

Guilherme Lima Righetto

Simulação Hidromecânica de Reativação de Falhas em Reservatórios de Petróleo: Abordagens por Interações de Contato e Plasticidade

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

Orientador: Prof. Sergio Augusto Barreto da Fontoura Co-orientador: Dr. Nelson Inoue

> Rio de Janeiro Março de 2012

Guilherme Lima Righetto

Simulação Hidromecânica de Reativação de Falhas em Reservatórios de Petróleo: Abordagens por Interações de Contato e Plasticidade

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sergio Augusto Barreto da Fontoura
Orientador
Departamento de Engenharia Civil – PUC-Rio

Dr. Nelson Inoue Co-Orientador GTEP/PUC-Rio

Prof^a. **Deane Mesquita Roehl** Departamento de Engenharia Civil – PUC-Rio

Prof. Ney Augusto DumontDepartamento de Engenharia Civil – PUC-Rio

Dr. Antônio Luiz Serra de Souza CENPES/PETROBRAS

Prof. José Eugênio LealCoordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 01 de março de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e dos orientadores.

Guilherme Lima Righetto

Graduado em Engenharia Civil pela UFRGS (Universidade Federal do Rio Grande do Sul) em 2009. Durante a graduação, atuou como pesquisador de iniciação científica nas áreas de geotecnia ambiental, melhoramento de solos e modelagem numérica em elementos finitos aplicada à engenharia de fundações. Atualmente, atua como pesquisador no Grupo de Geomecânica Computacional do GTEP – PUC-Rio na área de geomecânica de reservatórios.

Ficha Catalográfica

Righetto, Guilherme Lima

Simulação hidromecânica de reativação de falhas em reservatórios de petróleo: abordagens por interações de contato e plasticidade / Guilherme Lima Righetto ; orientador: Sergio Augusto Barreto da Fontoura ; co-orientador: Nelson Inoue. – 2012. 220 f. il. (color.) ; 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2012.

Inclui bibliografia.

1. Engenharia civil – Teses. 2. Geomecânica de reservatórios. 3. Simulação hidromecânica. 4. Reativação de falhas. I. Fontoura, Sergio Augusto Barreto da. II. Inoue, Nelson. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

Agradecimentos

Primeiramente, gostaria de agradecer a Deus pela oportunidade de me aprimorar espiritualmente.

Gostaria de agradecer toda a minha família que mesmo dispersa pelo Brasil se mostrou sempre presente. Vocês são meus alicerces nesta vida.

Gostaria de agradecer a minha Mãe (como "M" maiúsculo,) Vera Lúcia de Lima Righetto, por sua compreensão e paciência ao longo de toda a minha vida. Sua força e perseverança em acreditar na minha capacidade, principalmente nos períodos de maior dificuldade, me inspiram a não desistir dos meus ideais.

Gostaria de agradecer meu pai, Oswaldo Righetto, por ser mais do que um pai, por ser um amigo. Você sempre foi a minha inspiração de um profissional bem sucedido. Se um dia eu for metade do profissional que você é, terei conquistado meu objetivo. Agradeço a você por ter falado palavras importantes no momento certo!

Gostaria de agradecer as minhas mentoras espirituais: Edna Pagotto, Dona Cida (*in memoriam*) e Nide. Sem a dedicação e amor de vocês nada disto seria possível.

Gostaria de agradecer a todos os meus irmãos, especialmente minha irmã Germanna Lima Righetto, pelos inúmeros momentos que passamos juntos ou não! Tenho muito orgulho de ser seu irmão!

Gostaria de agradecer a minha Família de Porto Alegre (Ellen e Claire) pelo apoio e pelos inúmeros momentos alegres que passamos todas as vezes que retorno! Vocês são muito especiais!

Gostaria de agradecer a minha querida namorada, Ellen Marianne Röpke Ferrando, por todo o seu carinho, pela grande paciência e principalmente por nunca deixar de acreditar em um relacionamento à distância! Você não imagina o quanto é especial para mim.

Gostaria de fazer um agradecimento especial ao engenheiro, mestre, professor e amigo Carlos Emmanuel R. Lautenschläger (Manolo). Desde 2006 seguimos nesta difícil jornada de conquistar nossos sonhos! Creio que ainda andamos naquela bicicleta que o Fernando Schnaid mencionou. Agradeço por ter o privilégio de ter conhecido uma pessoa com uma capacidade ímpar como a sua.

Depois de todos estes anos compartilhando todo o tipo de emoções e dificuldades, considero você como um irmão.

Gostaria de agradecer meu orientador Sergio Augusto Barreto da Fontoura pela confiança depositada no meu trabalho e pela oportunidade de trabalhar em um Grupo que faz Engenharia de verdade. Agradeço também pelas inúmeras discussões técnicas, as quais sempre me mostram o quanto eu ainda tenho que ampliar os meus horizontes!

Gostaria de agradecer o meu co-orientador Nelson Inoue por ter compartilhado seus conhecimentos numéricos com grande entusiasmo e paciência. Agradeço também pelo enorme apoio, principalmente na reta final desta dissertação. Sem seu empenho não teria sido possível! "Muito obrigado, Nelson".

Agradeço aos grandes amigos colombianos que fiz durante este período: Ingrid Milena Reyes Martinez (Milenita) e Jose Murgas (Joselito). Sem o apoio mútuo não teríamos conseguido resultados tão bons! Sem dúvida fomos um quarteto muito promissor!

