

Maurício Vilela Guerra

Caracterização do Canal de Propagação para Redes de TV Digital de Freqüência Única

Tese de Doutorado

Tese apresentada ao programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Elétrica.

> Orientador: Prof. Luiz Alencar Reis da Silva Mello Co-orientador: Prof. Carlos Vinício Rodriguez Ron

Rio de Janeiro Abril de 2012

Maurício Vilela Guerra

Caracterização do Canal de Propagação para Redes de TV Digital de Freqüência Única

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Luiz Alencar Reis da Silva Mello Orientador Centro de Estudos em Telecomunicações /PUC-Rio

> > Prof. Carlos Vinício Rodriguez Ron

Co-Orientador CETUC

Prof. Gláucio Lima Siqueira Centro de Estudos em Telecomunicações /PUC-Rio

Prof. Flavio José Vieira Hasselmann Centro de Estudos em Telecomunicações /PUC-Rio

> Profa. Leni Joaquim de Matos UFF

Dr. Rodolfo Sabóia Lima de Souza Inmetro

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 13 de abril de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Maurício Vilela Guerra

Graduou-se em Engenharia Eletrônica em 1989. Trabalhou por um ano na área de Telecomunicações antes de começar Mestrado na área de Sistemas de Comunicação na Pós-Graduação da PUC-Rio. Participou de congressos na área Microondas e Optoeletrônica. Aprovado em Concurso Público para Professor do Magistério Superior na área de Engenharia Elétrica / Telecomunicações do CEFET/RJ onde atualmente trabalha como Professor Assistente Nível 3. Suas áreas de interesse abrangem Caracterização e Modelagem de Canal em Banda Larga, Processos Estocásticos e Teoria Estatísca das Comunicações.

Ficha Catalográfica

Guerra, Maurício Vilela

Caracterização do canal de propagação para redes de TV digital de freqüência única / Maurício Vilela Guerra ; orientadora: Luiz Alencar Reis da Silva Mello ; coorientadora: Carlos Vinício Rodriguez Ron. – 2012.

140 f. ; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2012.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Perfil de retardos. 3. Propagação UHF. 4. TV digital. 5. ISDB-T. 6. Sistemas SFN. I. Mello, Luiz Alencar Reis da Silva. II. Rodriguez Ron, Carlos Vinício. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

Agradecimentos

Aos meus orientadores Professor Luiz Alencar Reis de Silva Mello, Professor

Carlos Vinício Rodriguez Ron e Professor Rodolfo Sabóia Lima de Souza pelos ensinamentos, compreensão, apoio e parceria para a realização deste trabalho.

Aos Professores Gláucio Lima Siqueira, José Ricardo Bergmann e João Célio Brandão pelas importantes contribuições.

Ao Dr. Pedro Vladimir Gonzalez Castellanos pelo seu importante apoio neste trabalho.

À Minha Família por todo apoio e carinho em todas as horas. Em especial a minha esposa Adriana e a meus filhos Leonardo e Roberta.

A todos os professores do CETUC, pelos ensinamentos.

Aos funcionários do CETUC.

Aos professores que participaram da Comissão examinadora.

Resumo

Guerra, Mauricio Vilela; Silva Mello, Luiz Alencar Reis da (Orientador); Ron, Carlos Vinício Rodriguez (Co-orientador). **Caracterização do canal de propagação para redes de TV Digital de frequência única (SFN)**. Rio de Janeiro, 2011. 140p. Tese de Doutorado. Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho tem como objetivo obter a caracterização do canal de propagação para redes de TV Digital de frequência única (SFN) bem como desenvolver modelos para simulação do desempenho dos serviços de radiodifusão e para tanto medições de campo devem ser realizadas. A avaliação do desempenho de redes individuais através de medidas tem duas desvantagens significativas: custo elevado com demanda de tempo considerável e nem sempre é possível aplicar os resultados de campo com a avaliação de desempenho de receptores comerciais. Neste caso, simulações realizadas em laboratório, utilizando modelos condicionados pelas propriedades do canal de rádio, podem ser a resposta ao problema. Estes modelos podem ser usados em diferentes simulações, tornando possível não somente a avaliação de desempenho, bem como a análise e projeto de equipamentos e sistemas de comunicação adequados para uma determinada característica de canal SFN. São apresentadas as campanhas de medições realizadas, incluindo a descrição das regiões e configurações de medição, técnicas de medição e processamento de dados utilizados. Em sequência, é apresentada uma análise da perda média de propagação com base medições realizadas e a comparação com as previsões fornecidas para os mesmos percursos pela implementação do modelo do ITU-R. A caracterização em banda larga do canal é realizada pela modelagem estatística do perfil de retardos de multipercurso do canal. Finalmente é apresentado a modelagem do canal como uma linha densa de retardos e a modelagem estatística dos parâmetros do canal com base nos resultados experimentais.

