Pontifícia Universidade Católica do Rio de Janeiro

Maria Vanessa La Torre Cubas

Análise Numérica do Comportamento de Pavimentos Constituídos de Lajes Lisas de Concreto Protendido

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

> Orientador: Prof. Giuseppe Barbosa Guimarães Co-Orientador: Prof^a. Elisa Dominguez Sotelino

Rio de Janeiro Fevereiro de 2012 Pontifícia Universidade Católica do Rio de Janeiro

Maria Vanessa La Torre Cubas

Análise Numérica do Comportamento de Pavimentos Constituídos de Lajes Lisas de Concreto Protendido

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Giuseppe Barbosa Guimarães Orientador Departamento de Engenharia Civil – PUC-Rio

> Profa. Elisa Dominguez Sotelino Co-Orientadora Departamento de Engenharia Civil – PUC-Rio

> Prof. Ney Augusto Dumont Departamento de Engenharia Civil – PUC-Rio

> > Profa. Claudia Maria Oliveira Campos Universidade Federal Fluminense

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 28 de fevereiro de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Maria Vanessa La Torre Cubas

Graduada em Engenharia Civil pela Universidade Nacional de Cajamarca no Peru em 2008. Na PUC-Rio desenvolveu seu trabalho de mestrado com ênfase em concreto protendido.

Ficha Catalográfica

La Torre Cubas, María Vanessa

Análise numérica do comportamento de pavimentos constituídos de lajes lisas de concreto protendido / Maria Vanessa La Torre Cubas; orientadores: Giuseppe B. Guimarães, Elisa D. Sotelino. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2012.

159 f.: il. (color.); 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2012.

Incluí bibliografia

1. Engenharia civil – Teses. 2. Lajes lisas. 3. Análise paramétrica. 4. Concreto protendido. 5. Elementos finitos. I. Guimarães, Giuseppe B. II. Sotelino, Elisa D. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título. PUC-Rio - Certificação Digital Nº 1012305/CB

Dedico este trabalho em memória da minha grande amiga, Silvia Urteaga.

Agradecimentos

A Deus, nosso Pai criador, por ter me proporcionado esta grande oportunidade na minha vida, sempre me amparando em todos os momentos difíceis da vida.

Aos meus queridos pais, Fernando e María Elena, aos meus irmãos Eduardo, Lorena, Victoria e Nena pelo apoio incondicional durante toda minha vida. A toda minha família pela confiança depositada em mim.

Aos professores Giuseppe Barbosa e Elisa Sotelino pela orientação, apoio, paciência e, sobretudo pela confiança demonstrada durante a realização deste trabalho.

A todos meus grandes amigos que fiz no Rio em especial à Nathaly e Eliot pela companhia, e pelos estímulos nas horas mais difíceis.

Aos colegas do curso de Pós-Graduação, pela valiosa troca de conhecimentos e amizade, a Luis Fernando, Fabrício, Elvis, Bárbara, Javier, Diego, Marcia, Mario e tantos outros cuja omissão aqui não os torna menos importantes.

A CAPES pelo auxílio financeiro durante o curso de mestrado.

Resumo

Cubas, Vanessa La Torre; Guimarães, Giuseppe Barbosa (Orientador); Sotelino, Elisa Dominguez (Co-Orientador). **Análise numérica do comportamento de pavimentos constituídos de lajes lisas de concreto protendido.** Rio de Janeiro, 2012. 159p. Dissertação de Mestrado -Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Lajes lisas de concreto protendido com cordoalhas engraxadas não aderentes têm sido empregadas em pavimentos de edificações com frequência nos últimos anos. Essa solução estrutural é ideal quando se tem uma distribuição regular dos pilares. Além disso, sabe-se que lajes de concreto protendido oferecem vantagens técnicas sobre a solução tradicional em concreto armado, principalmente para vencer vãos maiores e onde muitas vezes se exigem seções mais esbeltas. O objetivo desta dissertação é estabelecer critérios práticos para o projeto de lajes lisas protendidas, maciças ou nervuradas, visando ao atendimento dos critérios relativos ao estado limite de utilização. Com este propósito, um estudo paramétrico foi realizado no qual foram analisados as tensões nas regiões de introdução das forças de protensão e a influência da rigidez dos pilares na retenção da protensão. A investigação foi conduzida por meio de modelagens em elementos finitos, empregando elementos do tipo casca para as lajes e elementos tipo viga para os pilares. No caso das lajes nervuradas, suas mesas foram representadas por elementos casca e as nervuras por elementos viga levando em conta a excentricidade entre seus centros geométricos.