Agradeço ao Stan de Bayser por abrir as portas da sua casa em São Conrado quando cheguei ao Rio de Janeiro.

Agradeço ao Prof. Luis Eloy Vaz por também abrir as portas da sua casa permitindo que eu me dedicasse com maior vigor nos momentos decisivos desta dissertação.

Agradeço as minhas companheiras de casa, principalmente, Maria Isabel Ramos Navarro e Ingrid Milena Reyes Martinez por proporcionar diversos momentos de alegria! "Me divirto muito com vocês!"

Agradeço a todos os meus amigos que mesmo distantes torcem pelo meu sucesso: Carla Carrapatoso, Michel Rafael Milanesi, João Rodrigo Zanetti Cardoso, Diego Augusto Ribeiro, Marina B. Teixeira, Carla L. Henz, Marcelle D. Ribeiro, Camila Rabassa, Leonardo dos Santos, Marta Obelheiro, Bruno Tasca de Linhares (Chapecó), Tiago Salame, Aline Bronzatto, Renata Ramisch, Carlos Eduardo Ramisch, Emanuele Weschenfelder e todos os nomes citados anteriormente.

Agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – pela concessão da bolsa de mestrado.

Resumo

Righetto, Guilherme Lima; Fontoura, Sergio Augusto Barreto; Inoue, Nelson. Simulação Hidromecânica de Reativação de Falhas em Reservatórios de Petróleo: Abordagens por Interações de Contato e Plasticidade. Rio de Janeiro, 2012. 220p. Dissertação de Mestrado — Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Visando aumentar a produção de hidrocarbonetos, a indústria do petróleo desenvolveu métodos de recuperação cujo objetivo é obter uma maior produção. Assim, diversos problemas podem ser encontrados quando se faz uso destas técnicas, principalmente a convencional, em reservatórios geologicamente complexos. Por outro lado, a consideração de estruturas geológicas na engenharia de reservatórios, como as falhas, tem caráter fundamental para a determinação de respostas realísticas quanto à produção de hidrocarboneto. No caso específico da falha, a sua consideração no modelo apresenta importância significativa no âmbito atual, principalmente no que diz respeito à possibilidade de reativação, relacionada com o surgimento de um caminho preferencial para o hidrocarboneto, implicando, nos casos mais críticos, no escape de fluido e na possível perda da estanqueidade do reservatório. Neste contexto, foram idealizados quatro modelos de reservatório com inclinações de falha e zona de falha de 80° e 60°. Aliado às simulações hidromecânicas, foram estudadas duas abordagens numéricas para tratar o plano/zona de falha. A primeira metodologia empregada faz uso de interações de contato e a falha foi tratada como um plano. A segunda metodologia considera uma zona de falha cujo comportamento é dado pelo critério de plastificação de Mohr-Coulomb. Pela análise dos resultados foi observado que o emprego de interações de contato requer a utilização de um modelo de atrito que leve em consideração a queda das tensões normais efetivas no critério de ruptura. O modelo de plasticidade apresentou resultados consistentes em relação ao processo de reativação da zona de falha para os modelos construídos. Como conclusão geral do trabalho, afirma-se que a consideração de planos de falha ou zonas de falha em reservatórios devem ser definidas cautelosamente no modelo geomorfológico, uma vez que a modelagem destes tipos de estruturas geológicas requer a utilização de diferentes técnicas numéricas para determinar seu comportamento hidromecânico.

Palayras-chave

Geomecânica de reservatórios; simulação hidromecânica; reativação de falhas

Abstract

Righetto, Guilherme Lima; Fontoura, Sergio Augusto Barreto (Advisor); Inoue, Nelson (Co-advisor). Hydromechanical Simulation of Fault Reactivation in Petroleum Reservoirs: Approaches by Contact Interactions and Plasticity. Rio de Janeiro, 2012. 220p. MSc. Dissertation – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Aiming to increase hydrocarbon production, the oil industry has developed recovery methods whose purpose is to get more production. Thus, several problems may be encountered when making use of these techniques, mainly the conventional, in geologically complex reservoirs. In addition, consideration of geological structures in reservoir engineering, such as faults, has fundamental character for determining realistic response for the production of hydrocarbons. In the specific case of faults, its consideration in the model has significant importance currently, especially with regard to the possibility of reactivation associated with the emergence of a preferential path for the hydrocarbon, implying, in the most critical cases, in the leakage of fluid and possible loss of tightness of the reservoir. In this context, four reservoir models were developed with slope of 80 ° and 60 ° for the cases of fault plane and fault zone. Using coupled hydro-mechanical simulations we studied two numerical approaches to treat the plan/fault zone. The first methodology makes use of contact interactions and the fault was treated as a plan. The second methodology considers a fault zone whose behavior is given by the criterion of Mohr-Coulomb yielding. In the analysis of the results was observed that the use of contact interactions requires the use of a friction model that takes into account the drop of the effective normal stress in the failure criterion. The plasticity model showed consistent results in relation to the process of reactivation of the fault zone for the models built. As a general conclusion of the study, it is stated that the consideration of fault planes or fault zones in reservoirs must be carefully defined in the geomorphological model, since the modeling of these types of geological structures requires the use of different numerical techniques to determine their hydromechanical behavior.

