

Herbert Miguel Angel Maturano Rafael

Análise do Potencial de Liquefação de uma Barragem de Rejeito

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Civil.

Orientador: Prof. Celso Romanel

Rio de Janeiro Maio de 2012

Herbert Miguel Angel Maturano Rafael

Análise do Potencial de Liquefação de uma Barragem de Rejeito

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Celso Romanel Orientador Departamento de Engenharia Civil - PUC-Rio

> > Prof. Waldyr Lopes de Oliveira Filho Universidade Federal de Ouro Preto

Profa. Ana Cristina Castro Fontenla Sieira Universidade Estadual do Rio de Janeiro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 17 de maio de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Herbert Miguel Angel Maturano Rafael

Graduou-se em Engenharia Civil pela Universidade Nacional de Ingeniería Lima (UNI) - Peru. Suas principais áreas de interesse na engenharia geotécnica são: mineração, barragens, *pads* de lixiviação, fundações, obras com reforços de geossintéticos, geomecânica computacional.

Ficha Catalográfica

Maturano Rafael, Herbert Miguel Angel

Análise do Potencial de Liquefação de uma Barragem de Rejeito / Herbert Miguel Angel Maturano Rafael ; orientador: Celso Romanel. – 2012.

103 f. il; 29,7 cm.

Dissertação (Mestrado em Engenharia Civil)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2012.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Liquefação estática. 3. Barragem de rejeito. 4. Alteamento de barragem. 5. Modelo UBCSand. 6. Método de Olson. I. Romanel, Celso. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD 624

PUC-Rio - Certificação Digital Nº 1012285/CA

A minha querida mãe Herenia

Agradecimentos

A Deus quem ilumina minha vida, ao menino Jesus porque sempre guia meus passos.

Ao professor Celso Romanel pela sua orientação e conhecimentos geotécnicos que me transmitiu, seu apoio e compreensão, que foram muito importantes para mim no desenvolvimento desta dissertação. Obrigado professor.

À minha mãe maravilhosa Herenia que esteve comigo em todos os momentos, com amor e carinho. Tudo o que eu sou devo à ela. Obrigado mãezinha, te amo.

À minha noiva Karina pelo apoio incondicional. Obrigado, amor.

À toda minha família, meus tios, tias, primos, primas e sobrinhos que sempre estiveram comigo e rezaram para que eu cumprisse com sucesso o meu objetivo.

Aos amigos da PUC-Rio, pelo convívio dia-a-dia, pela companhia, pela boa energia. Obrigado Tania, Orozco, Philipe, César, Christian, Miguel, Jackeline, Elvis, George, Nathalia, Roberta, Natasja, Gino, Pamela, Eliot, Luis, Florini, Martin, Miriam, Gary, July, Nilthson, Silvia. Estarão sempre presentes na minha memória e coração.

Aos professores Waldyr e Ana Cristina por compartilhar suas experiências e conhecimentos.

Ao Departamento de Engenharia Civil da PUC-Rio pela infra-estrutura e apoio, em especial à secretária da pós-graduação Rita e à minha amiga Paola.

À CAPES pelo apoio financeiro com a concessão de bolsa de estudos do governo brasileiro.

Ao Brasil, país maravilhoso, onde fiz muitas amizades e sempre me senti em casa.

Resumo

Rafael, Herbert Miguel Angel Maturano; Romanel, Celso (orientador) Análise do Potencial de Liquefação de uma Barragem de Rejeito. Rio de Janeiro, 2012. 103 p. Dissertação de Mestrado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A disposição de rejeitos tem sido uma preocupação muito importante nas empresas de mineração de todo o mundo, tendo como principal motivo a proteção do meio ambiente. Diariamente geram-se grandes quantidades de rejeitos nas plantas de beneficiamento de minérios, sendo necessário dispor de estruturas de armazenamento adequadas (barragem de rejeito) que, dependendo da produção industrial, devem ser alteadas para aumentar a capacidade de armazenamento destas estruturas. Três métodos de alteamento de barragens podem ser utilizados: o método à montante, o método à jusante e o método da linha de centro. O método à montante, discutido nesta dissertação, começa com a construção de um dique de partida. Terminada esta etapa, os rejeitos são depositados à montante, formando uma praia que adensará com o tempo, aumentando gradualmente a resistência ao cisalhamento do rejeito e servindo de fundação para futuros diques de alteamento. Este procedimento continua sucessivamente, até atingir a cota prevista de projeto. É um método de construção simples e de baixo custo, mas sua principal desvantagem é que velocidades de alteamento excessivas podem induzir a liquefação estática, causa principal do colapso de várias barragens de rejeito construídas no mundo. Neste trabalho é investigado o potencial de liquefação de uma barragem de rejeito de cobre, situada no Peru, com auxílio do método empírico de Olson, baseado em correlações com resultados de ensaios de campo SPT, e do método de elementos finitos, com utilização do modelo constitutivo elastoplástico UBCSand para previsão de liquefação.

