5 Análise Paramétrica

Neste Capítulo é realizada uma análise paramétrica para o guia cilíndrico corrugado com bastão dielétrico anisotrópico definido no Capítulo 2, com os parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8r_0$, $r_2 = r_0+d$, d = 14 mm. Foram analisados os efeitos da anisotropia do dielétrico sobre a polarização cruzada máxima do campo radiado e a influência da fregüência nos padrões de radiação e polarização cruzada para uma relação de anisotropia que forneceu a menor polarização cruzada, para os casos de guia cilíndrico corrugado com dielétrico anisotrópico e para corneta corrugada com dielétrico anisotrópico e ângulo de abertura (flare) de 12º. Este estudo teve como objetivo comparar o desempenho do guia corrugado carregado com dielétrico axial com a presença da anisotropia. No caso da configuração do guia corrugado, a presença da corrugação deve criar uma anisotropia na interface corrugação - ar, de forma que próximo de d=λ/4 seja atingida uma condição híbrida balanceada. No caso da configuração de guia dielétrico, a condição de balanceamento híbrido acontece aproximadamente como uma função de tangente hiperbólica, que varia mais lentamente do que a condição de corrugado; fazendo com que a polarização cruzada permaneça a baixos níveis em uma faixa de freqüência maior. Neste caso, a relação r₁/r₀ é um fator importante neste comportamento da polarização cruzada. Concluindo, espera-se, que uma estrutura com ambas as configurações apresente um comportamento entre os dois casos limites (degenerados) como estudos introdutórios para o caso isotrópico já apresentaram [4-7,16].

5.1.

Análise Paramétrica para o Guia Cilíndrico Corrugado com Dielétrico Anisotrópico

Para a análise paramétrica do guia cilíndrico em estudo, usou-se inicialmente, a freqüência de 5,36 GHz, onde $k_0 = 112,2$, freqüência onde a profundidade de corrugação é igual a 0,25 do comprimento de onda do guia. Optou-se, inicialmente, por um dielétrico de permissividade transversal $\epsilon_t = 1,5$

constante, variando ε_z e, em seguida, um dielétrico de permissividade $\varepsilon_z = 1,5$, constante e variando ε_t , verificando sua influência no comportamento da freqüência de corte dos modos EH11 e HE11. Analisou-se também a influência da anisotropia sobre os padrões de radiação e polarização cruzada do modo HE11 analisado no Capítulo 4. Em seguida, analisou-se o efeito da variação da freqüência sobre os padrões de radiação e sobre a polarização cruzada.

5.2. Efeito da Anisotropia do Dielétrico sobre a Freqüência de Corte

Para o guia cilíndrico corrugado com dielétrico anisotrópico definido no Capítulo 2, foi estudado o efeito da permissividade do dielétrico sobre a freqüência de corte, mantendo inicialmente, a permissividade transversal ε_t constante e variando a permissividade longitudinal ε_z . Em seguida, manteve-se ε_z constante, variou-se ε_t e analisou-se o efeito da anisotropia sobre a freqüência de corte dos modos EH11 e HE11.

5.2.1.1. Variação da Permissividade Longitudinal

Variando ε_z e mantendo ε_t constante, verifica-se a variação da freqüência de corte em função da anisotropia. Para ilustrar este comportamento, foi escolhido o caso de permissividade $\varepsilon_t = 1,5$, variando ε_z entre 1,1 e 1,9. Nas Figuras 5.1 e 5.2 são apresentadas as curvas de dispersão para os dois primeiros modos (EH11 e HE11) dos casos simulados do guia cilíndrico corrugado com dielétrico anisotrópico. Na Figura 5.1, onde são apresentadas as curvas de dispersão para o modo EH11 verifica-se que as freqüências de corte inferior aumentaram ao diminuir ε_z , mas a freqüência de corte superior mantevese a mesma para todos os casos.

Para ε_t = 1,5, a Figura 5.2 apresenta as curvas de dispersão para o modo HE11, onde é observado que, para uma mesma freqüência k₀, a constante de propagação β aumenta à medida que ε_z aumenta.

Figura 5.1 - Curvas de dispersão do modo EH11, para o guia cilíndrico corrugado com dielétrico anisotrópico definido no Capítulo 2, mantendo ε_t constante e igual a 1,5 e variando ε_z ($r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm).