Keywords

Reservoir geomechanics; hydromechanical simulation; fault reactivation

Sumário

1 Introdução	26
1.1. Relevância e motivação	26
1.2. Objetivo e metodologia	28
1.3. Organização da dissertação	28
2 Revisão Bibliográfica	30
2.1. Falhas sob o ponto de vista geológico	30
2.1.1. Definições e características	30
2.1.2. Processo de formação de falhas	34
2.1.3. Aspectos mecânicos de zonas de cisalhamento	38
2.2. Falhas sob o ponto de vista de simulação de fluxo	39
2.2.1. Potencial selante de falhas	39
2.2.2. Consideração da falha em simuladores de fluxo	50
2.3. Falhas sob o ponto de vista de análise de reativação	59
2.3.1. Análise de tendência ao deslizamento	59
2.3.2. Análise analítica de pressão de injeção em formações rochosas	68
2.3.3. Análise numérica de pressão de injeção em formações rochosas	73
2.4. Propriedades de zonas de falha	84
2.4.1. Variação da permeabilidade em análises numéricas	89
2.5. Técnicas numéricas para consideração de descontinuidades	91
3 Análise Hidromecânica de Reservatórios com Falha	95
3.1. Descrição dos modelos numéricos idealizados	95
3.1.1. Hipóteses adotadas	95
3.1.2. Propriedades hidromecânicas utilizadas	96
3.1.3. Modelo geométrico do reservatório com falha	98
3.1.4. Formulação numérica do acoplamento parcial	101
3.1.5. Implementação de um modelo de reativação de falha no programa de	
acoplamento parcial	109
3.2. Interações de contato	117
3.3. Modelos constitutivos	123
3.3.1. Tópicos da mecânica dos meios contínuos	124
3.3.2. Fundamentos da teoria da plasticidade	127

3.3.3. Modelo constitutivo de Mohr-Coulomb	130
4 Estudo da Reativação da Falha – Resultados	136
4.1. Modelos numéricos considerando interações de contato	136
4.1.1. Modelo com plano de falha inclinada a 80° em relação à horizontal	136
4.1.2. Modelo com plano de falha inclinada a 60° em relação à horizontal	144
4.2. Modelos numéricos considerando plasticidade	153
4.2.1. Modelo com zona de falha inclinada a 80° em relação à horizontal	153
4.2.2. Modelo com zona de falha inclinada a 60° em relação à horizontal	172
4.2.3. Comparação entre as zonas de falha de 80° e 60°	192
5 Considerações Finais	204
5.1. Conclusões	204
5.2. Sugestões para trabalhos futuros	205
6 Referências Bibliográficas	207

Lista de figuras

Figura 1.1 – Distribuição dos 70 casos de indução de sismos em campos de	
petróleo (Suckale, 2010)	27
Figura 2.1 – (a) falha e (b) zona de falha (San Andreas – Califórnia/EUA)	31
Figura 2.2 – Brecha de falha (fonte: http://www.earthscienceworld.org/)	32
Figura 2.3 – Gouge de falha (fonte: http://earthquake.usgs.gov/)	32
Figura 2.4 – Cataclasito (fonte: http://www.webpages.uidaho.edu)	33
Figura 2.5 – Milonito (fonte: http://www.rc.unesp.br)	33
Figura 2.6 – Classificação dos regimes de falha de acordo com Anderson –	
adaptado de Zoback (2007)	35
Figura 2.7 – Movimento relativo da falha normal	35
Figura 2.8 – Falha normal em El Salvador na América Central (fonte:	
http://www.geology.wisc.edu)	36
Figura 2.9 – Movimento relativo da falha reversa	36
Figura 2.10 – Falha reversa no Japão (fonte: http://rst.gsfc.nasa.gov)	37
Figura 2.11 – Movimento relativo da falha transcorrente	37
Figura 2.12 – falha transcorrente (fonte: http://geology.uprm.edu)	37
Figura 2.13 – Expressão estrutural dos comportamentos de zonas de	
cisalhamento (adaptado de Moraes, 2004)	38
Figura 2.14 – Ilustração esquemática mostrando zonas potenciais de	
trapeamento de hidrocarbonetos (Færseth et al., 2007)	40
Figura 2.15 – Esquema para o cálculo do SGR (Yielding et al., 1997)	42
Figura 2.16 – Esquema para o cálculo do SSF (Lindsay et al., 1993)	43
Figura 2.17 – Comparação da quantidade de argila observada e calculada	
com o método SGR (Wibberley et al., 2008)	44
Figura 2.18 – Categoria 1: Falha normal com rejeito de 200 – 250 m no	
reservatório do campo de Brage no Mar do Norte (Færseth, 2006).	44
Figura 2.19 – Categoria 2: Falha normal com rejeito de 210 m no campo de	
Visund no Mar do Norte (Færseth et al., 2007).	45
Figura 2.20 – Aspectos da avaliação do selo da falha para grandes falhas	
através da probabilidade de falha selante (Færseth et al., 2007).	47
Figura 2.21 – Mapa estrutural do campo de Pilar (Borba et al., 2004)	49