Palavras - chave

Liquefação estática; barragem de rejeito; alteamento de barragem; modelo UBCSand; método de Olson.

Abstract

Rafael, Herbert Miguel Angel Maturano; Romanel, Celso (advisor). Analysis of the Liquefaction Potential of a Tailing Dam. Rio de Janeiro, 2009. 103 p. M.Sc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The disposal of tailings has been a very important concern in mining companies around the world, with the main objective to protect the environment. Large quantities of tailings are generated daily in the ore processing plants, being necessary the availability of specific storage structures (tailings dam) which, depending on the industrial production, must be successively raised in their lifetime to provide higher storage capacity. Three methods of dam raising can be used: the upstream method, the downstream method and the centerline method. The upstream method, discussed in this thesis, begins with the construction of a starting dyke. After this step, the tailings are deposited upstream, forming a beach which will consolidate over time, gradually increasing the shear resistance of the waste and serving as a foundation for future raising dikes. This procedure continues until the final dam elevation is reached. This method is of simple construction and low cost, but its main disadvantage is that the raising speeds can be excessive and they may induce static liquefaction, a major cause of failure of tailing dams around the world. This dissertation investigates the liquefaction potential of a copper tailing dam, situated in Peru, making use of the empirical method proposed by Olson, based on correlations with data from SPT field tests, and the finite element method, considering the elastoplastic constitutive model UBCSand.

Keywords

Static liquefaction; tailing dam; upstream raising; UBCSand model; Olson's method.

Sumário

1 Introdução	19
1.1. Estrutura da dissertação	20
2 Barragem de Rejeito	22
2.1. Introdução	22
2.2. Transporte e Descarga de Rejeitos	23
2.3. Comportamento de Rejeitos	23
2.4. Características Geotécnicas do Comportamento do Rejeito	28
2.5. Métodos Construtivos de Alteamento	29
2.5.1. Método à montante	30
2.5.2. Método à jusante	31
2.5.3. Método da linha de centro	32
3 Fluxo por Liquefação	34
3.1. Conceitos Básicos de Liquefação	34
3.2. Suscetibilidade à Liquefação	37
3.2.1. Critério Geológico	37
3.2.2. Critério de composição do material	38
3.2.3. Critério de estado	39
3.3. Iniciação do Fluxo por Liquefação	45
3.4. Liquefação estática em barragem de rejeito	47
3.4.1. Barragem de rejeito de Merriespruit (África do Sul, 1994)	48
3.4.2. Mina de Sullivan (Canadá, 1991)	49
3.4.3. Mina Fernandinho e Pico de São Luiz (Brasil)	50
4 Modelo Elastoplástico UBCSand	53
4.1. Introdução	53
4.2. Superfície de escoamento de Mohr-Coulomb	53
4.3. Módulo de Cisalhamento Elástico	56
4.4. Módulo de Deformação Volumétrica Elástica	57

4.5. Módulo de Cisalhamento Plástico	57
4.6. Lei de Endurecimento Plástico	59
4.7. Função Potencial Plástico	60
5 Método de Olson (2001)	61
5.1. Suscetibilidade à liquefação	61
5.2. Inicio da liquefação	64
5.3. Estabilidade pós-liquefação	67
6 Alteamento da barragem de rejeito Limonar – Peru	70
6.1. Descrição	70
6.2. Propriedades dos materiais	72
6.3. Modelo numérico por elementos finitos	72
6.4. Resultados numéricos	77
6.4.1. Distribuição das tensões verticais efetivas	77
6.4.2. Distribuição dos deslocamentos verticais	81
6.4.3. Distribuição das poropressões	84
6.4.4. Potencial de liquefação estática	88
6.5. Modelo empírico de Olson (2001)	89
6.5.1. Suscetibilidade à liquefação	89
6.5.2. Potencial de início de liquefação	90
7 Conclusões e Sugestões	96
7.1. Sugestões para pesquisas futuras	97
8 Referências Bibliográficas	98

