6 Alteamento da barragem de rejeito Limonar – Peru

6.1. Descrição

O projeto de alteamento da barragem de rejeito de Limonar foi desenvolvido pela empresa de mineração Doe Run na mina de cobre Cobriza (figura 6.1), com capacidade de beneficiamento médio diário de 2.000 m³ de minério. A mina está localizada a 2300m acima do nível do mar, no distrito de San Pedro de Coris, província de Churcampa, departamento de Huancavelica, Peru, a uma distância aproximada de 480 km da capital Lima.

A ampliação da capacidade de armazenamento de resíduos de cobre foi feito pelo método à montante, descartando-se outras técnicas de construção porque as instalações industriais estão localizadas próximas ao pé do dique inicial. Foram projetados três níveis adicionais de armazenamento de rejeitos (figura 6.2) até atingir a elevação de 2365 m, suportados por diques construídos com o próprio material de rejeito, compactado, e taludes com inclinação 1.5H:1V. A área em estudo está localizada entre as coordenadas UTM (567.500 E, 8.608.000 N) e (568.000 E, 8.609.000 N).

O solo de fundação pode ser classificado como coluvial/ aluvial, composto principalmente por areias e siltes com presença de pedregulhos bem graduados, fragmentos de rocha de diferentes tamanhos de alta porosidade, vulneráveis a processos de erosão. Os taludes são bastante inclinados, apresentando superfícies de fraturamento, com alterações de rocha susceptíveis à remoção por gravidade, pela ação de chuvas ou pela ocorrência de vibrações sísmicas.

O dique inicial apresenta largura de crista de 5m, taludes 1.5H:1V, construído com material de rejeito compactado e revestido com geomembrana HDPE de 1.5mm de espessura para controle de infiltrações. A geomembrana será estendida ao longo dos taludes internos dos diques de alteamento.

Figura 6.1 – Vista panorâmica da barragem de rejeito Limonar

Figura 6.2 - Perfil geral do projeto de alteamento da barragem de rejeito Limonar

Um sistema de drenagem na base do depósito e nos taludes internos captura os líquidos do rejeito, reduzindo o teor de umidade e facilitando o adensamento do material. As tubulações, distribuídas estrategicamente, são recobertas por um geotextil não tecido de 270 g/cm² para evitar a obstrução das mesmas por material fino.

6.2. Propriedades dos materiais

A análise do potencial de liquefação do projeto de alteamento da barragem de rejeito Limonar foi feita pelo método dos elementos finitos com utilização do Plaxis 2D v. 2010. O modelo constitutivo UBCSand, integrante não propriamente no programa computacional mas distribuído como contribuição de usuários (Brinkgreve et al. 2010) do programa ao redor do mundo, disponível na plataforma Plaxis Knowledge Base (www.plaxis.nl), foi utilizado devido a sua relativa simplicidade no fornecimento das propriedades do material, baseado no número de golpes do ensaio SPT, pela conceituação teórica do modelo constitutivo, baseado em uma modificação no critério tradicional de Mohr-Coulomb, e pela sua aceitação pelas comunidades acadêmica e de engenharia para previsão de liquefação de solos, sob carregamentos estático e dinâmico.

O modelo constitutivo UBCSand foi utilizado para representação do comportamento do material de rejeito da barragem e dos diques de alteamento (construídos com rejeito compactado) enquanto que o modelo de Mohr-Coulomb foi empregado para o dique inicial e o solo de fundação. Os valores das propriedades geotécnicas dos materiais estão listados nas tabelas 6.1 a 6.4.

6.3. Modelo numérico por elementos finitos

Na figura 6.3 é mostrada a geometria da malha de elementos finitos, as condições de contorno e as camadas horizontais de 5m de espessura de rejeitos, para simulação da construção e alteamento da barragem em diversas etapas. O dique inicial é construído em 3 camadas sucessivas, com o lançamento posterior do rejeito em 5 camadas sequenciais com 5m de espessura. Ao final desta etapa, o primeiro dique de alteamento é construído e, em seguida, 2 novas camadas de

rejeito com 5 m de espessura são lançadas. O mesmo processo se repete para os segundo e terceiro diques de alteamento.