Palavras-chave

Lajes Lisas; Análise Paramétrica; Concreto Protendido; Elementos Finitos.

Abstract

Cubas, Vanessa La Torre; Guimarães, Giuseppe Barbosa (Advisor); Sotelino, Elisa Dominguez (Co-Advisor). **Numerical Analysis of the Behavior of Flat Slabs Prestressed Concrete Floors**. Rio de Janeiro, 2012. 159p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Concrete flat slabs prestressed with unbounded greased strands have been used in building floors over the last years. This structural solution is ideal when the columns are regularly distributed. In addition, it is known that prestressed floors have some technical advantages when compared to the traditional solution in reinforced concrete, mainly in cases of large spans and when lighter elements are required. The objective of the present work is to propose practical criteria for the design of flat slab prestressed concrete floors, for the cases of uniform thickness slabs and waffle slabs, aiming at complying with serviceability limit state. A parametric study was carried out to analyze the stress distribution in prestressing load introduction zones and the influence of the columns in retaining prestressing loads. The investigation was conducted using finite element models in which shell and frame elements were used to represent the slabs and the columns. For the case of waffle slabs, flanges and webs were modeled with shell and frame elements, respectively, taking into consideration the eccentricity between these two elements.

Keywords

Flat Slab; Parametric Analysis; Prestressed Concrete, Finite Elements.

Sumário

1.Introdução	18
1.1. Generalidades	18
1.2. Motivação da Pesquisa	19
1.3. Objetivos	. 20
1.3.1. Objetivo Geral	20
1.3.2. Objetivos Específicos	20
1.4. Organização do Trabalho	21
2.Pesquisa Bibliográfica	23
2.1. Considerações Gerais sobre a Protensão	23
2.1.1. Exemplo Numérico Ilustrativo	25
2.2. Vantagens das Lajes Protendidas	28
2.3. Tipos de Lajes Protendidas	29
2.3.1. Lajes Lisas	29
2.3.2. Lajes Nervuradas	30
2.4. Sistemas de Protensão	31
2.4.1. Protensão com Aderência	31
2.4.2. Protensão Sem Aderência	32
2.5. Arranjo de Cabos de Protensão	34
2.5.1. Traçado dos Cabos em Elevação	34
2.5.2. Distribuição dos Cabos em Planta	35
2.6. Protensao como carga externa equivalente	37
2.7. Valores Representativos da Força de Protensao	
2.8. Estado Limites e venincação da Tensão	39
2.8.1. Estado Limite de Serviço	39
2.0.2. Estado Limite Ottimo	41
2.9. Consideração do Eleito da Rigidez dos Filares	43
2.9.1. Obericiente de Rigidez dos Fildres	43
2.9.2. Analise do l'he-Esiorço Axial na Eaje	44
2.10.1 Formulação Baseada em Deslocamentos	. 40
2.10.2 Modelagem de uma Laie como Grelha	49
2 10.3 Modelagem da Laje Protendida Usando Elementos Einitos	
2.11. Programas de Computador para Análise de Estruturas	
2.11.1. SAP2000	53
2.11.1. 0,4 2000	
2 Madalayam da Laisa nay Elementas Einitas	FC
2.1 Estudo do Convergêncio para o Definição do Melho do Elemento	50
5.1. Estudo de Convergencia para a Demnição da Maina de Elemento	5
3 1 1 Laie de Referência	
3.1.2 Modelagem nor Elementos Finitos	57
3.1.3 Resultados do Estudo de Convergência	57 58
3.2 Modelagem dos Pilares como Apoios	
3.2.1 Laie de Referência	
3.2.2. Solução Analítica da Equação Diferencial das Placas	61