Figura 2.22 – Seção sismica do campo de Pilar (Borba et al., 2004)	49
Figura 2.23 – Esquemas dos blocos do <i>corner point grid</i> (Al-Busafi, 2005)	51
Figura 2.24 – Blocos do grid distorcidos (Al-Busafi, 2005)	52
Figura 2.25 – Espessura da falha em função do deslocamento ambas em	
escala logarítmica (adaptado de Manzocchi et al., 1999)	54
Figura 2.26 – Permeabilidade (escala logarítmica) em função da fração	
volumétrica de argila (Manzocchi et al., 1999)	56
Figura 2.27 – Esquemas dos blocos separados pela falha e usando o	
multiplicador de transmissibilidade absoluto, TM_{abs} (Al-Busafi, 2005)	57
Figura 2.28 – Tensão normal e cisalhante atuando em uma superfície	
arbitrária dentro de um campo de tensões dado pelas tensões principais	
(Jaeger e Cook, 1979)	59
Figura 2.29 – Falhas frágeis e fraturas formando trajetórias potenciais de	
drenagem através da camada de rocha capeadora de baixa	
permeabilidade em regimes extensional e compressional de tensões	
(ext. = fratura de extensão hidráulica, e-s = fratura de cisalhamento)	
(Sibson, 2003).	61
Figura 2.30 – Envoltórias de ruptura da rocha intacta e da falha sem coesão	
(reshear) normalizadas pela resistência à tração adaptado de	
(Sibson, 2003)	63
Figura 2.31 – Principais fatores influentes nos selos de hidrocarbonetos	
(Jones e Hillis, 2003)	65
Figura 2.32 – Diagrama multiparâmetro para cálculo da probabilidade de	
falha selante (Jones e Hillis, 2003)	66
Figura 2.33 – Incerteza referente à justaposição (Jones e Hillis, 2003)	67
Figura 2.34 – Incerteza referente ao processo de formação de rocha de falha	
(Jones e Hillis, 2003)	67
Figura 2.35 – Incerteza referente à reativação (Jones e Hillis, 2003)	68
Figura 2.36 – (a) tensões atuantes na falha, (b) efeito do aumento da pressão	
de poros na estabilidade da falha (Streit et al., 2004)	69
Figura 2.37 diagrama de Mohr para um regime de falha normal durante a	
depleção da pressão de poros (Streit et al., 2004)	71
Figura 2.38 – (a) simplificações adotadas pela solução analítica, (b) tensões	
poroelásticas induzidas pela injeção (Rutqvist et al., 2007)	72
Figura 2.39 – Esquema que mostra a comunicação entre os softwares	
TOUGH2-FLAC (Rutgvist et al., 2002)	74

Figura 2.40 – plano de falha representado no TOUGH2–FLAC usando (a)	
elementos de interface e (b) elementos planos ou sólidos (adaptado de	
Rutqvist et al., 2007)	74
Figura 2.41 – Esquema do modelo utilizado no TOUGH2–FLAC para análise	
do comportamento da falha durante a injeção de CO ₂	
(Rutqvist et al., 2007)	75
Figura 2.42 – Simulação da evolução da pressão de injeção com e sem a	
consideração da mudança da permeabilidade da falha	
(Rutqvist et al., 2007)	76
Figura 2.43 – Modelo bidimensional estudado com sua respectiva malha de	
elementos finitos (Guimarães et al., 2009)	79
Figura 2.44 – Detalhe do número de elementos utilizados para discretizar	
a falha (Guimarães et al., 2009)	79
Figura 2.45 – Modelo numérico da falha (Ducellier et al., 2011)	80
Figura 2.46 – Modelo numérico da bacia de Paris (Ducellier et al., 2011)	81
Figura 2.47 – Modelo geométrico (Zhang et al., 2009)	82
Figura 2.48 – Geometrias dos modelos: (a) 2D com uma falha	
(b) 2D com duas falhas e (c) 3D com duas falhas. As setas indicam a	
direção do carregamento de compressão (2D) e de cisalhamento (3D)	
(Zhang et al., 2008)	83
Figura 2.49 – abordagens numéricas da falha considerando (a) interface sem	
espessura (b) elementos sólidos e (c) elementos sólidos com juntas orientada	s
ao longo do plano da falha adaptado de (Cappa et al., 2010)	84
Figura 2.50 – Bloco esquemático mostrando as localizações das amostras	
bem como os componentes da zona de falha	
(adaptado de Evans et al., 1997)	85
Figura 2.51 – Resultado mostrando os valores de permeabilidade segundo as	
diferentes orientações das amostras para diferentes regiões da zona de falha	
(adaptado de Evans et al., 1997)	86
Figura 2.52 – Resultados de permeabilidade em função da tensão confinante	
efetiva para (a) zona de dano e (b) núcleo da falha	
(adaptado de Evans et al., 1997)	87
Figura 2.53 – (a) esquema dos componentes de uma estrutura de zona	
de falha e faixa de variação da (b) permeabilidade e (c) módulo de Young	
(Cappa et al., 2010).	89
Figura 2.54 – discretização de problemas de contato entre grãos para (a)	