Material	γ	с	φ	Coeficiente de permeabilidade
	(kN/m³)	(kPa)	(°)	(m/dia)
Fundação	18.5	20	33	0.78
Dique Inicial	21	20	36	0.50
Rejeito Disposto	24	0	32	2.59
Rejeito Compactado	24	0	36	0.03

Tabela 6.1 – Propriedades geotécnicas dos materiais.

Os valores do peso específico, coesão, ângulo de atrito no pico e ângulo de atrito a volume constante e coeficiente de permeabilidade foram obtidos em ensaios executados no laboratório da empresa Ausenco Vector (Lima-Peru) em amostras representativas das diferentes estruturas.

Com relação aos parâmetros do módulo de cisalhamento elástico K_G^e , módulo de deformação volumétrica elástica K_B^e e módulo de cisalhamento plástico K_G^p estes foram estimados com base no número de golpes corrigido (N1)60 do ensaio SPT, do valor do coeficiente de Poisson (υ) e da densidade relativa DR. Os valores das constantes *ne*, *me*, *np* foram considerados iguais a 0,5 seguindo recomendação para utilização do modelo constitutivo UBCSand implementado no programa computacional Plaxis.

Na Tabela 6.2 apresentam-se os parâmetros gerais do modelo constitutivo UBCSand, os métodos utilizados para a sua determinação e os valores padrão intrinsicamente assumidos.

Nas Tabelas 6.3 e 6.4 apresentam-se os valores específicos dos parâmetros do modelo constitutivo UBCSand utilizados na análise do potencial de liquefação estática durante as etapas de alteamento da barragem de rejeito Limonar.

Nro	Parâmetro	Símbolo	Unidade	Método de Determinação	Valor Padrão
1	Número do módulo de cisalhamento elástico	K_{G}^{e}	-	$K_{G}^{e} = 21.7(K_{2\max})$ $K_{2\max} = 20(N_{1})_{60}^{1/3}$	-
2	Número do módulo de volume elástico	K^{e}_{B}	-	$K_B^e = \alpha \left(K_G^e \right)$ $\alpha = \left(\frac{2(1+\nu)}{3(1-2\nu)} \right)$	-
3	Número do módulo de cisalhamento plástico	K_G^p	-	$K_G^P = 4.2(D_r)^4 K_G^e + 100$	-
4	Índice do módulo de cisalhamento elástico	ne	-	valor empírico	0.5
5	Índice do módulo de volume elástico	me	-	valor empírico	0.5
6	Índice do módulo de cisalhamento plástico	mp	-	valor empírico	0.5
7	Ângulo de atrito a volume constante	$\phi_{_{cv}}$	[°]	Ensaio de Compressão Triaxial Drenado	_
8	Ângulo de atrito de pico	$\phi_{_{p}}$	[°]	Ensaio de Compressão Triaxial Drenado	-
9	Coesão	с	[kPa]	Ensaio de Compressão Triaxial Drenado	0
10	Razão de ruptura	R _f	-	-	0.95
11	Tensão de tração máxima	$\sigma_{_t}$	[kPa]	-	0

Tabela 6.2 – Parâmetros gerais do modelo UBCSand e métodos para sua determinação.

Parâmetro	Símbolo	Unidade	Rejeito Disposto	Rejeito Compactado
Módulo de cisalhamento elástico	K_G^e	-	Tabela 6.4	800
Módulo de volume elástico	K^{e}_{B}	-	Tabela 6.4	2000
Módulo de cisalhamento plástico	K_G^{p}	-	Tabela 6.4	1200
Índice do módulo de cisalhamento elástico	ne	-	0.5	0.5
Índice do módulo de volume elástico	me	-	0.5	0.5
Índice do módulo de cisalhamento plástico	mp	-	0.5	0.5
Ângulo de atrito a volume constante	$\phi_{_{CV}}$	[°]	30	32
Ângulo de atrito de pico	$\pmb{\phi}_p$	[°]	32	36
Coesão	с	[kPa]	0	0
Razão de ruptura	Rf	-	0.95	0.95
Tensão de tração máxima	σ_{t}	[kPa]	0	0

Tabela 6.3 - Parâmetros do modelo UBCSand no alteamento da barragem Limonar

Tabela 6.4 – Parâmetros do modelo UBCSand para os rejeitos dispostos.