Lista de figuras

Figura 2.1 – Métodos de descarga perimetral a) pontos múltiplos (<i>spigotting</i>); b)
descarga pontual. 24
Figura 2.8 - Zonas de diferentes permeabilidades causadas por segregação
hidráulica. 25
Figura 2.9 - Variação do coeficiente de permeabilidade em função da distância do
ponto de lançamento na Praia (Blight, 1994). 26
Figura 2.10 - Ressecamento da superfície do reservatório de rejeito (Bhering,
2006). 26
Figura 2.11 - Fatores que influenciam a posição da linha freática em barragens de
rejeito (adaptado de Vick, 1983). 30
Figura 2.12 – Método de alteamento à montante.31
Figura 2.13 – Método construtivo à jusante.32
Figura 2.14 – Método de alteamento da linha de centro.32
Figura 3.1 - Ensaios não drenados em amostras de areia saturada (adaptado de
Castro e Poulos, 1987). 35
Figura 3.2 – Linha de Vazios Crítico (Casagrande, 1936).40
Figura 3.3 - Comportamento Típico de ensaios triaxiais não drenados realizados
por Castro (1969). 42
Figura 3.4 - Linha de estado permanente em representação tridimensional no
espaço $e - \tau - \sigma'$ e nos planos $\tau - e$, $\tau - \sigma'$, e $e - \sigma'$ (Kramer, 1996). 43
Figura 3.5 - Proporcionalidade entre a linha SSL baseada em resistência não
drenada S_u e a linha SSL baseada em tensão efetiva de confinamento (em
escala logarítmica). 43
Figura 3.6 – Estimativa da suscetibilidade de liquefação pela linha de estado
permanente (Kramer, 1996). 44
Figura 3.7 – Definição do parâmetro de estado ψ . 45
Figura 3.8 – Liquefação é iniciada nas amostras C,D,E nos pontos marcados que a
superfície FLS (reta tracejada). 47
Figura 3.9 – Superfície de fluxo por liquefação no plano $p':q$ (Kramer, 1996). 47

Figura 3.10 - Ruptura da barragem de rejeito de Merriespruit (Davies et al.,

2002).	49
Figura 3.11 - Ruptura da barragem de rejeito da mina de Sullivan (Davies e	t al.,
2002).	50
Figura 4.5 – Ângulos de atrito mobilizado (Adaptado de Aquino, 2009).	59
Figura 5.1 - Gráficos de suscetibilidade à liquefação recomendados por O	lson
(2001) para ensaios SPT.	62
Figura 5.2 - Gráficos de suscetibilidade à liquefação propostos por Olson (2	001)
para ensaios CPT.	62
Figura 5.3 - Resposta esquemática não drenada de um solo contrativo satu	rado
(adaptado de Olson e Stark, 2003).	65
Figura 5.4 - Correlação entre a razão de resistência não-drenada e o númer	o de
golpes corrigido do ensaio SPT (adaptado de Olson, 2001).	66
Figura 5.5 - Correlação entre a razão de resistência não-drenada e a resistência	ia de
ponta do ensaio CPT corrigido (adaptado de Olson, 2001).	67
Figura 5.6 - Correlação entre a razão de resistência pós-liquefeita e o númer	o de
golpes corrigido do ensaio SPT (adaptado de Olson, 2001).	68
Figura 5.7 - Correlação entre a razão de resistência pós-liquefeita e a resistê	ència
de ponta corrigida do ensaio CPT (adaptado de Olson, 2001).	68
Figura 6.1 – Vista panorâmica da barragem de rejeito Limonar	71
Figura 6.2 - Perfil geral do projeto de alteamento da barragem de rejeito Lim	onar
	71
Figura 6.3 – Modelo da barragem Limonar para análise numérica.	76
Figura 6.4 - Geração de poropressões durante o lançamento de rejeitos (adap	tado
de Vick, 1990).	77
Figura 6.5 - Distribuição das tensões verticais efetivas logo após o lançament	to da
quarta camada de rejeito, no dique inicial.	78
Figura 6.6 - Distribuição das tensões verticais efetivas logo após a construçã	o do
primeiro dique de alteamento.	78
Figura 6.7 - Distribuição das tensões verticais efetivas logo após o lançament	to da
sétima camada de rejeito, atingindo a crista do primeiro dique de alteame	ento.
	79
Figura 6.8 – Distribuição das tensões verticais efetivas logo após a construçã	o do
segundo dique de alteamento.	79