 3.2.3. Modelagem com Elementos Finitos	65 67 69 70 70 71 71 72
4.Metodologia da Análise Numérica	74
4.1. Estudo Numérico de Lajes Maciças	75
4.1.1. Distribuição das Tensões sem Influência dos Pilares	76
4.1.2. Estudo das Tensões com Influência dos Pilares	91
4.1.3. Calculo Simplificado das tensoes	
4.2. Estudo Parametrico de Lajes Nervuradas	97
4.2.1. Distribuição das Tensões sem influencia dos Pilares	90
5. Exemplo De Aplicação e Análise dos Resultados	114
5.1. Caso 1 - Cálculo das Tensões em Lajes Maciças	115
5.1.1. Cálculos através de Processos Simplificados	117
5.1.2. Cálculos por Meio da Análise de Elementos Finitos	122
5.2. Caso 2 - Cálculo das tensões em Lajes Nervuradas	127
5.2.1. Estudo da estrutura usando elementos tipo casca	131
5.2.2. Estudo da estrutura usando elementos tipo viga	132
5.2.3. Comparação dos resultados	134
6 Considerações Finais	139
6.1. Conclusões	140
6.2. Sugestões para Trabalhos Futuros	142
Referências Bibliográficas	143
Anexo A Equações no Mathcad	145
A.1. Placa com Carregamento distribuído	145
A.2. Placa sujeita a carga concentrada	146
A.3. Placa com carga distribuída em um retângulo parcial	147
Anexo B Tensões para Laje Nervurada	148
Anexo C Coeficiente φ	149
Anexo D Memória de cálculo	150
Anexo E Tensões para os Modelos de Viga e Casca	158

Lista de Figuras

Figura 2. 1 – Princípios básicos do projeto de concreto protendido [3]	.17
Figura 2.2 – Dados da viga de concreto protendido [4]	.18
Figura 2.3 – Lajes lisas sem capitéis, The Concrete Centre [3]	.23
Figura 2.4 – Lajes nervuradas em uma direção (a) e em duas direções	
(b). The Concrete Centre [3]	23
Figura 2.5 – Lajes nervuradas apoiadas em faixas maciças de concreto	~ '
protendido	24
rigura 2.6 – Sistema aderente antes do lançamento do concreto. The	25
Figura 2 7 – Sistema não aderente antes do lancamento do concreto	20
The concrete Center. [3]	26
Figura 2.8 – Traçado vertical dos cabos em uma viga continua [13]	.27
Figura 2.9 – Disposição dos cabos de protensão em planta	.28
Figura 2.10 – Distribuição dos cabos ao longo dos suportes [1]	.28
Figura 2.11 – Concentração de cabos nas regiões das faixas dos	
apoios [10]	.29
Figura 2.12 – Separação de força do cabo em componentes axial (P) e	00
transversal (VVD)	30
Figura 2.13 – Calculo da protensao necessaria [9]	.51
Figura 2.14 – Diagrama de estorços em uma seção protendida no	35
Figura 2 15 – Barra biengastada [14]	36
Figura 2 16 – Barra engastada-rotulada [14]	37
Figura 2 17 – Perda de pré-esforco axial devido à rigidez do pilar [13]	38
Figura 2.18 – Ação devido à flexão e ação de membrana para	.00
elementos usados para modelar laies protendidas [1]	.40
Figura 2.19 – Campos de deslocamentos considerados na modelagem	-
de uma laje por grelha [15]	43
Figura 2.20 – Pedaço de laje sujeita a ações de flexão e de membrana	
[1]	44
Figura 2.21 – Pedaço de laje sujeita a ações de flexão e de membrana	45
[1] Figura 2 22 - Orientação do elemento Viga [16]	40 78
	10