Dique	Profundidade (m) em relação ao topo do dique superior	$(N_{I})_{60}$	K_G^e	K^e_B	K_G^p
	10 - 13	39,0	1472	942	4956
Primeiro	13 - 18	22,5	1225	784	1446
	18 - 20 (*)	6,0	789	505	162
	10 - 12	9,0	903	578	259
Segundo	12 - 14	24,0	1252	801	1664
	14 - 20 (*)	5,9	784	502	161
	10 -12	33,0	1392	891	3389
Terceiro	12 - 15	14,0	1046	669	545
	15 - 20 (*)	6,0	789	505	162
Camadas superiores de rejeito			200	400	100
Cama	das inferiores de reje	eito	500	1300	600

(*) Camadas suscetíveis à liquefação de acordo com Olson (2001)

O tempo de adensamento para cada camada de rejeito foi fixado em 25 dias, com base em observações no local da obra que registrou ressecamento à velocidade de 0.2m por dia. O carregamento que induz o acréscimo de poropressão inicial é o próprio peso do material de rejeito. O mecanismo de geração de poropressões no rejeito pode ser compreendido na figura 6.4. No tempo t1, quando uma nova camada é lançada, seu peso próprio gera excessos de poropressão na camada anterior que, por sua vez, devem ser somados às poropressões residuais ainda existentes na camada anterior, caso esta não tenha adensado completamente. O raciocínio se repete para o lançamento de novas camadas nos tempos subsequentes (t2, t3, ...).

Para simulação do sistema de drenagem, foram considerados na base do depósito 04 poços com vazão de 3.2m³/dia conectados por drenos horizontais. O sistema de impermeabilização das superfícies internas é composto por geomembrana HDPE de 1.5mm, com o propósito de evitar a infiltração de água no corpo do dique inicial, melhorando desta maneira a estabilidade global da estrutura. A geomembrana é representada na simulação numérica através de elementos de interface, com rigidez axial de 22 kN/m de acordo com o manual do fabricante (Geomembrana Mac Line).

A malha para análise numérica da barragem de rejeito Limonar é constituída por elementos finitos triangulares de 15 nós, com funções de interpolação polinomiais de quarto grau.

Figura 6.3 – Modelo da barragem Limonar para análise numérica.

Tempo T3		
Nova Camada	V	
III	(Ue3 Us3) III	
II	(Ue3 Us3) II	
I	(Ue3 Us3) I	

Figura 6.4 – Geração de poropressões durante o lançamento de rejeitos (adaptado de Vick, 1990).

6.4. Resultados numéricos

6.4.1. Distribuição das tensões verticais efetivas

Nas figuras 6.5 a 6.9 são apresentadas as distribuições das tensões verticais efetivas logo após o lançamento de algumas camadas de rejeito e/ou da construção dos diques de alteamento, até que a elevação final prevista no projeto seja atingida. Conforme pode ser observado desta sequência de figuras, as tensões efetivas aumentam gradualmente da superfície para a base do depósito, principalmente junto ao sistema de drenagem junto à base, evidenciando o progresso do adensamento das camadas de rejeito.

Figura 6.5 – Distribuição das tensões verticais efetivas logo após o lançamento da quarta camada de rejeito, no dique inicial.

Figura 6.6 – Distribuição das tensões verticais efetivas logo após a construção do primeiro dique de alteamento.

Figura 6.7 – Distribuição das tensões verticais efetivas logo após o lançamento da sétima camada de rejeito, atingindo a crista do primeiro dique de alteamento.

Figura 6.8 – Distribuição das tensões verticais efetivas logo após a construção do segundo dique de alteamento.

Figura 6.9 – Distribuição das tensões verticais efetivas logo após a construção da oitava camada de rejeitos.

Figura 6.10 – Distribuição das tensões verticais efetivas logo após o lançamento da décima primeira camada de rejeito, atingindo a elevação final da barragem.

80

6.4.2. Distribuição dos deslocamentos verticais

Similarmente, nas figuras 6.10 a 6.15 são apresentadas as distribuições dos deslocamentos verticais logo após o lançamento de determinadas camadas de rejeito e/ou da construção dos diques de alteamento, até que a elevação final prevista no projeto seja atingida. Conforme pode ser observado desta sequência de figuras, há uma gradual aumento nos valores dos parâmetros de deformabilidade com o acréscimo da tensão efetiva na formulação do modelo constitutivo UBCSand (equações 4.2, 4.3 e 4.7).