Figura 5.2 - Curvas de dispersão do modo HE11 para o guia cilíndrico corrugado com dielétrico anisotrópico definido no Capítulo 2, mantendo ε_t constante e igual a 1,5 e variando ε_z ($r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm).

Das Figuras 5.1 e 5.2, verifica-se que a freqüência de corte aumenta quando se diminui ε_z , para os dois modos, sendo que a variação é menor para o modo HE11. A freqüência de corte superior para o modo EH11 se mantém constante independente do valor de ε_z . À medida que ε_z aumenta, a constante de propagação β aumenta para os dois modos, sendo que para o modo HE11, esta variação é maior. Aumentando a permissividade do dielétrico na direção de propagação (ε_z), pode-se interpretar como um aumento no tamanho elétrico do guia, com isso, o comprimento de onda aumenta, diminuindo a freqüência de corte. Para o caso do modo HE11, a constante de propagação β aumenta, pois a curva de dispersão tende a tangenciar raiz de ε_z , sendo este comportamento esperado.

5.2.1.2. Variação da Permissividade Transversal

Uma análise alternativa pode ser realizada mantendo ε_z constante e variando ε_t . As curvas de dispersão para os modos EH11 e HE11 do guia cilíndrico com dielétrico anisotrópico são apresentadas nas Figuras 5.3 e 5.4, respectivamente, para diferentes valores de ε_t .

Figura 5.3 - Curvas de dispersão do modo EH11 para o guia cilíndrico corrugado com dielétrico anisotrópico definido no Capítulo 2, mantendo ε_z =1,5 constante e variando ε_t (r_0 = 63,17 mm, r_1 = 0,8 r_0 , r_2 = r_0 + d, d = 14 mm).

Pode ser verificado na Figura 5.3, onde são apresentadas as curvas de dispersão para o guia cilíndrico corrugado com dielétrico anisotrópico, mantendo ε_z =1,5 constante e variando ε_t que, para o modo EH11, a variação em ε_t praticamente não alterou as curvas de dispersão.

Figura 5.4 - Curvas de dispersão do modo HE11 para o guia cilíndrico corrugado com dielétrico anisotrópico definido no Capítulo 2, mantendo $\varepsilon_z = 1,5$ constante e variando ε_t ($r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm).

Na Figura 5.4, das curvas de dispersão do modo HE11 para o guia cilíndrico corrugado com dielétrico anisotrópico, verifica-se que ao manter ε_z constante e igual a 1,5 e variando ε_t de 1,1 a 1,9, a freqüência de corte diminuiu muito pouco conforme ε_t aumentou (aproximadamente 10%) e a constante de propagação β permaneceu praticamente constante por uma grande faixa de freqüência.

Para a faixa de valores analisados, as curvas de dispersão para o modo HE11 se mostram mais sensíveis às variações de ε_z (Figura 5.2) que as de ε_t (Figura 5.4), tanto na região de corte quanto nas frequências mais altas. Para o modo EH11, as curvas de dispersão se mostram mais sensíveis às variações de ε_z que às de ε_t na região de corte inferior, mas, apresentam um comportamento independente das variações de ε_z e ε_t na região de corte superior (Figuras 5.1 e 5.3). Este resultado encontrado se justifica devido à menor influência esperada da permissividade transversal sobre a constante de propagação, em comparação com a variação da permissividade na direção de propagação. Em adição, cabe observar que a freqüência de corte superior para o modo EH11 não variou com a variação da permissividade. Isto propicia um distanciamento (com a variação de ε_z ou ε_t) entre os modos EH11 e HE11, tendo um possível efeito sobre a faixa de utilização do modo principal HE11.

Para ilustrar a variação da freqüência de corte em relação á variação da permissividade, foram obtidas curvas das freqüências de corte inferior em função da anisotropia para os modos EH11 e HE11, sendo apresentadas na Figura 5.5.

Figura 5.5 - Curvas demonstrando o comportamento da freqüência de corte inferior em relação à anisotropia para o guia cilíndrico corrugado com núcleo dielétrico anisotrópico em estudo definido no Capítulo 2 ($r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm).

As Equações e as faixas de variações utilizadas para esta análise foram:

$$\Delta \varepsilon_{z} (\%) = (|\varepsilon_{z} - \varepsilon_{t}| / \varepsilon_{r}) 100$$
(5.1)

com ε_r = 1.5 e, ε_t = 1.5 variando ε_z (1.1, 1.3, 1.5, 1.7 e 1.9) e,

$$\Delta \varepsilon_{t} (\%) = (|\varepsilon_{t} - \varepsilon_{z}| / \varepsilon_{r}) 100$$
(5.2)

com ε_r = 1.5 e ε_z = 1.5, variando ε_t (1.1, 1.3, 1.5, 1.7 e 1.9).

