3 Receptores de sistemas de transmissão em blocos

Neste capítulo é feito uma análise dos diferentes tipos de receptores de sistemas de transmissão em blocos, são eles: receptor com detecção convencional (símbolo-a-símbolo), receptor com detecção ótima global (detecção por máxima verossimilhança ML) e o receptor com detecção ótima por grupos proposto, cada um deles com detecção precedida de equalização zero-forcing, cuja saída é representada pelo vetor $\mathbf{z}(i)$ dada por (2-25). A escolha do receptor ótimo para cada um dos sistemas de transmissão em bloco, é feita analisando a matriz covariância \mathbf{K}_{n_z} dada por (2-26) que fornece os valores da correlação entre as componentes do vetor de ruido em (2-25). Uma comparação dos desempenhos entre os receptores estudados é feita ao final do capítulo.

3.1 Receptor símbolo-a-símbolo

Este é o receptor convencional utilizado devido a sua simplicidade e baixo custo de implementação. O vetor equalizado $\mathbf{z}(i)$ passa por um banco de decisores e a detecção é realizada símbolo a símbolo por meio de:

$$\hat{b}_{n}(i) = \operatorname{sign}[\Re\{(\mathbf{z}(i))_{n}\}]
= \operatorname{sign}[\Re\{b_{n}(i) + n_{z_{n}}(i)\}]; \quad n = 1, 2, \dots, N$$
(3-1)

onde sign(·) é a função signum, $\Re\{c\}$ retorna a parte real do complexo $c \in (\mathbf{x})_n$ denota o *n*-ésimo elemento do vector \mathbf{x} . A Figura 3.1, mostra a estrutura do receptor.

O receptor individual corresponde ao processamento ótimo do sinal

Figura 3.1: Receptor símbolo-a-símbolo

 $\mathbf{C}_{j} = -\frac{1}{2} \| \mathbf{K}_{\mathbf{n}_{z}}^{-\frac{1}{2}} \mathbf{b}_{j} \|^{2} = -\frac{1}{2} \mathbf{b}_{j}^{\mathcal{H}} \mathbf{K}_{\mathbf{n}_{z}}^{-1} \mathbf{b}_{j} \quad j = 1, 2, 3, \dots, 2^{N}$

Figura 3.2: Receptor ML global

 $\mathbf{z}(i)$ para os caso em que a matriz covariância \mathbf{K}_{n_z} é diagonal, ou seja, as componentes de ruido são descorrelatadas. Assim, este tipo de receptor é ótimo para o caso MC-CP. Para os demais casos nas quais a matriz covariância não é diagonal o receptor é sub-ótimo.

3.2 Receptor de Máxima Verossimilhança (ML) Global

O receptor é chamado ótimo porque dentre todos os demais receptores de sistemas de transmissão em bloco com equalização zero-forcing, fornece a menor probabilidade de erro de símbolo, ou seja, minimiza $P(\tilde{\mathbf{b}}(i) \neq \mathbf{b}(i))$. Assim este tipo de receptor é ótimo para os sistemas SC-CP, SC-ZP e MC-ZP onde as componentes de ruído em (2-25) são correlatadas. Para o sistema MC-CP também é ótimo, porém desnecessário.

O receptor ótimo aplica uma transformação linear inversível **B**, sobre o vetor $\mathbf{z}(i)$, visando "branquear" a componente de ruido $\mathbf{n}_{\mathbf{z}}(i)$ da observação. Após a operação linear **B**, a matriz covariância do novo vetor de ruido é dada por $\mathbf{BK}_{\mathbf{n}_{\mathbf{z}}}\mathbf{B}^{\mathcal{H}}$. Assim, a transformação linear que realiza o "branqueamento" do ruído, deve satisfazer

$$\mathbf{B}\mathbf{K}_{\mathbf{n}_{\mathbf{z}}}\mathbf{B}^{\mathcal{H}} = \mathbf{I} \tag{3-2}$$