A figura 6.17 mostra a evolução ao longo do tempo dos deslocamentos em 3 pontos de controle da barragem de rejeito, identificados por A, B e C na figura 6.16, situados diretamente abaixo dos diques de elevação. Estes mesmos pontos serão posteriormente também utilizados para investigação da ocorrência de liquefação estática pelo método empírico de Olson (2001).

Figura 6.11 – Distribuição de recalques logo após o lançamento da terceira camada de rejeito, no dique inicial. Deslocamento vertical máximo $u_v^{\text{max}} = 2.6 cm$.

Figura 6.12 – Distribuição de recalques logo após a construção do primeiro dique de alteamento. Deslocamento vertical máximo $u_y^{max} = 6.7 cm$.

Figura 6.13 – Distribuição de recalques logo após o lançamento da sétima camada de rejeito, atingindo a crista do primeiro dique de alteamento. Deslocamento vertical máximo $u_y^{\text{max}} = 7.4 cm$.

Figura 6.14 – Distribuição de recalques logo após a construção do segundo dique de alteamento. Deslocamento vertical máximo $u_y^{max} = 9.8cm$.

Figura 6.15 – Distribuição de recalques logo após o lançamento da oitava camada de rejeito. Deslocamento vertical máximo $u_y^{max} = 10.9 cm$.

Figura 6.16 – Distribuição de recalques logo após o lançamento da décima primeira camada de rejeito, atingindo a elevação final da barragem. Deslocamento vertical máximo $u_v^{\text{max}} = 13.1 cm$. intenções canção

6.4.3. Distribuição das poropressões

Figura 6.17 – Distribuição das poropressões logo após o lançamento da terceira camada de rejeito, no dique inicial. Poropressão máxima $u = 153.5 kN / m^2$.

Figura 6.18 – Distribuição das poropressões logo após a construção do primeiro dique de alteamento. Poropressão máxima $u = 232.6 kN / m^2$.

Figura 6.19 – Distribuição das poropressões logo após a construção do segundo dique de alteamento. Poropressão máxima $u = 302.0 kN / m^2$.

Figura 6.20 – Distribuição das poropressões logo após o lançamento da oitava camada de rejeito. Poropressão máxima $u_y^{max} = 3.3 \ cmu = 331.5 kN/m^2$.

Figura 6.21 – Distribuição das poropressões logo após o lançamento da novena camada de rejeito. Poropressão máxima $u_y^{max} = 3.3 \ cmu = 408.8 kN / m^2$.

Figura 6.22 – Localização de pontos de controle para acompanhamento da evolução no tempo dos deslocamentos totais (componentes vertical e horizontal).

Figura 6.23 – Comportamento dos vetores de deslocamento nos pontos A, B e C ao longo do tempo.

6.4.4. Potencial de liquefação estática

Para a análise do potencial de liquefação estática foram calculados para todos os nós da malha de elementos finitos (figura 6.18), ao longo do tempo de construção do alteamento da barragem, os valores do parâmetro de poropressão r_u definido por

$$r_{u} = \frac{\Delta u}{\sigma_{m}} \tag{6.1}$$

onde Δu representa o excesso de poropressão no ponto e σ'_m a tensão efetiva média atuante. Se este valor igualar ou superar a unidade então o ponto do solo se encontra no estado liquefeito.

A figura 6.18 mostra que em todos os pontos da malha o parâmetro r_u resultou inferir a 1, atingindo valor máximo de 0.85 com fator de segurança contra a liquefação $FS^{liq} = \frac{1}{0.85} = 1.18$. Portanto, a hipótese de liquefação estática no alteamento da barragem de Limonar parece estar afastada.

Figura 6.24 – Nós da malha de elementos finitos onde foram calculados os valores do parâmetro de poropressão r_u .

6.5. Modelo empírico de Olson (2001)

Na execução do alteamento da barragem de rejeito Limonar foram executados ensaios de penetração dinâmica SPT em 4 pontos, localizados nas cristas dos diques de elevação, conforme ilustra a figura 6.20, denominados furos SPT-05R, SPT-06R1, SPT-06R2 e SPT-06R3. Os resultados destes ensaios são aqui utilizados para previsão de liquefação estática pelo método empírico de Olson (2001). A linha freática foi obtida da linha de piezômetros distribuídos na barragem.