Figura 3.1 – Modelo com elementos tipo Casca e considerando	
excentricidade entre apoios e plano médio da laje52	2
Figura 3.2 – Deslocamento (em cm) do centro da laje para os	
diferentes níveis de discretização 53	3
Figura 3.3 – Geometria da laje de referência	5
Figura 3.4 – Geometria da laje de referência	3
Figura 3.5 – (a) Placa com carregamento uniformemente distribuído, (b)	
Placa com carga concentrada (c) Placa com carga uniforme em um	
retângulo parcial (c)	7
Figura 3.6 – Geometria da laje de referência	7
Figura 3.7 – Tensões e deformada do modelo de laie com pilar central	
modelado como uma restrição pontual	9
Figura 3.8 – Comparação do momento respeito á solução analítica60)
Figura 3.9 – Comparação da reação do pilar respeito á solução	-
analítica)
Figura 3.10 – Deformada do modelo da laie com pilar modelado por	-
vários apoios	1
Figura 3.11 – Comparação do momento para o pilar modelado como	
apoio pontual e como vários apoios simulando um pilar de 50cmx50cm 62	2
Figura 3.12 – Laje nervurada com carregamento de protensão aplicado	
em faixas de concreto de largura 125 cm	3
Figura 3.13 – Seção transversal A-A da laje nervurada	1
Figura 3.14 – Representação da laie nervurada modelada sem	
considerar a excentricidade entre nervura e laie	1
Figura 3.15 – Representação do Modelo 2 da laje nervurada	
considerando excentricidade	5
Figura 3.16 – Representação do Modelo 3 da laje nervurada modelada	
usando elementos sólidos	5
Figura 3.17 - Representação dos eixos locais dos elementos [18]66	3
Figura 3.18 - Tensões no topo da laje nervurada para os diferentes	
modelos	7
Figura 4.1 – Laie de referência para o modelo 172	2
Figura 4.2 – Distribuição de tensões para carregamento de protensão	
aplicado em uma faixa de 2.5m.	>
Figura 4.3 – Relação entre a tensão máxima, mínima e a tensão gerada	-
pela forca de protensão para as secões A e B	1
Figura 4.4 – Laie de referência para o modelo 2	1
Figura 4.5 – Distribuição de tensões para carregamento de protensão	
anlicado em uma faixa de 2 5m	5
Figura 4.6 – Distribuição de tensões nas seções A. B.e.C. para uma	,
largura de faixa de protensão de $1/4$ (a) $1/8$ (b) $1/20$ (c) e $1/40$ (d) 76	3
Figura 4.7 – Relação entre a tensão máxima mínima e a tensão	`
derada pela forca de protensão para as seções A. B. e. C	3
Figura 4.8 – Laie de referência para o modelo 3	3
Figura 4.9 – Distribuição de tensões na deformada para carregamento	
de protensão aplicado em uma faixa de 2.5m 70)
Figura 4.10 – Distribuição de tensões nas seções A B e C para uma	•
largura de faixa de protensão de L/4 (a), L/8 (b), L/20 (c) e L/40 (d) 80)