ou ainda,

$$\mathbf{B}\mathbf{K}_{\mathbf{n}_{\mathbf{z}}}^{\frac{1}{2}}\mathbf{K}_{\mathbf{n}_{\mathbf{z}}}^{\frac{1}{2}}\mathbf{B}^{\mathcal{H}} = \mathbf{I}$$
(3-3)

donde conclui-se a partir de (3-3), que a transformação linear de "branqueamento" **B** é dada por:

$$\mathbf{B} = \mathbf{B}^{\mathcal{H}} = \mathbf{K}_{\mathbf{n}_{\mathbf{z}}}^{-\frac{1}{2}} \tag{3-4}$$

Finalmente o vetor $\bar{\mathbf{z}}(i)$ com ruído gaussiano branco é obtido por:

$$\bar{\mathbf{z}}(i) = \mathbf{B}[\mathbf{z}(i)]$$

$$= \mathbf{K}_{\mathbf{n}_{\mathbf{z}}}^{-\frac{1}{2}}[\mathbf{b}(i) + \mathbf{n}_{\mathbf{z}}(i)]$$

$$= \bar{\mathbf{b}}(i) + \bar{\mathbf{n}}(i)$$
(3-5)

onde o vetor de ruido $\bar{\mathbf{n}}(i)$ é Gaussiano e branco, com matriz de covariância dada por $\mathbf{K}_{\bar{\mathbf{n}}} = \mathbf{I}$.

Como **B** é uma transformação linear inversível, então, o teorema da reversibilidade [8] garante que a probabilidade de erro de símbolo de um receptor ótimo que processa o sinal $\bar{\mathbf{z}}(i)$ é a mesma de um receptor ótimo que processa o sinal $\mathbf{z}(i)$. Entretanto, como o vetor de ruído em (3-5) é Gaussiano e branco, o receptor ótimo que processa $\bar{\mathbf{z}}(i)$ realiza a detecção por mínima distancia, que fornece a estimativa de máxima verossimilhança do vetor de dados $\mathbf{b}(i)$. A estimativa de $\mathbf{b}(i)$ gerada por este receptor é dada por:

$$\hat{\mathbf{b}}(i) = \arg\min_{\mathbf{b}\in\mathcal{B}} \left[\| \bar{\mathbf{z}}(i) - \bar{\mathbf{b}} \|^2 \right]$$

$$= \arg\min_{\mathbf{b}\in\mathcal{B}} \left[\| \mathbf{K}_{\mathbf{n}_z}^{-\frac{1}{2}}(\mathbf{z}(i) - \mathbf{b}) \|^2 \right]$$

$$= \arg\max_{\mathbf{b}\in\mathcal{B}} \left[\Re \left\{ \mathbf{b}^{\mathcal{H}} \mathbf{K}_{\mathbf{n}_z}^{-1} \mathbf{z}(i) \right\} - \frac{1}{2} \| \mathbf{K}_{\mathbf{n}_z}^{-\frac{1}{2}} \mathbf{b} \|^2 \right]$$
(3-6)

onde $\mathcal{B} = \{-1, +1\}^N$. A Figura 3.2, exibe a estrutura resultante da equação (3-6), que implementa o receptor de mínima distância global.

A complexidade do receptor ótimo global, para um sistema BPSK pode ser avaliada por:

$$\mathcal{O}_G = 2^N \tag{3-7}$$

ou seja, são necessárias 2^N buscas de $\mathbf{b} \in \mathcal{B} = \{-1, +1\}^N$, até que $\hat{\mathbf{b}}(i)$ seja finalmente encontrado.

Apesar de minimizar a probabilidade de erro de símbolo, este receptor tem como desvantagens uma complexidade que cresce exponencialmente com o número N de símbolos e a inversão da matriz covariância $N \times N$ do ruido após equalização.