Palavras-chave

Radiopropagação, TV Digital, Redes de Freqüência Única.

Abstract

Guerra, Mauricio Vilela; Silva Mello, Luiz Alencar Reis da (Advisor); Ron, Carlos Vinício Rodriguez (Co-advisor). **Propagation Channel Characterization for SFN Digital TV.** Rio de Janeiro, 2011. 140p. Doctoral Thesis – – Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

This work aims to obtain through a field measurement the characterization of the propagation channel for Digital TV using single frequency networks (SFN) and to develop models for simulating the performance of broadcasting services. The evaluation of the performance of individual networks by means of measurements has significant drawbacks: high cost, considerable time demand and is not always possible to apply field measurement results in the performance evaluation of commercial receivers. In this case, laboratory simulations using models conditioned by the radio channel properties may be the answer to this problem. These models can be used in different simulations making possible not only the performance evaluation but also the analysis and design of equipment and communication systems suitable for a particular SFN channel characteristic. This text presents the measurement campaigns carried out, including the description of regions and measurement settings, measurement techniques and data processing used. In sequence, is presented an analysis of the average path loss based on the performed measurements and its comparison with the predicted path loss provided by the ITU-R recommended model. The broadband channel characterization is carried out by the statistical modeling of the channel multipath power delay profile. Finally, the modeling of the channel as a tapped delay line and the statistical description of the channel dispersion parameters based on experimental results are presented.

Keywords

Radiopropagation, Digital TV, SFN.

Sumário

1. Introdução	13
1.1. Descrição do Problema	14
1.2. Motivação	16
1.3. Organização do Trabalho	17
2. Efeitos de Propagação	18
2.1. Ambientes Urbanos	18
2.2. Sombreamento	19
2.3. Multipercursos	21
2.3.1. Multipercurso em Pequena Escala	22
2.3.2. Fatores Influenciando o Desvanecimento em Pequena Escala	24
2.4. Resposta Impulsional Discretizada	25
2.5. Modelos de Predição da Perda de Propagação	26
2.5.1. Recomendação IIU-R P. 1546-3	27
2.6. Caracterização de Canal Radio de Banda Larga	29
2.6.1. Linha Densa de Retardos	30
2.6.2. Perfil de Retardos 2.6.2. Apólica da Variabilidada da Sinal am Daguana Escala na SEN	33 25
2.6.3. Analise da Variabilidade do Sinal em Pequena Escala na SFN 2.6.2.1. Estor de Dies (V)	33 26
2.0.3.1. Fator de Rice (\mathbf{K})	50
3. Sistemas SFN	38
3.1. Características da SFN	38
3.2. Configurações da Rede de Frequencia Unica	40
3.3. Estudo dos Atrasos	41
3.3.1. Captação sem F10	41
3.3.2. Transmissao Conjunta 3.4. Componentos de Medele de Canel SEN	47
5.4. Componentes do Modelo de Canal SFN	49
4. Descrição do Sistema e Campanha de Medição	52
4.1. Descrição do Sistema	52
4.1.1. Bloco de Transmissão	53
4.1.2. Bloco de Recepção	59
4.2. Planejamento das Medições	04 69
4.5. Recomendação II U-R B1. 2055	08
5. Análise dos Dados e Resultados	70
5.1. Ambiente de Medições	71
5.1.1. Bairro de Jacarepaguá	73
5.1.2. Bairro da Barra da Tijuca	73
5.1.3. Bairro do Recreio dos Bandeirantes	74
5.2. Analise da Perda Media de Propragação do Transmissor Principal	75
5.2.1. Dependencia da Perda de Propagação com a distancia	/5
5.2.2. Comparação com a Rec. 11 U-R P. 1540-5	/9 02
3.2.5. Ganno e Menioria de Diversidade da SFN	ده