Figura 4.11 – Relação entre a tensão máxima, mínima e a tensão gerada pela força de protensão...... 81 Figura 4.13 – Distribuição de tensões nas seções A, B e C para uma largura de faixa de protensão de L/4 (a), L/8 (b), L/20 (c) e L/40 (d)...... 83 Figura 4.14 – Relação entre a tensão mínima e a tensão máxima (exterior e na continuidade da laje)......84 Figura 4.15 – Deformada e diagrama de cortante para laje de rigidez à flexão nula (a), laje de rigidez à flexão intermediária (b) e laje Figura 4.16 – Curva de tendência que relaciona o fator de rigidez entre lajes e pilares (G) e o coeficiente aproximado de rigidez (K)...... 89 Figura 4.17 – Protótipo dos pórticos laje-pilar90 Figura 4.20 – Distribuição de tensões para carregamento de protensão aplicado em uma faixa de 2,5m......94 Figura 4.21 – Relação entre a tensão máxima, mínima e a tensão Figura 4.23 – Distribuição de tensões para carregamento de protensão aplicado em uma faixa de 2,5m.....96 Figura 4.24 – Distribuição de tensões nas seções A, B e C para uma largura de faixa de protensão de L/4 (a), L/8 (b), L/20 (c) e L/40 (d)...... 97 Figura 4.25 – Relação entre a tensão máxima, mínima e a tensão Figura 4.27 – Distribuição de tensões nas seções A, B e C para uma largura de faixa de protensão de L/4 (a), L/8 (b), L/20 (c) e L/40 (d)..... 101 Figura 4.28 – Relação entre a tensão máxima, mínima e a tensão gerada pela força de protensão.....102 Figura 4.29 – Laje de referência para o modelo 8......103 Figura 4.30 – Distribuição de tensões nas seções C, D e E para diferentes larguras de faixas de protensão......104 Figura 4.31 – Relação entre a tensão máxima, mínima e a tensão gerada pela força de protensão para as seções C e D......105 Figura 4.32 – Comparação da tensão entre lajes maciças e nervuradas para uma faixa de L/4 na secão B..... 106 Figura 4.33 – Comparação da tensão entre lajes maciças e nervuradas para uma faixa de L/8 na seção B..... 107 Figura 4.34 – Comparação da tensão entre lajes maciças e nervuradas para uma faixa de L/20 na seção B..... 107 Figura 4.35 – Comparação da tensão entre lajes maciças e nervuradas para uma faixa de L/40 na seção B..... 108

Figura 5.1 – Planta de forma destacando as faixas onde a força de	
protensão é aplicada	112
Figura 5.2 – Pórticos de uma das faixas exteriores	113
Figura 5.3 – Seções e pontos de controle das tensões	116
Figura 5.4 – Configuração deformada da estrutura, modelada no	
programa SAP20001	119
Figura 5.5 – Desenho das tensões calculadas no programa SAP2000	
para as seções A, B C e D1	122
Figura 5.6 – Tensões obtidas dos cálculos simplificados e do SAP2000	
para todos os pontos de control1	122
Figura 5.7 – Detalhe das nervuras e da faixa de concreto da laje	
analisada. (dimensões em cm)1	123
Figura 5.8 – Planta de forma do pavimento em estudo1	124
Figura 5.9 – Traçado do cabo e representação da força equivalente de	
protensão1	125
Figura 5.10 – Planta de armação. Distribuição em planta dos cabos de	
protensão1	126
Figura 5.11 – Distribuição das tensões S11 (a) e S22 (b) no topo da	
laje, em kN cm/cm1	128
Figura 5.12 – Seção transversal de seção T da laje nervurada1	128
Figura 5.13 – Forças internas e momentos no elemento tipo viga	
(Frame) [18]1	129
Figura 5.14 – Configuração deformada da estrutura usando elementos	
tipo casca (a) e elementos tipo viga (b)1	130
Figura 5.15 – Comparação dos deslocamentos na seção A para	
ambos os modelos	131
Figura 5.16 – Tensões S11 no topo (a) e na base (b) da laje na seção	
A para os modelos com elementos tipo viga e tipo casca1	133
Figura 5.17 – Tensões S22 no topo (a) e na base (b) da laje na seção	
B para os modelos com elementos tipo viga e tipo casca1	134