Figura 3.3: Estrutura geral do receptor ótimo por grupos

3.3 Receptor ótimo por grupos

Devido a alta complexidade do receptor ótimo global, propõe-se aqui um receptor ótimo por grupos para os sistemas SC-CP, SC-ZP e MC-ZP que apresenta uma complexidade intermediária entre o receptor ótimo e os receptores que utilizam detecção símbolo-a-símbolo em sistemas com transmissão em blocos. A estrutura idealizada explora a correlação das componentes do vetor de ruído em (2-25), para particionar o bloco equalizado $\mathbf{z}(i)$ e realiza a detecção ótima conjunta no sentido ML de cada um dos grupos formados. A Figura 3.3 mostra a estrutura do receptor proposto. O procedimento indicado nesta figura é descrito com detalhes a seguir.

3.3.1 Agrupamento

Neste estágio do receptor por grupos apresentado, o bloco de N símbolos na saída do equalizador é particionado em U grupos, cada um deles com N_u símbolos. O critério de agrupamento dos símbolos de cada grupo será apresentado no capítulo seguinte. O particionamento é representado por meio de uma transformação linear \mathbf{G}_u aplicada sobre o vetor $\mathbf{z}(i)$ em (2-25). O *u*ésimo grupo com N_u símbolos, $\mathbf{z}_u(i)$, ao final do estágio de agrupamento é dado por:

$$\mathbf{z}_{u}(i) = \mathbf{G}_{u}\mathbf{z}(i)$$
$$= \mathbf{b}_{u}(i) + \mathbf{n}_{u}(i)$$
(3-8)

onde $\mathbf{b}_u(i) = \mathbf{G}_u \mathbf{b}(i)$ é o *u*-ésimo bloco de símbolos de informação transmitido e $\mathbf{n}_u(i) = \mathbf{G}_u \mathbf{n}_z(i)$ é o vetor de ruído colorido correspondente, cuja matriz de covariância é dada por:

$$\mathbf{K}_u = \mathbf{G}_u \mathbf{K}_{\mathbf{n}_z} \mathbf{G}_u^T \tag{3-9}$$

onde $u \in \{1, 2, ..., U\}$ é o índice do grupo, U é o número total dos grupos formados tal que $\sum_{u=1}^{U} N_u = N$, N_u o número de símbolos de $\mathbf{z}_u(i)$ e \mathbf{G}_u é uma matriz de dimensão $N_u \times N$ que forma o u-ésimo grupo através da concatenação das linhas da matriz identidade $N \times N$ correspondente aos símbolos que se deseja agrupar. A matriz \mathbf{K}_u é formada eliminando-se da matriz \mathbf{K}_{n_z} as linhas e as colunas com índices correspondentes aos símbolos que não compõem o grupo u.

Como exemplo considera-se a formação do primeiro grupo, representado por $\mathbf{z}_1(i)$, a partir do vetor $\mathbf{z}(i) = (z_1(i), z_2(i), \dots, z_N(i))^T$, supondo que esse grupo seja formado pelos elementos 1 e 3 do vetor $\mathbf{z}(i)$, então, a matriz transformação linear do grupo 1, matriz \mathbf{G}_1 , é formada concatenando-se a primeira e terceira linhas da matriz identidade, de dimensão N

$$\mathbf{G}_1 = \left(\begin{array}{ccccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \end{array} \right)$$

resultando então para o vetor $\mathbf{z}_1(i)$:

$$\mathbf{z}_{1}(i) = \mathbf{G}_{1}\mathbf{z}(i)$$

$$= \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \end{pmatrix} \begin{pmatrix} z_{1}(i) \\ z_{2}(i) \\ z_{3}(i) \\ \vdots \\ z_{N}(i) \end{pmatrix}$$

$$= \begin{pmatrix} z_{1}(i) \\ z_{3}(i) \end{pmatrix}$$

Uma vez formados os grupos nesse estágio, cada um deles é processado de forma ótima no estágio seguinte. Observa-se que:

- Para U = N ou seja, N grupos formados por um só elemento $(N_u = 1)$, o receptor corresponde ao receptor símbolo-a-símbolo.
- Para U = 1, existe um único grupo formado por todos os N símbolos $(N_u = N)$ de $\mathbf{z}(i)$ e o receptor corresponde ao receptor de máxima verossimilhança global.

