

João da Costa Pantoja

Geração automática via otimização topológica e avaliação de segurança de modelos de bielas e tirantes

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil.

AWWWOrientador: Luiz Fernando C. R. Martha AWWWWWWWWWWWCo-orientador: Luiz Eloy Vaz

Rio de Janeiro

Fevereiro de 2012

João da Costa Pantoja

Geração automática via otimização topológica e avaliação de segurança de modelos de bielas e tirantes

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luiz Fernando Campos Ramos Martha

Orientador Departamento de Engenharia Civil - PUC-Rio

Prof. Luiz Eloy Vaz

Co-Orientador Universidade Federal Fluminense

Profa. Marta de Souza Lima Velasco

Departamento de Engenharia Civil - PUC-Rio

Prof. Raul Rosas e Silva

Departamento de Engenharia Civil – PUC-Rio

Prof. André Teófilo Beck

Universidade de São Paulo

Prof. Rafael Alves de Souza

Universidade Federal de Maringá

Prof. José Eugenio Leal

Coordenador Setorial do

Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 23 de fevereiro de 2012.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

João da Costa Pantoja

Fez curso de mestrado no Programa de Pós-Graduação da UNB (Universidade de Brasília) pelo qual recebeu o título de mestre no ano de 2003. Interesses acadêmicos em áreas de pesquisa que envolvam otimização de estruturas, programação matemática, análise de confiabilidade, análise de risco, análise não linear, modelos de bielas e tirantes e estruturas especiais de concreto armado. Em 2008 ingressou no curso de doutorado em Estruturas da PUC-Rio (Pontificia Universidade Católica do Rio de Janeiro).

Ficha Catalográfica

João da Costa Pantoja

Geração automática via otimização topológica e avaliação de segurança de modelos de bielas e tirantes/ João da Costa Pantoja; orientador: Luiz Fernando C. R. Martha; co-orientador: Luiz Eloy Vaz – 2012.

240 f.: il. (color.); A4

Tese (doutorado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2012.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Otimização Topológica. 3. Análise de Confiabilidade. 4. Modelos de Bielas e Tirantes. 5. Envoltória de Topologias. 6. Programação Matemática. 7. Análise Limite. 8. Plasticidade. I. Martha, Luiz Fernando. II. Vaz, Luiz Eloy. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Aos amores da minha vida:

Mafalda, Camille e João Pedro.

Agradecimentos

Aos meus orientadores Luiz Eloy Vaz e Luiz Fernando Martha pelo estímulo, apoio e interesse que sempre demostraram durante todo o período da tese.

Ao Professor Daniel A. Kuchma da University of Illinois at Urbana Champaign/EUA por me receber como professor visitante por um período de três meses e pelas inúmeras sugestões e questionamentos que enriqueceram muito este trabalho.

Ao amigo Paul Alejandro Antezana pelo excelente trabalho de formatação do texto, execução das figuras e amizade a mim dispensados ao longo deste trabalho.

A todos os amigos e colegas da PUC-Rio, em especial aos que passaram pela sala 609 e conviveram na PUC-Rio durante o período deste trabalho: Anderson, Thiago, José Silvestre, João Krause, Diego, Cristiano, Fred, Renata, Xavier e Joabson.

Ao Departamento de Engenharia Civil da PUC-Rio na figura de todo seu corpo docente pelo conhecimento transmitido.

À minha esposa Mafalda Fabiene, pelo amor, carinho, compreensão, paciência e apoio incondicionais durante a realização deste trabalho.

Aos meus filhos Camille e João Pedro que mantiveram acessa a luz do gostar durante todo o período deste trabalho.

A minha irmã Tereza Pantoja pela consideração, o carinho e o cuidado que transmitiu a mim, a minha esposa e meus filhos neste período de trabalho.

Ao CNPq e a PWE- Rio pelo apoio financeiro.

Resumo

Pantoja, João da Costa; Martha, Luiz Fernando(Orientador); Vaz, Luiz Eloy (Co-orientador). **Geração automática via otimização topológica e avaliação de segurança de modelos de bielas e tirantes** Rio de Janeiro, 2012. 240 p. Tese de Doutorado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