modelos de XFEM/GFEM e (b) para modelo de FEM	
(Belytschko et al., 2009)	92
Figura 3.1 – (a) Vista superior do modelo e (b) vista lateral (GTEP, 2011)	99
Figura 3.2 – Vista ampliada do reservatório – modelo com plano de falha 80°	99
Figura 3.3 – Vista ampliada do reservatório – modelo com zona de falha 80°	100
Figura 3.4 – (a) Vista superior do modelo e (b) vista lateral (GTEP, 2011)	100
Figura 3.5 – Vista ampliada do reservatório – modelo com plano de falha 60°	101
Figura 3.6 – Vista ampliada do reservatório – modelo com zona de falha 60°	101
Figura 3.7 – Dois esquemas de acoplamento parcial: (a) Iterativo e	
(b) Explícito (Inoue & Fontoura, 2009)	104
Figura 3.8 – Montagem das equações governantes do esquema de	
acoplamento parcial (Inoue & Fontoura, 2009)	106
Figura 3.9 – Aproximação da equação de fluxo do simulador convencional de)
reservatórios através da pseudo-compressibilidade da rocha e da porosidade)
(Inoue & Fontoura, 2009)	107
Figura 3.10 – Esquema <i>staggered</i> entre os programas Abaqus e ECLIPSE	
(Inoue & Fontoura, 2009)	108
Figura 3.11 – Fluxograma detalhado do acoplamento parcial iterativo entre os	S
programas Abaqus e ECLIPSE (Inoue & Fontoura, 2009)	108
Figura 3.12 – Fluxograma com as etapas para implementação de um modelo)
de reativação de falha no programa de acoplamento parcial	110
Figura 3.13 – Modelo com plano de falha com 80º discretizado em duas	
partes para possibilitar a introdução de planos de contatos distintos	
(GTEP, 2011)	111
Figura 3.14 – <i>Grid</i> de simulação de reservatórios com exagero nas medidas	
verticais para o plano de falha de 80º	112
Figura 3.15 – <i>Grid</i> de simulação de reservatórios com exagero nas medidas	
verticais para a zona de falha de 80º	112
Figura 3.16 – Localização dos poços injetores e do plano/zona de falha.	113
Figura 3.17 – Discretização da superfície de contato para o modelo com	
plano de falha de 60º	114
Figura 3.18 – Visualização de todos os pontos nodais do modelo com plano	
de falha de 60°.	115
Figura 3.19 – (a) <i>RESTART</i> no simulador ECLIPSE e (b) <i>RESTART</i> no	
programa Abaqus.	116

Figura 3.20 – Interação entre superfícies de contato (Lautenschläger, 2010)	118
Figura 3.21 – Modelo de atrito de Coulomb (Abaqus, 2010)	122
Figura 3.22 – Modelo de atrito com um limite para a tensão de cisalhamento	
(Abaqus, 2010)	122
Figura 3.23 – Comportamento elasto-plástico	129
Figura 3.24 – Envoltória de ruptura de Mohr-Coulomb	131
Figura 3.25 – Superfície de plastificação de Mohr-Coulomb	132
Figura 3.26 – Superfície de plastificação de Mohr-Coulomb no plano	
meridional adaptado de (Abaqus, 2011)	135
Figura 4.1 – Área amplificada da face do plano de falha de 80° onde foi	
avaliada a reativação	137
Figura 4.2 – Deslocamento tangencial da falha de 80° para t = 1 dia	138
Figura 4.3 – Deslocamento tangencial da falha de 80° para t = 113 dias	138
Figura 4.4 – Deslocamento tangencial da falha de 80° para t = 363 dias	138
Figura 4.5 – Deslocamento tangencial da falha de 80° para t = 663 dias	138
Figura 4.6 – Deslocamento tangencial da falha de 80° para t = 963 dias	139
Figura 4.7 – Deslocamento tangencial da falha de 80° para t = 1200 dias	139
Figura 4.8 – Conjunto de nós onde foram avaliadas as tensões cisalhantes	
e normais no plano de falha de 80°	140
Figura 4.9 – Razão entre as tensões cisalhantes equivalente (τ_{eq}) e crítica	
(au_{crit}) em função do tempo de análise para o plano de falha de 80°	140
Figura 4.10 – Pressão de contato no plano de falha na região do reservatório)
para o modelo com plano de falha de 80°	141
Figura 4.11 – Pressão de contato no plano de falha na região do reservatório)
para o modelo com plano de falha de 80°	142
Figura 4.12 – Vetores resultantes da tensão cisalhante para o modelo com	
plano de falha de 80° com 1200 dias de injeção	142
Figura 4.13 – Vetores resultantes da pressão normal de contato para o	
modelo com plano de falha de 80° com 1200 dias de injeção	143
Figura 4.14 – Vetores resultantes do deslocamento para o modelo com	
plano de falha de 80° com 1200 dias de injeção	143
Figura 4.15 – Área amplificada da face da falha de 60° onde foi avaliada a	
reativação	144
Figura 4.16 – Deslocamento tangencial da falha de 60° para t = 1 dia	145
Figura 4 17 – Deslocamento tangencial da falha de 60° para t = 63 dias	145