- Figura 6.9 Distribuição das tensões verticais efetivas logo após a construção da oitava camada de rejeitos. 80
- Figura 6.10 Distribuição das tensões verticais efetivas logo após o lançamento da décima primeira camada de rejeito, atingindo a elevação final da barragem.
 80
- Figura 6.11 Distribuição de recalques logo após o lançamento da terceira camada de rejeito, no dique inicial. Deslocamento vertical máximo $u_y^{\text{max}} = 2.6cm.$ 81
- Figura 6.12 Distribuição de recalques logo após a construção do primeiro dique de alteamento. Deslocamento vertical máximo $u_v^{\text{max}} = 6.7 cm$. 82
- Figura 6.13 Distribuição de recalques logo após o lançamento da sétima camada de rejeito, atingindo a crista do primeiro dique de alteamento. Deslocamento vertical máximo $u_v^{max} = 7.4cm$. 82
- Figura 6.14 Distribuição de recalques logo após a construção do segundo dique de alteamento. Deslocamento vertical máximo $u_v^{\text{max}} = 9.8cm$. 83
- Figura 6.15 Distribuição de recalques logo após o lançamento da oitava camada de rejeito. Deslocamento vertical máximo $u_v^{\text{max}} = 10.9 cm$. 83
- Figura 6.16 Distribuição de recalques logo após o lançamento da décima primeira camada de rejeito, atingindo a elevação final da barragem. Deslocamento vertical máximo $u_v^{\text{max}} = 13.1 cm$. intenções canção 84
- Figura 6.17 Distribuição das poropressões logo após o lançamento da terceira camada de rejeito, no dique inicial. Poropressão máxima $u = 153.5kN/m^2$.84
- Figura 6.18 Distribuição das poropressões logo após a construção do primeiro dique de alteamento. Poropressão máxima $u = 232.6kN/m^2$.
- Figura 6.19 Distribuição das poropressões logo após a construção do segundo dique de alteamento. Poropressão máxima $u = 302.0kN/m^2$. 85
- Figura 6.20 Distribuição das poropressões logo após o lançamento da oitava camada de rejeito. Poropressão máxima $u_y^{max} 3.3 \text{ cm} u = 331.5 \text{ kN} / m^2$. 86
- Figura 6.21 Distribuição das poropressões logo após o lançamento da novena camada de rejeito. Poropressão máxima $u_y^{max} = 3.3 \text{ cm} u = 408.8 \text{kN} / m^2$. 86

- Figura 6.22 Localização de pontos de controle para acompanhamento da evolução no tempo dos deslocamentos totais (componentes vertical e horizontal). 87 Figura 6.23 – Comportamento dos vetores de deslocamento nos pontos A, B e C ao longo do tempo. 87 Figura 6.24 - Nós da malha de elementos finitos onde foram calculados os valores do parâmetro de poropressão r_{μ} . 88 Figura 6.25 - Localização dos 4 furos de sondagem de ensaios SPT nos diques de alteamento. 89 Figura 6.26 – Análise da suscetibilidade à liquefação no método empírico de 91 Olson (2001). Figura 6.27 - Localização das camadas suscetíveis à liquefação, abaixo e acima da superfície freática final. 91 Figura 6.28 - Correlação média entre a razão de resistência de pico e o número de golpes corrigido do ensaio SPT (adaptado de Olson, 2001). 92 Figura 6.29 – Análise de estabilidade logo após a construção do primeiro dique de alteamento (FS = 1), com base da fatia 11 localizada na camada de solo 94 contrativo.
- Figura 6.30 Análise de estabilidade logo após a construção do segundo dique de alteamento (FS = 1), com base das fatias 10, 18 e 19 localizadas em camadas de solo contrativo.
- Figura 6.31 Análise de estabilidade logo após a construção do terceiro dique de alteamento (FS = 1), com base das fatias 15, 16, 21 e 22 localizadas em camadas de solo contrativo.