6. Caracterização do Canal SFN	83
6.1. Atrasos Estruturais numa SFN	83
6.2. Metodologia das Medições do Canal	90
6.3. Processamento dos Dados Medidos	94
6.4. Resultados das Medições da Resposta Impulsional do Canal	96
6.4.1. Perfis de Retardos Medidos - Antena Direcional	96
6.4.2. Perfis de Retardos Medidos - Antena Omni	98
6.4.3. Parâmetros por Ponto de Medição	100
6.5. Parâmetros de Dispersão do Canal SFN	101
6.6. Modelo do Canal para Recepção Fixa	104
6.6.1. Descrição da Metodologia Aplicada	104
6.6.2. Modelos TDL	105
6.7. Estatísticas do Perfil de retardos	108
6.7.1. Modelo Estatístico do Canal SFN	109
6.7.1.1. Número de Componentes de Multipercurso – Modelo de Poisson	109
6.7.1.2. Distribuição dos Tempos de Chegada	111
6.7.1.3. Distribuição das Amplitudes Relativas	112
7. Conclusões	115
7.1. Perda de Propagação com a Distância	116
7.1.1. Parâmetros do Canal	117
7.1.2. Modelagem Estatística – Antenas Direcional e Omni	120
7.1.3. Caracterização Estatística do Canal SFN	122
7.2. Considerações Finais	122
7.3. Sugestões para Trabalhos Futuros	123
8. Referências Bibliográficas	124
Anexo A Perfis de Retardos	129
Antena Direcional	129
Antena Omnidirecional	137

Lista de figuras

Figura 1.1 Comportamento da qualidade de vídeo digital e analógico em função da intensidade de Campo	15
Eigure 2.1 Dédie propagação em érose urbanes	10
Figura 2.1 Radio propagação em aicas urbanas	19 21
Figura 2.2 Desvancementos em requena e Larga Escara	21
Figura 2.3 Adição constitutiva e destrutiva de dois percursos	
diferentes fases se combinam	23
Figura 2.5 Modelo de resposta impulsional discretizada e variante no tempo para um canal de multipercurso	25
Figura 2.6 Curvas de Potência Excedendo 50 % do tempo na faixa de freqüência de 100 MHz	28
Figura 2.7 Estrutura do filtro transversal	31
Figura 2.8 Nível de sinal médio em larga escala versus excesso de retardo	31
Figura 2.9 Perfil de potência de retardos (perfil de retardos)	34
Figura 2.10 Função densidade de probabilidade das distribuições de Rice	
(b), Rayleigh (a) e Gaussiana	37
Figura 3.1 Diferentes configurações de uma SFN de pequena área	41
Figura 3.2 Captação sem fio sem ocorrência de interferência intersimbólica	42
Figura 3.3 Captação sem fio com ocorrência de interferência intersimbólica	43
Figura 3.4 Conceito de Hipérbole	44
Figura 3.5 Gráfico para cálculos	45
Figura 3.6 Região livre de interferência num sistema com captação sem	
fio	47
Figura 3.7 Região livre de interferência num sistema com transmissão	
conjunta	48
Figura 3.8 Ajuste da região livre de interferência	48
Figura 3.9 SFN vista como um sistema com diversidade de <i>site</i>	50
Figura 3.10 Propagação através de um único canal escalar na SFN	50
Figura 4.1 Diagrama de blocos do sistema de operação	53
Figura 4.2 Transmissor de TV Digital principal - Sumaré	54
Figura 4.3 Antena transmissora principal PHP 15E - Sumaré	54
Figura 4.4 Diagrama horizontal da antena principal PHP 15E, escala E/E_{MAX}	55

Figura 4.5 Diagrama de radiação vertical da antena PHP 15E, escala	
E/E _{MAX}	56
Figura 4.6 Retransmissor de TV Digital - Pena	56
Figura 4.7 Antena retransmissora SFN TTSL4UO - Pena	57
Figura 4.8 Diagrama horizontal da antena retransmissora SFN TTSL4UO, escala E/E_{MAX}	58
Figura 4.9 Diagrama vertical da antena retransmissora SFN TTSL4UO, escala $\rm E/E_{MAX}$	58
Figura 4.10 Estação repetidora – Serra do Medanha	59
Figura 4.11 Localização geográfica do enlace Sumaré – Mendanha – Igreja da Pena	59
Figura 4.12 Configuração de montagem dos equipamentos de medição instalados na estação móvel de teste	60
Figura 4.13 Sistema de aquisição de dados da unidade móvel de teste	62
Figura 4.14 Fixação do casador 75/50 Ω e das antenas junto à haste retrátil	62
	62
Figura 4.15 Antena receptora	03 62
Figura 4.10 Diagrama nonzontal da antena receptora	03 64
Figura 4.17 Diagrama vertical da antena receptora	65
Figura 4.18 Localização geografica dos pontos de medida da campanha Figura 4.19 Perfil de retardo obtido através do analisador vetorial	05
Eigure 4.20 Basanaão SEN	66
Figura 4.20 Recepção SFN	67
Figura 4.21 Diferença dos atrasos na fede SFIN	07 72
Figura 5.1 Região de Inculdas	74
Figura 5.2 Urbanização do Bairro da Barra da Figura	74
Figura 5.5 Orbanização do Banto do Recreto dos Bandenantes	73
Figura 5.4 Oraneo da perda no percurso em relação ao ajuste	78
Figura 5.6 Localização geográfica dos transmissores e pontos de recepção	70
com obstrução	79
Figura 5.7 Interface da ferramenta desenvolvida para cálculo do campo segundo a Rec. ITU-R P. 1546-3	80
Figura 5.8 Comparação dos valores de campo medidos (em vermelho) e calculados (em verde) com a ITU-R P. 1546-3	81
Figura 5.9 Comparação dos valores de perda de transmissão medidos (em vermelho), calculados (em verde) com a ITU-R P. 1546-3 e em espaço	
livre (em azul)	82

