

Anexo 1– Códigos em VBA utilizados

Cálculo do preço justo de uma opção pelo modelo de Black e Scholes Generalizado

Function GBlackScholes(CallPutFlag As String, S As Double, X As Double, T As Double, r As Double, b As Double, v As Double) As Double
 Dim d1 As Double, d2 As Double
 d1 = (Math.Log(S / X) + (b + v ^ 2 / 2) * T) / (v * Math.Sqrt(T))
 d2 = d1 - v * Math.Sqrt(T)
 If CallPutFlag = "c" Then
 ElseIf CallPutFlag = "p" Then
 End If
End Function

Cálculo da volatilidade implícita pelo modelo de Black e Scholes Generalizado

Function GImpliedVolatilityBisection(CallPutFlag As String, S As Double, X As Double, T As Double, r As Double, b As Double, cm As Double) As Variant
 Dim vLow As Double, vHigh As Double, vi As Double
 Dim cLow As Double, cHigh As Double, epsilon As Double
 Dim counter As Integer
 vLow = 0.005
 vHigh = 4
 epsilon = 0.00000001

cLow = GBlackScholes(CallPutFlag, S, X, T, r, b, vLow)
cHigh = GBlackScholes(CallPutFlag, S, X, T, r, b, vHigh)
counter = 0
vi = vLow + (cm - cLow) * (vHigh - vLow) / (cHigh - cLow)
While Abs(cm - GBlackScholes(CallPutFlag, S, X, T, r, b, vi)) > epsilon
 counter = counter + 1
 If counter = 100 Then
 GImpliedVolatilityBisection = "NA"
 Exit Function
 End If
 If GBlackScholes(CallPutFlag, S, X, T, r, b, vi) < cm Then
 vLow = vi
 Else
 vHigh = vi
 End If
 cLow = GBlackScholes(CallPutFlag, S, X, T, r, b, vLow)
cHigh = GBlackScholes(CallPutFlag, S, X, T, r, b, vHigh)
 vi = vLow + (cm - cLow) * (vHigh - vLow) / (cHigh - cLow)
Wend
GImpliedVolatilityBisection = vi
End Function

Function SkewKurtCorradoSu(CallPutFlag As String, S As Double, X As Double, T As Double, r As Double, b As Double, v As Double, Skew As Double, Kurt As Double) As Double

 Dim Q3 As Double, Q4 As Double
 Dim d1 As Double, d2 As Double
 Dim CallValue As Double
 d1 = (Math.Log(S / X) + (b + v ^ 2 / 2) * T) / (v * Math.Sqr(T))
d2 = d1 - v * Math.Sqr(T)
\[
Q_4 = \frac{1}{24} S v \sqrt{T} \left((d_1^2 - 1 - 3v \sqrt{T}d_2) \left(\frac{1}{2\pi} \exp\left(-\frac{d_1^2}{2}\right) \right) + v^3 T^{1.5} \right.
\]
\[
\left. \text{WorksheetFunction.NormSDist}(d_1) \right)
\]
\[
Q_3 = \frac{1}{6} S v \sqrt{T} \left((2v \sqrt{T} - d_1) \left(\frac{1}{2\pi} \exp\left(-\frac{d_1^2}{2}\right) \right) + v^2 T \text{WorksheetFunction.NormSDist}(d_1) \right)
\]
\[
\text{CallValue} = \text{GBlackScholes}("c", S, X, T, r, b, v) + \text{Skew} * Q_3 + (\text{Kurt} - 3) * Q_4
\]
\[
\text{If CallPutFlag = "c" Then}
\]
\[
\text{SkewKurtCorradoSu} = \text{CallValue}
\]
\[
\text{Else}
\]
\[
\text{SkewKurtCorradoSu} = \text{CallValue} - S \text{Math.Exp}((b - r) * T) + X * \text{Math.Exp}(-r * T)
\]
\[
\text{End If}
\]
\[
\text{End Function}
\]

Cálculo da volatilidade implícita pelo modelo de Corrado e Su

Function CSImpliedVolatilityBisection(CallPutFlag As String, S As Double, X As Double, T As Double, r As Double, b As Double, Skew As Double, Kurt As Double, cm As Double) As Variant

Dim vLow As Double, vHigh As Double, vi As Double
Dim cLow As Double, cHigh As Double, epsilon As Double
Dim counter As Integer

vLow = 0.005
vHigh = 4
epsilon = 0.001
cLow = SkewKurtCorradoSu(CallPutFlag, S, X, T, r, b, vLow, Skew, Kurt)
cHigh = SkewKurtCorradoSu(CallPutFlag, S, X, T, r, b, vHigh, Skew, Kurt)
counter = 0

\[
\text{vi} = \text{vLow} + (\text{cm} - \text{cLow}) * (\text{vHigh} - \text{vLow}) / (\text{cHigh} - \text{cLow})
\]

While Abs(cm - SkewKurtCorradoSu(CallPutFlag, S, X, T, r, b, vi, Skew, Kurt)) > epsilon
\[
\text{counter} = \text{counter} + 1
\]
If counter = 1000 Then
 CSImpliedVolatilityBisection = "NA"
 Exit Function
End If

If SkewKurtCorradoSu(CallPutFlag, S, X, T, r, b, vi, Skew, Kurt) < cm
Then
 vLow = vi
Else
 vHigh = vi
End If

cLow = SkewKurtCorradoSu(CallPutFlag, S, X, T, r, b, vLow, Skew, Kurt)
cHigh = SkewKurtCorradoSu(CallPutFlag, S, X, T, r, b, vHigh, Skew, Kurt)

vi = vLow + (cm - cLow) * (vHigh - vLow) / (cHigh - cLow)

Wend

CSImpliedVolatilityBisection = vi

End Function