 $\mathbf{C}_{j} = -\frac{1}{2} \parallel \mathbf{K}_{u}^{-\frac{1}{2}} \mathbf{b}_{j} \parallel^{2} = -\frac{1}{2} \mathbf{b}_{j}^{\mathcal{H}} \mathbf{K}_{u}^{-1} \mathbf{b}_{j} \quad j = 1, 2, 3, \dots, 2^{N_{u}}$

Figura 3.4: Receptor Ótimo ML por grupos

3.3.2 Detecção de máxima verossimilhança (ML) por grupo

Neste estágio do receptor por grupos da Figura 3.3, cada um dos grupos formados no estágio anterior, representados pelos vetores $\mathbf{z}_1(i), \mathbf{z}_2(i), \dots, \mathbf{z}_U(i)$, são processados de forma ótima no sentido ML e de forma paralela ou simultânea. O resultado deste estágio são os vetores estimativa dos símbolos transmitidos contidos nos grupos $\hat{\mathbf{b}}_1(i), \hat{\mathbf{b}}_2(i), \dots, \hat{\mathbf{b}}_U(i)$, respectivamente.

De forma similar ao receptor ótimo global, aplica-se uma transformação linear inversível do grupo \mathbf{B}_u , neste caso sobre $\mathbf{z}_u(i)$, para branquear o vetor de ruído $\mathbf{n}_u(i)$, dada por:

$$\mathbf{B}_u = \mathbf{B}_u^{\mathcal{H}} = \mathbf{K}_u^{-\frac{1}{2}} \tag{3-10}$$

O vetor $\bar{\mathbf{z}}_u(i)$ resultante, com ruído branco Gaussiano do *u*-ésimo grupo é formado por:

$$\bar{\mathbf{z}}_{u}(i) = \mathbf{B}_{u}[\mathbf{z}_{u}(i)]$$

$$= \mathbf{K}_{u}^{\frac{1}{2}}[\mathbf{b}_{u}(i) + \mathbf{n}_{u}(i)]$$

$$= \bar{\mathbf{b}}_{u}(i) + \bar{\mathbf{n}}_{u}(i)$$

$$(3-11)$$

Após "branqueamento", os símbolos pertencentes ao mesmo grupo são detectados de forma ótima no sentido ML, onde a detecção pode ser vista como um detetor de minima distância aos novos pontos $\bar{\mathbf{b}}_u = \mathbf{K}_u^{-\frac{1}{2}} \mathbf{b}_u$ da constelação. A

Receptor	Desempenho	Complexidade na de-
		tecção
Símbolo-a-símbolo	Maior probabilidade	Linear com o número de
	de erro (P_s)	símbolos
Ótimo ML global	Menor probabilidade	Exponencial com relação
	de erro (P_G)	ao número de símbolos do
		bloco e o tamanho da cons-
		telação
Ótimo ML por grupos	Probabilidade de erro	Exponencial com relação ao
	P_g intermédia ($P_{ss} \leq$	grupo de maior tamanho e o
	$P_g \le P_G$)	tamanho da constelação

