 45cm de altura de queda). O peso recaía sobre uma placa quadrada de aço, com 1cm de espessura, assentada sobre o corpo de prova. O estado denso foi considerado satisfatório quando, após duas seqüências de 30 golpes do soquete a altura do corpo de prova se mantinha constante. Nesta câmara as deformações axiais correspondem à média da leitura de dois LVDTs, posicionados nos extremos da placa superior.

O procedimento de carregamento na câmara UNI₃₀ é similar ao adotado na câmara UNI₁₀₀.

Figura 5.15 - Câmara de compressão unidimensional UNI_{30} no Laboratório do CEDEX, Espanha.

5.6.3. Compressão triaxial drenada e adensamento isotrópico

5.6.3.1 Ensaios executados

A Tabela 5.8 apresenta as características iniciais dos corpos de prova ensaiados sob condição de compressão triaxial drenada. A relação entre a dimensão máxima das partículas d_{max} (3,8mm) e a dimensão mínima do corpo de prova D (22,9cm) é seis. Os valor médio das densidades relativas nos corpos de prova densos é de 96,4±1,8%, e nos corpos de prova fofos

é de 34,6±2,0. Ressalta-se que a determinação das densidades relativas foi feita utilizando os pesos específicos máximos e mínimos, indicados na Tabela 5.3.

Material			Denomi-	Dados iniciais do corpo de prova				
Tipo	Origem	Alteração	nação do ensaio	S '3 (kPa)	# (kN/m ³)	D _r (%)	eo	
	Marimbondo	Campo (25 anos)	Md26	186	17,8	34,6	0,547	
				490	17,9	35,8	0,542	
			Mf26	186	20,4	88,4	0,354	
				490	20,3	86,4	0,361	
	Pedreira	Intacto (0 anos, 0 horas de lixiviação)	Pd26	186	17,6	27,9	0,596	
				490	17,7	29,0	0,592	
				785	17,8	30,7	0,585	
			Pf26	186	20,6	85,2	0,369	
				490	20,6	85,3	0,368	
				785	20,8	88,1	0,357	
Dagalta		600 h de lixiviação	L600d	186	17,8	31,3	0,583	
Basallo				490	17,8	31,0	0,584	
			L600f	186	20,6	84,9	0,370	
				490	20,5	84,5	0,371	
		600 h de lixiviação	L1500d	186	17,7	30,1	0,588	
				490	17,7	29,9	0,588	
			L1500f	186	20,5	84,5	0,371	
				490	20,6	84,8	0,370	
		600 h de lixiviação	L3200d	186	17,8	31,9	0,581	
				490	17,8	31,3	0,583	
			L3200f	186	20,6	85,4	0,368	
				490	20,7	86,7	0,363	
Granito	Serra da Mesa	São	Gd26	98	20,4	86,9	0,268	
				294	20,4	87,2	0,267	
				490	20,4	87,4	0,266	
S tensão (le confinamento			o peso es	pecífico seco	•		

Tabela 5.8 - Características dos corpos de prova em ensaios de compressão triaxial.

 S_3 ... tensão de confinamento; D_r ... densidade relativa; g_{a} ... peso específico seco; e_{a} ... índice de vazios.

Observa-se que o valor médio da densidade relativa dos corpos de prova fofos não está próximo do estado muito fofo (<15%). Isto é justificado pela necessidade de garantia da estabilidade do corpo de prova durante o processo de moldagem.

5.6.3.2 Equipamentos utilizados e procedimentos de ensaio e de moldagem

Os ensaios de compressão triaxial foram executados em corpos de prova de 22,9cm de diâmetro e 45,7cm de altura. O equipamento triaxial utilizado pertence ao Laboratório do CEDEX, em Madri, Espanha. A Figura 5.16 mostra o equipamento e um corpo de prova antes e depois do ensaio. Nesta figura, verifica-se que a superfície de ruptura do corpo de prova não é visualmente bem definida.