Figura 4.18 – Desiocamento tangenciai da faina de 60° para t = 363 días	145
Figura 4.19 – Deslocamento tangencial da falha de 60° para t = 663 dias	146
Figura 4.20 – Deslocamento tangencial da falha de 60° para t = 963 dias	146
Figura 4.21 – Deslocamento tangencial da falha de 60° para t = 1200 dias	146
Figura 4.22 – Conjunto de nós onde foram avaliadas as tensões cisalhantes	
e normais no plano de falha de 60°	147
Figura 4.23 – Razão entre as tensões cisalhantes equivalente (τ_{eq}) e crítica	
(au_{crit}) em função do tempo de análise para o plano de falha de 60°	148
Figura 4.24 – Pressão de contato no plano de falha na região do reservatório	
para o modelo com plano de falha de 60°	149
Figura 4.25 – Pressão de contato no plano de falha na região do reservatório	
para o modelo com plano de falha de 60°	149
Figura 4.26 – Vetores resultantes da tensão cisalhante para o modelo com	
plano de falha de 60° com 1200 dias de injeção	150
Figura 4.27 – Vetores resultantes pressão normal de contato para o modelo	
com plano de falha de 60° com 1200 dias de injeção	150
Figura 4.28 – Vetores resultantes pressão normal de contato para o modelo	
com plano de falha de 60° com 1200 dias de injeção	151
Figura 4.29 – Caso plano para transformação de tensões	152
Figura 4.30 – Distribuição da tensão horizontal (S11) no modelo numérico	
com zona de falha de 80° na fase de equilíbrio	153
Figura 4.31 – Distribuição da tensão horizontal (S22) no modelo numérico	
com zona de falha de 80° na fase de equilíbrio	154
Figura 4.32 – Distribuição da tensão vertical (S33) no modelo numérico com	
zona de falha de 80° na fase de equilíbrio	154
Figura 4.33 – Área amplificada da face da zona de falha de 80° onde foi	
avaliada a reativação	155
Figura 4.34 – Deformação plástica (PEEQ) praticamente nula para o modelo	
com zona de falha de 80° com plasticidade após 1 dia de injeção	155
Figura 4.35 – Deformação plástica (PEEQ) para o modelo com zona de falha	
de 80° com plasticidade após 1963 dias de injeção	155
Figura 4.36 – Deformação plástica (PEEQ) para o modelo com zona de falha	
de 80° com plasticidade após 4000 dias de injeção	156
Figura 4.37 – Vetores resultantes dos deslocamentos para o modelo com	
zona de falha de 80° com plasticidade após 4000 dias de injeção	156
Figura 4 38 – Variação da tensão principal major efetiva em função do tempo	

de injeção para o modelo com zona de falha de 80° com plasticidade	157
Figura 4.39 – Variação da tensão principal intermediária efetiva em função do)
tempo de injeção para o modelo com zona de falha de 80° com	
plasticidade	158
Figura 4.40 – Variação da tensão principal menor efetiva em função do	
tempo de injeção para o modelo com zona de falha de 80° com plasticidade	158
Figura 4.41 – Variação da pressão de poros em função do tempo de injeção	
para o modelo com zona de falha de 80° com plasticidade	159
Figura 4.42 – Variação do primeiro invariante de tensões (p) em função do	
tempo de injeção para o modelo com zona de falha de 80° com	
plasticidade	160
Figura 4.43 – Variação do segundo invariante de tensões (q) em função do	
tempo de injeção para o modelo com zona de falha de 80° com	
plasticidade	160
Figura 4.44 – Variação do terceiro invariante de tensões (r) em função do	
tempo de injeção para o modelo com zona de falha de 80° com	
plasticidade	161
Figura 4.45 – Variação da função de plastificação em função do tempo de	
injeção para o modelo com zona de falha de 80° com plasticidade	162
Figura 4.46 – Trajetória de tensões em função da envoltória de ruptura para	
o modelo com zona de falha de 80° com plasticidade	162
Figura 4.47 – Expansão vertical do reservatório em função do tempo de	
injeção para o modelo com zona de falha de 80° com plasticidade	163
Figura 4.48 – Deslocamento vertical do leito marinho em função do tempo de	!
injeção para o modelo com zona de falha de 80° com plasticidade	164
Figura 4.49 – Elementos que compõe a trajetória horizontal estudada,	
destacada em azul escuro, para o modelo de zona de falha de 80°	164
Figura 4.50 – Trajetórias de tensões para estudo da propagação horizontal	
da plastificação para o modelo de zona de falha de 80°	165
Figura 4.51 – Detalhe das trajetórias de tensões para estudo da propagação	
horizontal da plastificação para o modelo de zona de falha de 80°	166
Figura 4.52 – Função de plastificação para estudo da propagação horizontal	
da plastificação para o modelo de zona de falha de 80° após 1963	
dias de injeção	166
Figura 4.53 – Função de plastificação para estudo da propagação horizontal	
da plastificação para o modelo de zona de falha de 80° após 4000	

dias de injeção	167
Figura 4.54 – Elementos que compõe a trajetória vertical estudada,	
destacada em azul escuro, para o modelo de zona de falha de 80°	168
Figura 4.55 – Trajetórias de tensões para estudo da propagação	
vertical da plastificação para o modelo de zona de falha de 80° após	
1963 dias de injeção	168
Figura 4.56 – Detalhe das trajetórias de tensões para estudo da propagação	
vertical da plastificação para o modelo de zona de falha de 80° após	
1963 dias de injeção	169
Figura 4.57 – Função de plastificação para estudo da propagação	
vertical da plastificação para o modelo de zona de falha de 80° após	
1963 dias de injeção	169
Figura 4.58 – Função de plastificação para estudo da propagação	
vertical da plastificação para o modelo de zona de falha de 80° após	
4000 dias de injeção	170
Figura 4.59 – Variação da tensão principal maior efetiva para os diferentes	
elementos que compõe a trajetória horizontal em função do tempo de injeção)
para o modelo com zona de falha de 80°	171
Figura 4.60 – Variação da tensão principal intermediária efetiva para os	
diferentes elementos que compõe a trajetória horizontal em função do	
tempo de injeção para o modelo com zona de falha de 80°	171
Figura 4.61 – Variação da tensão principal menor efetiva para os diferentes	
elementos que compõe a trajetória horizontal em função do tempo de injeção)
para o modelo com zona de falha de 80°	172
Figura 4.62 – Distribuição da tensão horizontal (S11) no modelo numérico	
com zona de falha de 60° na fase de equilíbrio	173
Figura 4.63 – Distribuição da tensão horizontal (S22) no modelo numérico	
com zona de falha de 60° na fase de equilíbrio	173
Figura 4.64 – Distribuição da tensão vertical (S33) no modelo numérico com	
zona de falha de 60° na fase de equilíbrio	174
Figura 4.65– Área amplificada da face da zona de falha de 60° onde foi	
avaliada a reativação	174
Figura 4.66 – Deformação plástica praticamente nula (PEEQ) para o modelo	
de falha de 60° com plasticidade após 1 dia de injeção	175
Figura 4.67 – Deformação plástica praticamente nula (PEEQ) para o modelo	
de falha de 60° com plasticidade após 2163 dias de injeção	175