Figura 6.25 – Localização dos 4 furos de sondagem de ensaios SPT nos diques de alteamento.

6.5.1. Suscetibilidade à liquefação

Os valores medidos em campo do número de golpes N_{SPT} nos furos de sondagem SPT-05R, SPT-06R1, SPT-06R2 e SPT-06R3 devem ser corrigidos em relação ao nível teórico de energia transmitida pela queda livre do martelo e em relação à tensão vertical efetiva inicial de acordo com as equações 5.3 e 5.4.

A classificação de comportamento do material contrativo ou dilatante é feita com base no gráfico da figura 6.20, utilizando os valores do número de golpes corrigido $(N_1)_{60}$. Os resultados estão mostrados na tabela 6.5, indicando a existência de camadas suscetíveis à liquefação (tendência de contração de volume sob cisalhamento). A investigação então prossegue com a análise do potencial de início de liquefação destas camadas.

6.5.2. Potencial de início de liquefação

Na figura 6.20 são apresentadas 3 camadas de material de rejeito suscetíveis à liquefação, nas quais será analisado o potencial de liquefação devido ao incremento de poropressão imposto pela construção dos diques de alteamento.

Tabela 6.5 – Resultados da análise de susceptibilidade à liquefação nos furos de sondagem.

Sondagem	Profundidade em relação ao topo do dique superior (m)	N _{SPT}	$(N_1)_{60}$	Característica do material
	11	47	39	Dilatante
	13	> 50	-	Dilatante
SDT 05D	14	36	27	Dilatante
SF1-03K	15	24	18	Dilatante
	18	8	6	Contrativo
	20	9	6	Contrativo
	13	24	19	Dilatante
	15	10	8	Contrativo
	17	11	8	Contrativo
SDT 06D1	19	4	3	Contrativo
SP1-00K1	21	7	5	Contrativo
	23	15	9	Contrativo
	24	> 50	-	Dilatante
	26,5	13	7	Contrativo
	12	27	22	Dilatante
	14	12	9	Contrativo
	16	7	5	Contrativo
SDT 06 D2	18	6	4	Contrativo
SP1-00-K2	20	4	3	Contrativo
	24	29	17	Dilatante
	26	41	23	Dilatante
	30	35	18	Dilatante
	12	41	33	Dilatante
	14	19	14	Dilatante
	16	4	3	Contrativo
SPT-06-R3	18	6	4	Contrativo
	20	8	5	Contrativo
	23	49	29	Dilatante
	26	29	16	Dilatante

Figura 6.26 – Análise da suscetibilidade à liquefação no método empírico de Olson (2001).

Figura 6.27 – Localização das camadas suscetíveis à liquefação, abaixo e acima da superfície freática final.

Valores da razão de resistência de pico, com base na linha média dos gráficos da figura 6.23, expressa pela equação 6.2, são calculados e apresentados na tabela 6.6 para as 3 camadas suscetíveis à liquefação, identificadas na figura 6.20.

$$\frac{S_u(Pico)}{\sigma'_{vo}} = 0.205 + 0.0075 [(N_1)_{60}] \pm 0.04 \qquad \text{para } (N_1)_{60} \le 12 \qquad (6.2)$$

A tabela 6.7 finalmente apresenta os valores dos parâmetros geotécnicos para o solo de fundação, dique inicial, rejeito compactado (diques de alteamento), rejeito (não suscetível à liquefação) e rejeito suscetível à liquefação.

Figura 6.28 – Correlação média entre a razão de resistência de pico e o número de golpes corrigido do ensaio SPT (adaptado de Olson, 2001).

Tabela 6.6 – Valores médios de $(N_I)_{60}$ e da razão de resistência Su(pico)/ σ'_{v0} para as 3

Camada	$(N_1)_{60}$ Representativo	$Su(pico)/\sigma'_{v0}$
1	6.0	0.250
2	6.1	0.250
3	4.0	0.235

Tabela 6.7 – Parâmetros geotécnicos para análise do potencial de liquefação.