(a) Câmara triaxial

(b) Corpo de prova antes do ensaio

(c) Corpo de prova depois do ensaio

Figura 5.16 - Equipamento e corpos de prova de ensaios triaxiais de grandes dimensões no Laboratório de Geotecnia do CEDEX, Espanha.

Por questões executivas, o adensamento foi feito com carregamento isotrópico, com aplicação da tensão de confinamento em uma única etapa. O carregamento foi mantido até a completa estabilização das deformações. Excepcionalmente, em dois ensaios de compressão triaxial (Pd800 e Pf800), o adensamento até a tensão 800kPa foi feito com a pressão de

confinamento aplicada em estágios de 100kPa. Em cada estágio esperava-se a completa estabilização das deformações volumétricas do corpo de prova.

Durante a fase de adensamento nos ensaios triaxiais, observa-se, eventualmente, a perfuração das membranas de revestimento dos corpos de prova. A perfuração das membranas é mais freqüente nos enrocamentos de basalto, cujas partículas são angulosas e com bordas pontiagudas.

O equipamento utilizado constitui-se de célula triaxial de metal, prensa hidráulica, sistema de aplicação de pressão de confinamento através de potes de mercúrio e sistema de aquisição de dados automatizado. A célula triaxial é capaz de suportar uma tensão de confinamento de até 1GPa. A seção da célula é similar à utilizada por Veiga Pinto (1982), ilustrada na Figura 2.13. A prensa, utilizada para carregamento axial, pode aplicar uma carga máxima de 980kN (100t) sob velocidade constante. Esta carga corresponde a uma tensão desviadora da ordem de 24MPa.

Na moldagem dos corpos de prova utilizou-se um molde metálico acoplado em um compactador mecânico (Figura 5.17). A energia de compactação é igual à energia aplicada no ensaio de Proctor Normal (245Ncm/cm³). A densificação foi executada em cinco camadas. Nos corpos de prova densos foram aplicados 60 golpes por camada. De modo a minimizar a quebra das partículas do enrocamento, o soquete do compactador era lançado sobre uma placa de metal assentada sobre o corpo de prova.

Nos corpos de prova fofos, adotou-se a aplicação de 10 golpes por camada, garantindo baixo grau de compactação e a estabilidade durante o processo de moldagem.

Foram utilizadas membranas de látex e de PVC. A fim de garantir a estabilidade do corpo de prova durante a retirada do molde metálico, utilizou-se uma primeira membrana de látex dentro do molde (Figura 5.17b). A seguir colocou-se uma membrana de PVC. Finalmente, foram adicionadas de três a cinco membranas externas de látex. A quantidade de membranas externas foi definida em função da pressão de confinamento de cada ensaio. A resistência oferecida por estas membranas foi considerada na análise dos resultados, seguindo as recomendações de Veiga Pinto (1982).

A velocidade de cisalhamento adotada nos ensaios foi de aproximadamente 0,25mm por minuto. Esta velocidade é lenta considerando que os enrocamentos são materiais drenantes e as deformações ocorrem rapidamente com o carregamento. No entanto, foi necessária a adoção de tal velocidade para permitir a operação dos equipamentos de ensaio.

(a) Compactador e molde metálico

(b) Retirada do molde metálico

(c) Colocação de membranas

Figura 5.17 - Moldagem e densificação dos corpos de prova em ensaios triaxiais no enrocamento.

5.6.4. Cisalhamento direto

5.6.4.1 Ensaios executados

A Tabela 5.9 apresenta as características dos corpos de prova ensaiados em equipamentos de cisalhamento direto. A densidade relativa média dos corpos de prova densos é de $89,3\pm6,9\%$ e dos fofos é de $6,16\pm4,0\%$. Observa-se que as densidades relativas dos corpos de prova densos do enrocamento de basalto de Marimbondo estão abaixo da média. No entanto, procurou-se utilizar a mesma energia de compactação na moldagem de todos os corpos de prova.

Vale lembrar que as densidades relativas foram determinadas com base nos valores máximos e mínimos dos pesos específicos do maciço de enrocamento, apresentados na Tabela 5.2.