Tabela 3.1: Comparação dos receptores

estimativa de $\mathbf{b}_u(i)$ é portanto dada por:

$$\hat{\mathbf{b}}_{u}(i) = \arg \min_{\mathbf{b} \in \mathcal{B}_{u}} \left[\| \bar{\mathbf{z}}_{u}(i) - \bar{\mathbf{b}} \|^{2} \right]$$

$$= \arg \min_{\mathbf{b} \in \mathcal{B}_{u}} \left[\| \mathbf{K}_{u}^{-\frac{1}{2}}(\mathbf{z}_{u}(i) - \mathbf{b}) \|^{2} \right]$$

$$= \arg \max_{\mathbf{b} \in \mathcal{B}_{u}} \left[\Re \left\{ \mathbf{b}^{\mathcal{H}} \mathbf{K}_{u}^{-1} \mathbf{z}_{u}(i) \right\} - \frac{1}{2} \| \mathbf{K}_{u}^{-\frac{1}{2}} \mathbf{b} \|^{2} \right]$$
(3-12)

onde $\mathcal{B}_u = \{-1, +1\}^{N_u}$. A estrutura de detecção ótima por blocos no sentido ML dada por (3-12), é mostrada na Figura 3.4.

Como os vetores $\mathbf{z}_1(i), \mathbf{z}_2(i), \dots, \mathbf{z}_U(i)$, são processados em paralelo, então a complexidade \mathcal{O} , definida como o número de testes realizados para obtenção dos vetores estimativas dos símbolos transmitidos dos grupos $\hat{\mathbf{b}}_1(i), \hat{\mathbf{b}}_2(i), \dots, \hat{\mathbf{b}}_U(i)$, é dada por:

$$\mathcal{O}_g = U \times 2^{N_u},\tag{3-13}$$

Por exemplo, para blocos de 128 símbolos (N=128), o receptor ótimo global requer $\mathcal{O}_G = 2^{128} = 3, 4 \times 10^{38}$ testes para gerar estimativas destes 128 símbolos, enquanto que para a estrutura apresentada na Figura 3.4 com grupos de 2 símbolos ($N_u = 2$), a estimativa destes 128 símbolos seria gerada com $\mathcal{O}_g = 64 \times 2^2 = 256$ testes. A Tabela 3.1 apresenta uma comparação qualitativa dos três tipos de receptores considerados no que se refere ao custo computacional na detecção note que existe um pré-processamento que é comum a todos os detectores e usa um equalizador zero-forcing, onde o custo de cálculo de equalizador ZF é logarítmico com o comprimento da matriz FFT **W**.

Figura 3.5: Taxa de erro de bit (BER) versus $\frac{E_b}{N_0}$ para MC-ZP

3.4 Desempenho dos receptores estudados

Para exemplificar a melhora de desempenho obtida ao se agrupar símbolos do bloco recebido na recepção, considera-se a transmissão de blocos de N = 6 símbolos BPSK. Em todos os casos o canal é modelado como un filtro FIR de tamanho P = 4, o tamanho da faixa de guarda é L = 4. O desempenho é expresso em termos de taxa de erro de bit (BER) média do bloco recuperado versus E_b/N_0 , onde E_b é a energia de bit transmitido e $N_0/2$ é a densidade espectral de ruido. Os resultados são a média de 100 simulações cada uma com 10000 blocos de símbolos transmitidos.

As Figuras 3.5 e 3.6 ilustram para os três sistemas de transmissão em blocos considerados, o desempenho de receptores com detecção ótima por grupos comparados ao receptor ótimo global da Seção 3.2. Os resultados consideram um canal *fixo aleatório* modelado como um filtro FIR,com coeficientes $\mathbf{h}(i) = [\alpha_1 p_1, \ldots, \alpha_4 p_4]$, onde $\alpha_k, k = 1, 2, 3, 4$, são variáveis aleatórias i.i.d., complexas gaussianas com média nula e $\mathbb{E}[|\alpha_k|^2] = 1$, e p_k são os pesos fixos (perfil de potência), tal que $\sum_{l=0}^{P-1} p_l^2 = 1$. Para este experimento utilizou-se $p_1 = 0, 86, p_2 = 0, 43, p_3 = 0, 21$ e $p_4 = 0, 10$.