Figura 4.68 – Inicio da deformação plastica (PEEQ) para o modelo de faina	
de 60° com plasticidade após 4000 dias de injeção	175
Figura 4.69 – Vetores resultantes dos deslocamentos para o modelo de	
falha de 60° com plasticidade após 4000 dias de injeção	176
Figura 4.70 – Variação da tensão principal maior efetiva em função do tempo	
de injeção para o modelo com zona de falha de 60° com plasticidade	177
Figura 4.71 – Variação da tensão principal intermediária efetiva em	
função do tempo de injeção para o modelo com zona de falha de 60°	
com plasticidade	177
Figura 4.72 – Variação da tensão principal menor efetiva em função do	
tempo de injeção para o modelo de zona de falha de 60° com plasticidade	178
Figura 4.73 – Variação da pressão de poros em função do tempo de injeção	
para o modelo com zona de falha de 60° com plasticidade	179
Figura 4.74 – Variação do primeiro invariante de tensões (p) em função do	
tempo de injeção para o modelo com zona de falha de 60° com	
plasticidade	179
Figura 4.75 – Variação do segundo invariante de tensões (q) em função do	
tempo de injeção para o modelo com zona de falha de 60° com	
plasticidade	180
Figura 4.76 – Variação do terceiro invariante de tensões (r) em função do	
tempo de injeção para o modelo com zona de falha de 60° com	
plasticidade	180
Figura 4.77 – Variação da função de plastificação em função do tempo de	
injeção para o modelo com zona de falha de 60° com plasticidade	181
Figura 4.78 – Trajetória de tensões em função da envoltória de ruptura para	
o modelo com zona de falha de 60° com plasticidade	182
Figura 4.79 – Expansão vertical do reservatório em função do tempo de	
injeção para o modelo com zona de falha de 60° com plasticidade	183
Figura 4.80 – Deslocamento vertical do leito marinho em função do tempo de	
injeção para o modelo com zona de falha de 60° com plasticidade	183
Figura 4.81 – Elementos que compõe a trajetória horizontal estudada,	
destacada em azul escuro, para o modelo de zona de falha de 60°	184
Figura 4.82 – Trajetórias de tensões para estudo da propagação horizontal	
da plastificação para o modelo de zona de falha de 60°	185
Figura 4.83 – Detalhe das trajetórias de tensões para estudo da propagação	
horizontal da plastificação para o modelo de zona de falha de 60°	185

Figura 4.84 – Função de plastificação para estudo da propagação horizontal	
da plastificação para o modelo de zona de falha de 60° após 2163 dias	
de injeção	186
Figura 4.85 – Função de plastificação para estudo da propagação horizontal	
da plastificação para o modelo de zona de falha de 60° após 4000 dias	
de injeção	186
Figura 4.86 – Elementos que compõe a trajetória vertical estudada,	
destacada em azul escuro, para o modelo de zona de falha de 60°	187
Figura 4.87 – Trajetórias de tensões para estudo da propagação vertical	
da plastificação para o modelo de zona de falha de 60° após 2163 dias	
de injeção	188
Figura 4.88 – Detalhe das trajetórias de tensões para estudo da propagação	
vertical da plastificação para o modelo de zona de falha de 60° após	
2163 dias de injeção	188
Figura 4.89 – Função de plastificação para estudo da propagação vertical	
da plastificação para o modelo de zona de falha de 60° após 2163 dias	
de injeção	189
Figura 4.90 – Função de plastificação para estudo da propagação vertical	
da plastificação para o modelo de zona de falha de 60° após 4000 dias	
de injeção	189
Figura 4.91 – Variação da tensão principal maior efetiva para os diferentes	
elementos que compõe a trajetória horizontal em função do tempo de injeção	1
para o modelo com zona de falha de 60°	190
Figura 4.92 – Variação da tensão principal intermediária efetiva para os	
diferentes elementos que compõe a trajetória horizontal em função do	
tempo de injeção para o modelo com zona de falha de 60°	191
Figura 4.93 – Variação da tensão principal menor efetiva para os diferentes	
elementos que compõe a trajetória horizontal em função do tempo de injeção	ı
para o modelo com zona de falha de 60°	191
Figura 4.94 – Comparação da expansão vertical do reservatório para os	
modelos numéricos de zona de falha de 80° e 60°	193
Figura 4.95 – Comparação do deslocamento vertical do leito marinho para os	i
modelos numéricos de zona de falha de 80° e 60°	193
Figura 4.96 – Elemento/célula de aferição, destacado em azul escuro, da	
pressão de poros para os modelos de zonas de falha de 80° e 60° para	
as três metodologias analisadas	195