Lista de tabelas

Tabela 2.1 - Importância do Fenômeno durante o o ciclo de operabilidade
(Adoptado do Lopes de Oliveira e Zyl, 2006) 24
Tabela 2.2 - Comparação dos métodos de alteamento (adaptado de Campos,
1986). 33
Tabela 3.1 - Casos de rupturas por liquefação de barragens de resíduos de
mineração (fonte: www.wise-aranium.org/mdaf.html) 51
Tabela 4.1 - Seis possibilidades de definição das tensões principais máxima,
intermediária e mínima (Adaptado de BIRU A. Plaxis Liquefaction Model -
UBCSand 3D, 2010). 54
Tabela 6.1 – Propriedades geotécnicas dos materiais.73
Tabela 6.2 - Parâmetros gerais do modelo UBCSand e métodos para sua
determinação. 74
Tabela 6.3 - Parâmetros do modelo UBCSand no alteamento da barragem
Limonar . 75
Tabela 6.4 – Parâmetros do modelo UBCSand para os Rejeitos Dispostos.75
Tabela 6.5 – Resultados da análise de susceptibilidade à liquefação nos furos de90
sondagem. 90
Tabela 6.6 – Valores médios de $(N_1)_{60}$ e da razão de resistência Su(pico)/ σ'_{v0} para
as 3 camadas suscetíveis à liquefação do alteamento da barragem de
Limonar. 93
Tabela 6.7 – Parâmetros geotécnicos para análise do potencial de liquefação.93
Tabela 6.8 – Fatores de segurança contra liquefação FS ^{liq} após construção do
dique 1. 95
Tabela 6.9 – Fatores de segurança contra liquefação FS ^{liq} após construção do
dique 2. 95
Tabela 6.10 – Fatores de segurança contra liquefação FS ^{liq} após construção do
dique 3. 95

Lista de Símbolos

Romanos

С	Coesão
C_{ss}	Coeficiente de compressibilidade
C_{N}	Fator de correção em nível de tensão para o ensaio SPT
C_{q}	Fator de correção em nível de tensão do ensaio CPT
C_{v}	Coeficiente de adensamento do solo
$d\lambda$	Incremento da resistência plástica
D _r	Densidade relativa
E	Modulo de Young
eo	Índice de vazios inicial
0	Índice de vazios na Linha de Estado Permanente sob a
e_{ss}	tensão efetiva.
a	Superfície de cone que passa através dos pontos de
8	compressão triaxial
G_{\max}^P	Módulo de cisalhamento plástico máximo
t	Tempo
K _o	Coeficiente de empuxo no repouso
k _v	Condutividade hidráulica vertical
k _h	Condutividade hidráulica horizontal
K_G^e	Número de módulo de cisalhamento elástico
K^{e}_{B}	Número de módulo de deformação volumétrica elástico
K_G^{p}	Número do módulo de cisalhamento plástico
K _o	Coeficiente de empuxo no repouso
K	Parâmetro utilizado para estimar o módulo de
A 2,max	cisalhamento
ne	Índice do módulo de cisalhamento elástico