O projeto de estruturas de concreto armado com a presença de descontinuidades geométricas ou estáticas utilizando o conceito dos modelos de bielas e tirantes tem aumentado muito sua aplicabilidade nos últimos anos. As orientações normativas existentes para esse tipo de projeto parecem, entretanto, ser insuficientes e muitas vezes conservadoras. O presente trabalho tem como objetivo apresentar uma metodologia que englobe os aspectos de geração automática da topologia via otimização topológica e avaliação da segurança via análise de confiabilidade dos modelos de bielas e tirantes aplicados a estruturas planas de concreto armado. O primeiro aspecto visa auxiliar o projetista estrutural na concepção do modelo topológico com a utilização de técnicas de otimização topológica que facilitem a visualização do fluxo de forças no interior da estrutura auxiliando na concepção de uma topologia ótima para o modelo. O segundo aspecto consiste na proposição de um critério de desempenho para modelos com base na avaliação de sua segurança via análise de confiabilidade. Os resultados obtidos e apresentados através dos exemplos desse trabalho permitem concluir que a técnica proposta conduz a uma melhora substancial na concepção e automatização dos modelos topológicos para os modelos de bielas e tirantes, bem como, o critério de avaliação de segurança proposto permite ao projetista estrutural considerar aspectos relacionados à obtenção da probabilidade de falha e mensuração dos modos de falha da estrutura.

Palayras-chave

Optimização Topológica; Análise de confiabilidade; Modelos de Bielas e Tirantes; Estruturas de Concreto Armado; Envoltória de Topologia.

Abstract

Pantoja, João da Costa; Martha, Luiz Fernando (Advisor); Vaz, Luiz Eloy (Co-advisor). Automatic generation using topologic Optimization and safety assessment in strut and tie models. Rio de Janeiro, 2012. 240 p. D. Sc. Thesis - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

The design of reinforced concrete structures with the presence of geometric or statics discontinuities using the concept of strut and tie models has greatly increased its applicability in recent years. The existing Standards and Guidelines for this kind of project seem, however, be insufficient and often conservative. This thesis aims are to present a methodology that includes aspects of automatic generation of topology by topological optimization and assessment of safety by the reliability analysis of the strut and tie models applied to plane reinforced concrete structures. The first aspect is to assist the structural designer in the conception of the structural topological model with the use of topological optimization techniques that facilitate the visualization of the flow forces in the structure, assisting in the design of an optimal topology for the model. The second aspect is the proposal of a performance criterion for models based on the assessment of its security by reliability analysis. The results obtained and submitted through the examples of this work allow to conclude that the proposed technique leads to a substantial improvement in the design and conception and automatic generation of topological models for the strut and tie models, as well as the security evaluation criterion proposed allows the structural designer to consider issues related to obtaining the probability of failure and measurement of failure modes of the structure.

Keywords

Topology Optimization; Reliability analysis; Strut and Tie models; Concrete Structures; Topology envelope.

Sumário

1	INTROI	DUÇÃO	18
	1.1 Iı	ntrodução e objetivos	18
	1.2 P	Principais Contribuições	20
	1.3	Organização do Trabalho	21
2	MODEL	OS DE BIELAS E TIRANTES	24
	2.1	Concepção dos Modelos de Bielas e Tirantes	27
	2.2 D	Definição da Topologia	30
	2.2.1	Processos convencionais	32
	2.2.2	Processos automáticos de geração	40
	2.3 D	Detalhamento do Modelo	43
	2.3.1	Plasticidade em concreto armado	46
	2.3.2	Teorema do limite inferior	47
	2.3.3	Análise limite	48
	2.3.4	Metodologias semi-probabilísticas de projeto de STM	49
	2.4 N	Modelos topológicos Hiperestáticos	64
	2.4.1	Análise linear pelo método da rigidez	65
	2.4.2	Inversa generalizada de mínima norma	66
	2.4.3	Solução de mínima norma para o elemento de treliça plano desconexo	68
	2.5 P	Principais dificuldades de aplicação	70
3	GERAÇ	ÃO AUTOMÁTICA DA TOPOLOGIA DE STM	72
	3.1 C	Otimização Topológica	74
	3.1.1	Base conceitual	76
	3.1.2	Formulação clássica	78
	3.1.3	Relaxação do problema	82
	3.1.4	Modelo SIMP	83
	3.1.5	Abordagem com variáveis nodais	86