Figura 4.97 – Pressão de poros em função do tempo de injeção considerando)
o acoplamento total entre fluxo-tensões para os modelos com zona de	
falha de 80° e 60°	195
Figura 4.98 – Pressão de poros em função do tempo de injeção considerando)
o acoplamento parcial (two-way) para os modelos com zona de falha de	
80° e 60°	196
Figura 4.99 – Pressão de poros em função do tempo de injeção considerando)
a simulação de fluxo pura para os modelos com zona de falha de	
80° e 60°	197
Figura 4.100 – Pressão de poros em função do tempo de injeção	
considerando as três metodologias comparadas para os modelos com	
zona de falha de 80° e 60°	198
Figura 4.101 – Campo de deslocamentos resultantes na seção longitudinal	
intermediária do modelo de zona de falha de 80° após 4000 dias de	
injeção	200
Figura 4.102 – Detalhe do campo de deslocamentos resultantes na seção	
longitudinal intermediária na região da zona de falha do modelo de 80°	
após 4000 dias de injeção	200
Figura 4.103 – Campo de deslocamentos resultantes na seção longitudinal	
intermediária do modelo de zona de falha de 60° após 4000 dias de	
injeção	200
Figura 4.104 – Detalhe do campo de deslocamentos resultantes na seção	
longitudinal intermediária na região da zona de falha do modelo de 60°	
após 4000 dias de injeção	200
Figura 4.105 – Trajetória na direção y para aferição dos valores de	
deslocamento resultante nos modelos de zona de falha de 80° e 60°	201
Figura 4.106 – Comparação entre o deslocamento resultante para os	
modelos de zona de falha de 80° e 60°	202

Lista de quadros

Quadro 2.1 – Magnitude das tensoes e regimes de falha	34
Quadro 2.2 – Tipos de ruptura encontradas na rocha intacta (Sibson, 2003)	63
Quadro 2.3 – Escala de Sherman-Kent para quantificação	66
Quadro 2.4 – Resultados de pressão máxima de injeção	
(Rutqvist et al., 2007)	77
Quadro 3.1 – Propriedades de rocha, falha e fluido	97
Quadro 3.2 – Características principais dos algoritmos de contato (Sauvé &	
Morandin, 2005)	117
Quadro 4.1 – Comparação entre a pressão de poros média para nos modelo)S
de zona de falha para as diferentes metodologias empregadas	199
Quadro 4.2 – Comparação entre a pressão de poros nos modelos de zona	
de falha para as diferentes metodologias empregadas	199

 S_{ij}

Lista de símbolos

a	Probabilidade de ocorrência de selo por deformação.
b	Probabilidade de ocorrência de selo por justaposição.
b_c	Contorno do contato.
c	Resistência coesiva.
C	Probabilidade de reativação de falha.
C_d	Constante de Darcy.
c_f	Compressibilidade do fluido.
c_r	Compressibilidade da rocha.
c_s	Compressibilidade da matriz sólida.
c	Resistência coesiva.
d	Deslocamento da falha.
E	Módulo de Young.
f	Função de plastificação de Mohr-Coulomb.
G	Módulo cisalhante.
\vec{g}	Aceleração da gravidade.
g	Separação entre os corpos em contato (gap).
h	Altura da coluna de hidrocarboneto.
I_1	Traço do tensor de tensões.
I_2	Somatório dos cofatores.
I_3	Determinante do tensor de tensões.
J_{1D}	Primeiro invariante de tensões desviador.
J_{2D}	Segundo invariante de tensões desviador.
J_{3D}	Terceiro invariante de tensões desviador.
k	Permeabilidade absoluta.
k_f	Permeabilidade da falha.
p	Pressão de poros.
p_i^{n+1}	Pressão de poros no passo de tempo n+1.
p_i^n	Pressão de poros no passo de tempo n.
p^o	Pressão de poros inicial.
[Q]	Matriz de acoplamento.
SGR	Shale Gouge Ratio.
SSF	Shale Smear Factor.

Tensor de tensões desviadoras.

t Rejeito de falha.

T Resistência à tração.

 T_{AB} Transmissibilidade entre células.

 T_{mult} Multiplicador de transmissibilidade.

u Deslocamentos nodais.

 u_n Vetor deslocamento normal ao contorno de contato.

t Rejeito de falha.

 V_{sh} Volume de argila.

z Profundidade.

α Coeficiente de Biot e número de penalidade (contato).

 δ_{ij} Delta de Kronecker.

 $\{\Delta F\}$ Vetor de carregamentos nodais.

 $\{\Delta \mathbf{p}\}$ Vetor de pressões de poros.

 ε_{v} Deformação volumétrica.

 ϕ_o Porosidade inicial.

 ϕ Ângulo de atrito interno

 ρ Massa específica média da rocha.

 ρ_w Massa específica da água.

 ρ_o Massa específica do óleo.

 μ Coeficiente de atrito interno.

 μ_f Viscosidade do fluido.

 μ_s Coeficiente de atrito estático.

v Coeficiente de Poisson.

 σ_n Tensão normal total.

 σ'_n Tensão normal efetiva.

au Tensão cisalhante.

"And we'll keep on fighting
"Till the end (...)
No time for losers"
(QUEEN)