Figura 5.10 Distribuição cumulativa da perda de transmissão na SFN e cenários com um transmissor (Sumaré)	85
Figura 6.1 Mecanismos geradores da interferência intersimbólica na SFN	88
Figura 6.2 Localização dos pontos na região oeste da cidade do Rio de Janeiro	91
Figura 6.3 SFN vista como um sistema com diversidade de site	92
Figura 6.4 Filtragem do sistema	93
Figura 6.5 Filtragem dos transmisses – Sumaré e Pena	93
Figura 6.6 Perfil de retardo com a filtragem das componentes válidas	96
Figura 6.7 Resposta impulsional e parâmetros do canal – antena direcional a 10 m de altura	97
Figura 6.8 Distribuição de potência dos retardos no canal – antena direcional a 10 m de altura	97
Figura 6.9 Distribuição acumulada da potência dos retardos – antena direcional	98
Figura 6.10 Resposta impulsional e parâmetros do canal – antena omnidirecional a 10 m de altura	98
Figura 6.11 Distribuição de potência dos retardos no canal – antena omnidirecional a 10 m de altura	99
Figura 6.12 Distribuição cumulativa da potência dos retardos – antena omni	100
Figura 6.13 Limiares definidos para os perfis de retardos	101
Figura 6.14 Determinação do número de percursos	102
Figura 6.15 Modelos TDL para limiares de -10, -15 e -20 dB – antena direcional	106
Figura 6.16 Modelos TDL para limiares de -10, -15 e -20 dB – antena omni	106
Figura 6.16 Distribuição acumulada dos retardos para todos os perfis: a) direcional e (b) omni	108
Figura 6.17 Distribuição acumulada dos valores do retardo rms para todos os perfis: (a) direcional e (b) omni	108
Figura 6.18 Ajuste do número de componentes de multipercurso – direcional e omni	110
Figura 6.19 Ajuste do tempo de inter-chegada das componentes de multipercurso – direcional e omni	112
Figura 6.20 Distribuição acumulada das amplitudes relativas das componentes de multipercurso – antenas (a) direcional e (b) omni	114

Lista de tabelas

Tabela 2.1 Relação entre fator K e distribuições de Rice, Rayleigh e Gaussiana	37
Tabela 4.1 Especificações da antena transmissora principal PHP15E	55
Tabela 4.2 Especificações da antena retransmissora SFN TTSL4UO	57
Tabela 4.3 Epecificações da antena receptora	63
Tabela 4.4 Latitudes, longitudes e atrasos dos pontos medidos	65
Tabela 6.1 Fator de Rice (k), valores médios de retardo e valor rms dos perfis de retardos medidos	100
Tabela 6.2 Parâmetros de dispersão de retardo do canal SFN – antena direcional	102
Tabela 6.3 Parâmetros de dispersão de retardo do canal SFN - antena omni	102
Tabela 6.4 OFDM em sistemas de TV Digital (SBTVD)	103
Tabela 6.5 Modelos de linhas densas de retardos para limiares de -10, -15 e -20 dB – antena direcional	106
Tabela 6.6 Modelos de linhas densas de retardos para limiares de -10, -15 e -20 dB – antena omni	107
Tabela 6.7 Valores dos parâmetros das distribuições que serviram como ajuste das amplitudes das componentes de multipercurso – antena	
direcional	113
Tabela 6.8 Valores dos parâmetros das distribuições que serviram como ajuste das amplitudes das componentes de multipercurso – antena omni	113
Tabela 7.1 Valores dos parâmetros de ajuste da perda média	116
Tabela 7.2 Parâmetros do canal obtidos no ambiente de medidas	118
Tabela 7.3 Comparação dos parâmetros obtidos em outros ambientes de	
propagação, para 1 e 2 transmissores	119