Quatro agrupamentos diferentes foram utilizados: U = 1: (1, 2, 3, 4, 5, 6), U = 2: (1, 2, 3)(4, 5, 6), U = 3: (1, 2)(3, 4)(5, 6) e U = 6: (1)(2)(3)(4)(5)(6). Quando U = 1 a detecção é realizada em um grupo formado por todos os Nsímbolos (detecção ótima global), enquanto que com U = 6 a detecção é realizada símbolo-a-símbolo, e corresponde portanto, ao receptor ZF convencional. Observa-se que a medida que U aumenta o desempenho do receptor piora. A complexidade do receptor ótimo por grupos expressa por (3-13), é de 64, 16, 12 e 12 para os receptores com U = 1, U = 2, U = 3 e U = 6 respectivamente. No caso SC-ZP, por exemplo, o ganho de potencia referido ao receptor convencional, para uma BER de 10^{-3} dos receptores com U = 2 e U = 3 é de 2 e 1 dB respectivamente. Para este caso os receptores propostos apresentam um bom compromisso entre o desempenho e a complexidade.

Da Figura 3.5 observa-se que o sistema MC-ZP (OFDM-ZP) só apresentou ganho perceptível de desempenho quando todos os N símbolos do bloco foram agrupados. Por tal motivo analisou-se a matriz covariância $\mathbf{K}_{\mathbf{n}_{zp}}^{mc}$ em (2-33), aqui repetida:

$$\mathbf{K}_{\mathbf{n}_{zp}}^{mc} = \sigma^2 \mathbf{W}_N [\mathbf{W}_{MN}^{\mathcal{H}} \tilde{\mathbf{H}}_d^{\mathcal{H}}(i) \tilde{\mathbf{H}}_d(i) \mathbf{W}_{MN}]^{-1} \mathbf{W}_N^{\mathcal{H}}$$
(3-14)

Como $\tilde{\mathbf{H}}_{d}^{\mathcal{H}}(i)\tilde{\mathbf{H}}_{d}(i) = \tilde{\mathbf{H}}_{d}'(i)$, onde $\tilde{\mathbf{H}}_{d}'(i)$ é uma matriz diagonal de dimensão $N \times N$, utilizando as propriedades da DFT dadas em (2-18) e (2-19), o produto

$$\mathbf{W}_{MN}^{\mathcal{H}}\tilde{\mathbf{H}}_{d}^{\prime}(i)\mathbf{W}_{MN} = \mathbf{H}_{qc}(i)$$
(3-15)

onde $\mathbf{H}_{qc}(i)$ pode ser interpretada como uma matriz "quase" circulante, especialmente para valores baixos da razão $\frac{L}{N}$ elevados devido que \mathbf{W}_{MN} é uma matriz não quadrada. Aplicando a propriedade (2-19) de (3-15) em (3-14), tem-se:

$$\mathbf{K}_{\mathbf{n}_{zp}}^{mc} = \sigma^{2} \mathbf{W}_{N} [\mathbf{H}_{qc}(i)]^{-1} \mathbf{W}_{N}^{\mathcal{H}}$$
$$= \sigma^{2} \tilde{\mathbf{H}}_{qd}(i)$$
(3-16)

onde $\mathbf{H}_{qd}(i)$ pode ser definida como uma matriz "quase" diagonal. Na figura 3.7 pode-se apreciar a densidade dos valores das componentes da matriz $\mathbf{K}_{\mathbf{n}_{zp}}^{mc}$ para valores de N = 6 e N = 64 símbolos, onde as componentes diferentes da diagonal principal, são nulas ou próximos de zero. Considerando-se as análises feitas e os resultados obtidos, os estudos seguintes de agrupamento realizaram-se apenas nos sistemas com portadora única SC.

Figura 3.6: Taxa de erro de bit (BER) versus $\frac{E_b}{N_0}$ para SC

Figura 3.7: Módulo da matriz de covariância $\mathbf{K}_{\mathbf{n}_{zp}}^{mc}$