	3.1.6	Abordagem com base no elemento	87
	3.2 In	nstabilidades Numéricas	88
	3.2.1	Instabilidades devido a problemas de dependência de malha	88
	3.2.2	Instabilidades devido a problemas de tabuleiro	90
	3.2.3	Esquema de regularização via filtro de sensibilidade	92
	3.3 N	Método de Solução para Busca de Topologias Ótimas	97
	3.3.1	Método das assíntotas móveis	98
	3.3.2	Critério de otimalidade	103
	3.3.3	Obtenção das sensibilidades via método adjunto	105
	3.4 T	écnica dos Elementos Indutores	107
	3.4.1	Exemplos de aplicação	109
	3.5 E	nvoltória Topológica	117
	3.5.1	Otimização multiobjetivo	117
	3.6	Considerações Finais	125
4	VERIFI	CAÇÃO DE SEGURANÇA ESTRUTURAL VIA	
-		IDADE	127
	4.1 S	egurança Estrutural	130
	4.2 A	nálise de Confiabilidade	131
	4.2.1	Consideração das incertezas	
	4.2.2	Funções de falha	
	4.2.3	Probabilidade de falha e índice de Confiabilidade	
	4.2.4	Métodos de análise	147
	4.2.5	Probabilidade de falha de sistemas	157
	4.3	Calibração de Códigos Normativos	161
	4.3.1	Calibração dos coeficientes parciais de segurança	163
	4.3.2	Geração da superficie de resposta	165
	4.4 In	mportância Relativa dos Modos de Falha	168
	4.5 A	análise de Confiabilidade baseada em Análise Limite	171
	4.5.1	Algoritmo de implementação	173
5	EXEMP	LOS DE APLICAÇÃO	175

	5.1	Descrição dos Exemplos	176
	5.2	Primeiro Exemplo de Aplicação	178
	5.2.1	Apresentação da estrutura	178
	5.2.2	Análise elástica	179
	5.2.3	Otimização topológica	180
	5.2.4	Modelos de bielas e tirantes considerados	181
	5.2.5	Parâmetros e métodos para execução da análise de confiabilidade	183
	5.2.6	Avaliação de desempenho	184
	5.3	Segundo Exemplo de Aplicação	192
	5.3.1	Apresentação da estrutura	192
	5.3.2	Análise elástica	193
	5.3.3	Otimização topológica	194
	5.3.4	Modelos de bielas e tirantes considerados	195
	5.3.5	Parâmetros e métodos para execução da análise de confiabilidade	196
	5.3.6	Avaliação de desempenho	197
	5.4	Terceiro Exemplo de Aplicação	201
	5.4.1	Apresentação da estrutura	201
	5.4.2	Análise elástica	201
	5.4.3	Otimização topológica	203
	5.4.4	Modelos de bielas e tirantes considerados	205
	5.4.5	Parâmetros e métodos para execução da análise de confiabilidade	206
	5.4.6	Avaliação de desempenho	206
	5.5	Quarto Exemplo de Aplicação	212
	5.5.1	Apresentação da estrutura	212
	5.5.2	Envoltória de topologia	213
	5.5.3	Modelos de bielas e tirantes considerados	214
6	CONCI	LUSÕES E SUGESTÕES	217
	6.1	Sugestões para Trabalhos Futuros	219
	6.1.1	Análise estrutural e modelos de bielas e tirantes	219
	6.1.2	Otimização topológica	220
	6.1.3	Análise de confiabilidade	220
RE	FERÊNC	IAS BIBLIOGRÁFICAS	222

Lista de Figuras

Figura 2-1: Exemplos de regiões com descontinuidades estáticas b), d), f) ou	
geométricas a), c), e).	28
Figura 2-2: Divisão da estrutura em regiões B e D no modelo de bielas e	
tirantes	29
Figura 2-3: Modelo de bielas e tirantes numa viga parede	32
Figura 2-4: Modelos Normativos para Viga parede com carregamento	
distribuído (CEB-FIP 2010).	33
Figura 2-5: Modelos Normativos da ligação de viga intermediária-pilar	
extremo (Silva, 1991): a) $hv \cong hp$ e b) $hv > hp$	34
Figura 2-6: Modelos Normativos para Vigas parede com diversos	
carregamentos (CEB-FIP 2010).	35
Figura 2-7: Modelos Normativos para Zonas de ancoragem (CEB-FIP	
2010)	35
Figura 2-8: Modelos Normativos para Nós de pórtico submetido à flexão	
(CEB-FIP 2010)	35
Figura 2-9: Estrutura com geometria complexa.	36
Figura 2-10: Resultados de uma análise elástica linear pelo FEM:	
a)Deslocamentos e b) Fluxo de tensões principais	37
Figura 2-11: Mapas coloridos dos campos de tensões.	38
Figura 2-12: Modelo de bielas e tirantes concebido via análise elástica	38
Figura 2-13: Caminho de carga num modelo simples de viga parede	39
Figura 2-14: Modelo de bielas e tirantes via padrão de fissuração (Schlaich	
et al., 1987)	40
Figura 2-15: Topologia de uma transversina de ponte via otimização	
topológica	42
Figura 2-16: Fluxograma ilustrativo dos STM (Brown e Bayrak, 2006)	45
Figura 2-17: Distribuição de tensões radial.	51
Figura 2-18: Distribuição de tensões em linha com afunilamento	51
Figura 2-19: Distribuição de tensões paralelas.	52