Lista de Tabelas

Tabela 2.1 – Diferenças dos sistemas de protensão aderente e nãoaderente [9]
Tabela 3.1 – Deslocamento (cm) do ponto central para os diferentesníveis de discretização
Tabela 4.1 – Propriedades mecânicas do concreto.72Tabela 4.2 – Relação entre a tensão máxima, mínima e a tensão75Tabela 4.3 – Relação entre a tensão máxima, mínima e a tensão75Tabela 4.3 – Relação entre a tensão máxima, mínima e a tensão79Tabela 4.4 – Quadro Resumo de relação entre fator de rigidez entre90Iajes e pilares (G) e o coeficiente aproximado de rigidez (K)90Tabela 4.5 – Valores do coeficiente aproximado de rigidez (K) para91Tabela 4.6 – Relação entre a tensão máxima, mínima e a tensão96Tabela 4.7 – Relação entre a tensão máxima, mínima e a tensão96Tabela 4.7 – Relação entre a tensão máxima, mínima e a tensão91
Tabela 5.1 – Força na laje e no pilar (kN) para análise dos pilares C1e C9.115Tabela 5.2 – Quadro arranjado para a obtenção das forças retidas nospilares.116Tabela 5.3 – Resultado das Tensões obtidas numericamente paradeterminados pontos de controle.119Tabela 5.4 – Quadro comparativo das forças obtidas numericamentee do SAP2000 com referência à forca retida em cada pilar.121Tabela 5.5 – Quadro comparativo dos valores das tensões calculadascom o método simplificado com o SAP.122

Lista de Símbolos

Letras Romanas Maiúsculas

Área da seção analisada
Compressão da laje
Módulo de elasticidade do concreto
Forças
Componente transversal da força de protensão
Fator
Inércia da seção transversal
Inércia do pilar
Inércia da laje
rigidez da estrutura
Comprimento do vão
Comprimento da laje
Comprimento do pilar
Momento fletor
Momento fletor referente ao peso próprio
Momento fletor referente à carga acidental
Momento fletor referente à força de protensão
Momento máximo resistente
Esforços
Forças Axiais
Força de protensão
Pré-esforço axial

Pt	Força nos cabos de protensão
Pv	Força nos elementos verticais
Pcu	Esforço de compressão
Q	carga concentrada no balanço
S11	Tensões na face 1 do elemento na direção 1
S22	Tensões na face 2 do elemento na direção 2
Т	Torção
Tt	Tração da armadura passiva
Тр	Tração da armadura ativa
U	Deslocamento da estrutura
Vx, Vy	Forças de cisalhamento
W, W_1, W_2	módulo de flexão (I/y)
W _b	Componente Transversal devido à curvatura dos
	cabos
Х	força na barra

Letras Romanas Minúsculas

а	Largura da laje
b	Largura da seção transversal
е	excentricidade
f	força
f'ci, f'c, fck	Resistência à concreto
f_1, f_2	Flecha do cabo
fcu	Esforço de compressão
fsb	Esforço da armadura passiva
g	peso próprio
h	Altura
k	rigidez do elemento
l ₁ ,l ₂ ,l ₃	Vão
q	Carga acidental distribuída
u, u1, u2, u3	Deslocamentos
y1	Distância do centro de gravidade do concreto a face
	inferior
	da seção transversal
y2	Distância do centro de gravidade do concreto a face
	superior da seção transversal
W	Deslocamento transversal
~~	

Letras Gregas

φ	Coeficiente
β	Taxa de espessura do bloco de compressão
3	Deformação
δ	Deslocamento
Өх, Өу	Rotações
σ	Tensão
$\sigma_{1g1}, \sigma_{2g1}$	Tensão referente ao peso próprio.
σ_{1q}, σ_{2q}	Tensão referente à carga acidental.
σ_{max}	Tensão máxima
σ_{min}	Tensão mínima
σ_{prot}	Tensão de protensão
σ_{med}	Tensão media
ט	Coeficiente de Poisson

Lista de Abreviaturas

ACI	American Concrete Institute
CG	Centro de Gravidade
ELS-W	Estado limite de abertura de fissuras
ELS-D	Estado limite de descompressão
ELS-F	Estado limite de formação de fissuras
GDL	Graus de liberdade
MEF	Método dos Elementos Finitos
NBR	Norma Brasileira Registrada
PTI	Post Tensioning Institute
PUC-Rio	Pontifícia Universidade Católica do Rio de Janeiro