	γ	с	φ	φ Su(pico)/e		0
Material	(kN/m^3)	$(l_{r}\mathbf{D}_{0})$	(%)	camada	camada	camada
		(KI d)	()	1	2	3
Fundação	18.5	20	33	-	-	-
Dique inicial	21	20	36	-	-	-
Rejeito disposto	24	0	32	-	-	-
Rejeito suscetível à liquefação	24	0	32	0.250	0.250	0.235
Rejeito compactado	24	0	36			

De acordo com o método empírico de Olson (2001), descrito no capítulo 5, para casos de carregamento estático as tensões cisalhantes mobilizadas imediatamente antes da ruptura, nos solos com comportamento contrativo, são aproximadamente iguais aos correspondentes valores da resistência ao cisalhamento não drenada. Uma análise de estabilidade de taludes pode então fornecer uma estimativa razoável destas tensões cisalhantes mobilizadas e, neste trabalho, foi empregado o método das fatias (método de Bishop Simplificado), com auxílio do programa computacional SLOPE/W (GeoStudio), para análise da estabilidade de taludes durante o alteamento da barragem de rejeito. Para os solos suscetíveis à liquefação nas camadas 1, 2 e 3 foram atribuídas resistências ao cisalhamento iniciais que foram gradualmente modificadas até que o valor do fator de segurança contra a ruptura $FS^{nup} = 1$. Os valores de resistência ao cisalhamento dos solos não suscetíveis à liquefação foram mantidos constantes neste processo de cálculo por tentativa e erro.

As figuras 6.24, 6.25 e 6.26 mostram a posição das superfícies de ruptura após o alteamento do primeiro, segundo e terceiro diques, respectivamente, e as tabelas 6.8, 6.9 e 6.10 listam os valores das tensões de cisalhamento τ e das tensões verticais efetivas iniciais assim obtidas nas bases das fatias.

Os valores dos fatores de segurança contra a liquefação $FS^{liq} = \frac{S_{u(pico)}}{\tau}$ foram todos determinados superiores a 1.1, o que também afasta a possibilidade da ocorrência de liquefação e/ou da necessidade de uma análise do comportamento pós-liquefação da barragem de rejeito. Estes resultados do modelo empírico de Olson (2001) confirmam as conclusões anteriormente obtidas com o método dos elementos finitos e modelo constitutivo UBCSand.

Figura 6.29 – Análise de estabilidade logo após a construção do primeiro dique de alteamento (FS = 1), com base da fatia 11 localizada na camada de solo contrativo.

Figura 6.30 – Análise de estabilidade logo após a construção do segundo dique de alteamento (FS = 1), com base das fatias 10, 18 e 19 localizadas em camadas de solo contrativo.

Figura 6.31 – Análise de estabilidade logo após a construção do terceiro dique de alteamento (FS = 1), com base das fatias 15, 16, 21 e 22 localizadas em camadas de solo contrativo.

Evento	Fatia	τ (kPa)	σ'vo (kPa)	Su(pico)/σ'vo]	Su(pico)	FS ^{liq}
				(kPa)	(kPa)	
Dique 1	11	57 31	456	0.250	114	2.0

Tabela 6.8 – Fatores de segurança contra liquefação FS^{liq} após construção do dique 1.

Tabela 6.9 – Fatores de segurança contra liquefação FS^{liq} após construção do dique 2.

Evento	Fatia	τ (kPa)	σ'vo (kPa)	$Su(pico)/\sigma'vo$	Su(pico)	FS ^{liq}
				(KI d)	(KI a)	
Dique 1	10	57.67	456.21	0.250	114.1	1.9
Dique 2	18	43.11	442.73	0.250	110.7	2.6
Dique 2	19	40.44	387.04	0.250	96.8	2.4

Tabela 6.10 – Fatores de segurança contra liquefação FS^{liq} após construção do dique 3.

Evento	Fatia	τ (kPa)	σ'vo (kPa)	Su(pico)/σ'vo	Su(pico)	FS ^{liq}
				(kPa)	(kPa)	
Dique 2	15	58.3	434.6	0.250	108.6	1.9
Dique 2	16	53.7	413.92	0.250	103.5	1.9
Dique 3	21	43.4	465.88	0.235	109.5	2.5
Dique 5	22	38.6	417.49	0.235	98.1	2.5