Figura 2-20: Nó 1 definido conforme Schaefer e Schaich (1988,1991)	57
Figura 2-21: Nó 2 definido conforme Schaefer e Schaich (1988,1991)	57
Figura 2-22: Nó 3 definido conforme Schaefer e Schaich (1988,1991)	58
Figura 2-23: Nó 4 definido conforme Schaefer e Schaich (1988,1991)	58
Figura 2-24: Nó 5 definido conforme Schaefer e Schaich (1988,1991)	59
Figura 2-25: Nó 6 definido conforme Schaefer e Schaich (1988,1991)	59
Figura 2-26: Nó 7 definido conforme Schaefer e Schaich (1988,1991)	60
Figura 2-27: Nó 8 definido conforme Schaefer e Schaich (1988,1991)	60
Figura 2-28: Nó 9 definido conforme Schaefer e Schaich (1988,1991)	61
Figura 2-29: Taxa de armadura	64
Figura 2-30: mostra os sistemas referenciais adotados para o elemento de	
treliça desconexo.	69
Figura 3-1:Processo de Otimização Topológica numa Viga Parede de	
Concreto.	77
Figura 3-2: Domínio estendido sujeito a forças de corpo e de contorno	78
Figura 3-3: Solução do problema de otimização em escala de cinza	83
Figura 3-4: Diagrama de fluxo – Método SIMP	85
Figura 3-5: Dependência da malha. a) Estrutura com simetria; b) Malha com	
1250 elementos; c) Malha com 5.000 elementos; d) Malha com	
45.000 elementos.	89
Figura 3-6: Exemplo de não unicidade da solução	90
Figura 3-7: Instabilidade de tabuleiro	92
Figura 3-8: Filtro de sensibilidade	93
Figura 3-9: Filtro de sensibilidade	96
Figura 3-10: Modificação das topologias com variação do raio do filtro	97
Figura 3-11: Formulação via MMA para variável de projeto <i>xe</i>	102
Figura 3-12: Multiplicador de Lagrange	105
Figura 3-13:Fluxograma de implementação da técnica dos elementos	
indutores	108
Figura 3-14: Viga parede VP1 com carregamento na parte superior	111
Figura 3-15: Resultado obtido via simetria para VP1 num processo sem	
indução	111
Figura 3-16: VP1 com simetria e elementos indutores	112
Figura 3-17: Influência do refinado da malha no na OT com indução	113

Figura 3-18: Modificações nos resultados da OT com indução devido à	
variação na fração de volume adotada [a) 10%, b) 12%, c) 15%	
e d) 20%]	. 114
Figura 3-19: Viga parede VP2 com carregamento na parte inferior	. 115
Figura 3-20: Viga parede VP2 com carregamento na parte inferior	. 115
Figura 3-21: Viga parede VP2 com simetria e elementos indutores	. 116
Figura 3-22: Resultado obtido da OT com processo induzido	. 116
Figura 3-23: Problema de otimização com uma variável e duas funções	
objetivo	. 119
Figura 3-24: Região viável e pontos de Pareto no espaço das variáveis de	
projeto e no espaço das funções objetivo	. 120
Figura 3-25: Região viável não-convexa no espaço das funções objetivo	. 121
Figura 3-26: Geometria, cargas e condições de contorno do modelo	. 123
Figura 3-27: Topologias geradas pelos pontos de Pareto do modelo	. 124
Figura 3-28: Envoltória topológica de Pareto e modelo de bielas e tirantes	
do modelo	. 124
Figura 4-1: Domínios definidos pela função de estado limite	. 134
Figura 4-2: Índice de confiabilidade no espaço normalizado	. 145
Figura 4-3: Representação gráfica do método FORM	. 148
Figura 4-4: Sorteio de pontos na simulação de Monte Carlo	. 155
Figura 4-5: Interpolação com uso dos polinômios de Lagrange	. 167
Figura 4-6: Superfície de resposta do índice de confiabilidade de uma viga	
parede	. 168
Figura 4-7: Influência do <i>fck</i> na razão de falha dos diferentes modos de	
falha	. 169
Figura 4-8: Influência do <i>fck</i> na obtenção dos domínios de falha dúctil e	
frágil	. 170
Figura 4-9: Avaliação da segurança de diferentes topologias de um modelo	
via confiabilidade	. 172
Figura 4-10: Fluxograma esquemático da análise de confiabilidade baseada	
em análise limite	. 173
Figura 5-1: Viga parede simplesmente apoiada com carregamento centrado	
do ACI 318-05 (2005)	. 178