n	Razão de tensões
me	Índice do módulo de deformação volumétrica elástico
тр	Índice do módulo de cisalhamento plástico
N _{SPT}	Número de golpes do ensaio SPT
	Número de golpes do ensaio SPT corrigido para um nível
$(N)_{60}$	de energia equivalente a 60% da energia teórica de queda
	livre do martelo
	Número de golpes corrigido para uma tensão vertical
$(N_1)_{60}$	efetiva de 100kPa e um nível de energia igual a 60% da
	energia teórica de queda livre do martelo
p_1	Auto vetor no eixo y
p_2	Auto vetor no eixo z
p_3	Auto vetor no eixo x
P_a	Pressão atmosférica
р	Autovalor
q_{c1}	Resistência à penetração da ponta do cone no ensaio CPT
101	
r _u	Parâmetro de poropressão
r_u R_f	Parâmetro de poropressão Razão de ruptura
r_u R_f S_u	Parâmetro de poropressão Razão de ruptura Resistência não drenada
r_{u} R_{f} S_{u} $S_{u}(Pico)$	Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico
r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$	Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos
r_{u} r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Dico)(\sigma')$	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a
r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Pico)/\sigma'_{vo}$	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a tensão inicial vertical efetiva
r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Pico)/\sigma'_{vo}$ $S_{u}(Liq)/\sigma'_{vo}$	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a tensão inicial vertical efetiva Razão entre a resistência ao cisalhamento liquefeita e a
r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Pico)/\sigma'_{vo}$ $S_{u}(Liq)/\sigma'_{vo}$	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a tensão inicial vertical efetiva Razão entre a resistência ao cisalhamento liquefeita e a tensão inicial vertical efetiva
r_{u} r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Pico)/\sigma'_{vo}$ $S_{u}(Liq)/\sigma'_{vo}$ U_{e}	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a tensão inicial vertical efetiva Razão entre a resistência ao cisalhamento liquefeita e a tensão inicial vertical efetiva Excesso de poropressão
r_{u} r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Pico)/\sigma'_{vo}$ $S_{u}(Liq)/\sigma'_{vo}$ U_{e} U_{s}	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a tensão inicial vertical efetiva Razão entre a resistência ao cisalhamento liquefeita e a tensão inicial vertical efetiva Excesso de poropressão Excesso de poropressão hidrostática
r_{u} r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Pico)/\sigma'_{vo}$ $S_{u}(Liq)/\sigma'_{vo}$ U_{e} U_{s} U_{y}^{max}	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a tensão inicial vertical efetiva Razão entre a resistência ao cisalhamento liquefeita e a tensão inicial vertical efetiva Excesso de poropressão Excesso de poropressão hidrostática Deslocamento máximo no eixo y (recalque)
r_{u} r_{u} R_{f} S_{u} $S_{u}(Pico)$ $S_{u}(liq)$ $S_{u}(Pico)/\sigma'_{vo}$ $S_{u}(Liq)/\sigma'_{vo}$ U_{e} U_{s} U_{y}^{max} $ U $	 Parâmetro de poropressão Razão de ruptura Resistência não drenada Resistência não drenada de pico Resistência liquefeita dos rejeitos Razão entre a resistência ao cisalhamento de pico e a tensão inicial vertical efetiva Razão entre a resistência ao cisalhamento liquefeita e a tensão inicial vertical efetiva Excesso de poropressão Excesso de poropressão hidrostática Deslocamento máximo no eixo y (recalque) Vetor de deslocamento

Gregos

Δ	Variação
$d\xi^p_v$	Incremento de deformação volumétrica plástica
Δt	Incremento de tempo
Δu	Incremento da poropressão
$\Delta\sigma_{_1}$	Variação de tensão principal maior
$\pmb{\phi}_p$	Ângulo de atrito no pico
$\phi_{_m}$	Ângulo de atrito mobilizado
$\phi_{_{CV}}$	Ângulo de atrito a volume constante
ϕ_l	Ângulo de Lode
γ	Densidade do Solo
$d\gamma^p$	Deformação cisalhante na condição plástica
λ	Auto Vetor
σ min	Tensão principal menor
σ int	Tensão principal intermedia
σ max	Tensão principal máxima
σ_t	Tensão de tração máxima
σ'_m	Tensão efetiva média
σ'	Tensão principal na direção y
σ'_{3}	Tensão principal na direção x
σ' 3	Tensão de corte
σ'	Tensão efetiva de confinamento
σ_t	Tensão de tração máxima
υ	Coeficiente de Poisson
ψ	Parâmetro de estado

Lista de Abreviaturas

BH	Borehole (furo de sondagem)
CPT	Ensaio de penetração de cone (Cone Penetration Test)
ER	Energia teórica de queda livre do martelo no ensaio SPT
DMT	Ensaio de dilatômetro
FLS	Superfície de fluxo por liquefação (Flow Liquefaction Surface)
FS	Fator de segurança
HDPE	Polietileno de alta densidade
IP	Índice de plasticidade
LL	Limite de liquidez
SPT	Ensaio de penetração dinâmica (Standard Penetration Test)
SSL	Linha de Estado Permanente (Steady State Line)
UTM	Coordenadas geográficas