Figura 5-2: Mapas de cores relativos as tensões elásticas da viga parede
simplesmente apoiada com carregamento centrado
Figura 5-3: Mapas de cores relativos às tensões elásticas da viga parede 180
Figura 5-4: Resultado da otimização Viga parede simplesmente apoiada
com carregamento centrado do ACI 318-02 (2002)
Figura 5-5: Modelos topológicos possíveis para representação da viga
parede. 18
Figura 5-6: Variação da carga de colapso dos modelos com relação ao
aumento do <i>fck</i>
Figura 5-7: Variação do nível de segurança dos modelos 3 e 4 com a
variação do f ck
Figura 5-8: Variação da razão de falha dos modos principais do modelo 3
com o aumento do <i>fck</i>
Figura 5-9: Variação da razão de falha dos modos principais do modelo 4
com o aumento do <i>fck</i> .
Figura 5-10: Variação do nível de segurança do modelo 4 modificado com
aumento do <i>fck</i>
Figura 5-11: Ductilidade do modelo 4 modificado com aumento do fck
Figura 5-12: Variação da razão de ductilidade do modelo 4 modificado com
aumento do <i>fck</i>
Figura 5-13: Transversina de ponte simplesmente apoiada com
carregamento assimétrico
Figura 5-14: Mapa colorido das tensões elásticas da transversina com
carregamento assimétrico
Figura 5-15: Análise elástica da transversina com carregamento assimétrico:
a) Deformações elásticas e b) Fluxo das tensões principais 194
Figura 5-16: Desenvolvimento do processo de otimização topológica da
transversina com carregamento assimétrico em 5 etapas
diferentes. 194
Figura 5-17: Modelos topológicos da transversina utilizados na avaliação de
desempenho
Figura 5-18: Variação do nível de segurança dos modelos 1,2 e 3 com a
variação do <i>fck</i> para o exemplo 2

Figura 5-19: Variação da razão de falha do modelo 1 com a variação do <i>fck</i>	
para o exemplo 2	198
Figura 5-20: Ductilidade do modelo 2 com a variação do fck para o	
exemplo 2.	200
Figura 5-21: Ductilidade do modelo 3 com a variação do <i>fck</i> para o	
exemplo 2.	200
Figura 5-22: Viga parede simplesmente apoiada com balanço no lado	
direito.	201
Figura 5-23: Mapa colorido das tensões elásticas da viga parede com	
balanço	202
Figura 5-24: Análise elástica da viga parede com balanço: a) Fluxo das	
tensões principais e b) Deformações elásticas	203
Figura 5-25: Processo de otimização topológica via método SIMP da viga	
parede com balanço em 5 etapas.	204
Figura 5-26: Modelos topológicos utilizados na avaliação de desempenho da	
viga parede com balanço.	205
Figura 5-27: Desempenho de segurança dos modelos topológicos via	
método FORM com análise limite como subproblema do	
exemplo 3.	207
Figura 5-28: Região de transferência entre os critérios frágil e dúctil	208
Figura 5-29: Sensibilidades das variáveis aleatórias do modelo 1 na região	
de falha frágil	209
Figura 5-30: Sensibilidades das variáveis aleatórias do modelo 1 na região	
de falha dúctil.	210
Figura 5-31: Variação do nível de segurança do modelo 1 com aumento da	
taxa de armadura e do <i>fck</i> da estrutura	211
Figura 5-32:Variação do nível de segurança do modelo 1 com aumento da	
espessura e do <i>fck</i> da estrutura	212
Figura 5-33: Estrutura com geometria complexa.	213
Figura 5-34: Processo de obtenção da envoltória de topologia na estrutura de	
geometria complexa.	214
Figura 5-35: Concepção do modelo topológico para carregamentos	
independentes.	215

Lista de Tabelas

Tabela 2-1: Valores limites para o ângulo entre bielas e tirantes num nó	56
Tabela 4-1:Modelos probabilísticos para estruturas de concreto armado	
via STM	137
Tabela 4-2: Incertezas epistêmicas ou de modelo	140
Tabela 4-3: Valores alvo para o índice de confiabilidade ${\pmb \beta}$ e	
probabilidades de falha associadas, relacionados a estados	
limites últimos.	147
Tabela 5-1: Modelos probabilísticos das variáveis aleatórias do exemplo	
1	184
Tabela 5-2: Modelos probabilísticos das variáveis aleatórias do exemplo	
2	197
Tabela 5-3: Modelos probabilísticos das variáveis aleatórias do exemplo	
3	206