Na Figura 5.5, verifica-se que para variação no eixo z, a freqüência de corte inferior para os dois modos diminui significativamente conforme se aumenta a componente da permissividade nesta direção (z), enquanto que para o caso em que se aumenta a componente da permissividade na direção transversal (t), quase não há variação no modo EH11 e no modo HE11 esta variação é menor em relação à variação do caso da mudança na direção z. Com as simulações realizadas, observou-se que a variação na permissividade não influenciou no comportamento da freqüência de corte superior para o modo EH11.

Os resultados apresentados na análise paramétrica deste Capítulo eram esperados, uma vez que a constante de propagação normalizada é na direção de propagação z. A constante dielétrica na direção de propagação é a que tem maior contribuição nas curvas de dispersão.

A partir destes resultados, verifica-se então, o efeito da permissividade do dielétrico sobre o campo radiado para o modo HE11 em diversas situações.

5.2.2. Influência da Permissividade do Dielétrico sobre o Campo Radiado

Para analisar o efeito da permissividade do dielétrico sobre o campo radiado foram construídos os diagramas de radiação para diversos casos, variando-se ε_z ou ε_t , para a freqüência de operação de 5,36 GHz.

A influência de ε_z nas características do diagrama de radiação é ilustrada na Figura 5.6 que apresenta os diagramas de radiação do modo HE11 das polarizações principal e cruzada, calculados para as freqüências de 5,36 GHz, no plano $\phi = 45^{\circ}$, onde ocorre o maior nível de polarização cruzada, considerando dielétricos com $\varepsilon_t = 1,5$ e ε_z variando entre 1,1 e 1,9.

Como observado na Figura 5.6, para todos os casos considerados o primeiro lóbulo lateral manteve-se abaixo de -30 dB, assim como o máximo nível de polarização cruzada permaneceu também abaixo de -30 dB. Uma análise mais detalhada permite observar que à medida que ε_z cresce, a largura do lóbulo principal do diagrama tem um pequeno aumento e o nível de lóbulo lateral diminui. O nível máximo de lóbulo lateral é encontrado para ε_z =1,1 e está abaixo

de -30 dB. Por outro lado, o aumento de ε_z produz uma redução no nível máximo da polarização cruzada na região do lóbulo principal, com valores abaixo de -50 dB para valores de ε_z =1,9, limite da faixa de análise.

Figura 5.6 - Diagramas de radiação do modo HE11, das polarizações principal e cruzada, no plano \$\phi=45°, para o guia cilíndrico corrugado com dielétrico anisotrópico, de um caso degenerado com $\varepsilon_r = \varepsilon_z = \varepsilon_t = 1,05$ e para vários casos anisotrópicos mantendo $\varepsilon_t = 1,5$ e variando ε_z . Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm, f = 5,36 GHz.

Foram gerados gráficos de cortes nos planos YZ e XZ da distribuição da intensidade dos campos elétricos transversais na abertura do guia cilíndrico corrugado com dielétrico anisotrópico do modo HE11, para vários casos anisotrópicos mantendo ε_t = 1,5 e variando ε_z , sendo estes apresentados na Figura 5.7, onde pode ser visto um pequeno salto na distribuição da intensidade do campo (plano YZ) na interface entre o dielétrico e o ar (r1) devido à variação da permissividade entre os dois meios (condição de contorno para a continuidade de campos na interface ar-dielétrico). Observa-se que a presença do salto eleva a assimetria na distribuição e eleva o nível de polarização cruzada.

Figura 5.7 - Distribuição da intensidade do campo elétrico transversal na abertura do guia cilíndrico corrugado com dielétrico anisotrópico do modo HE11, de vários casos anisotrópicos mantendo ε_z = 1,5 e variando ε_t . Cortes nos planos YZ e XZ. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm, f = 5,36 GHz.

A largura do feixe e o nível de lóbulo secundário estão associados à forma de distribuição do campo na borda da abertura. Para ilustrar este efeito, a Figura 5.8 apresenta para comparação os casos para $\varepsilon_t = 1,5$ e $\varepsilon_z = 1,1$ e 1,9, onde se vê que a intensidade de campo decai mais intensamente à medida que a permissividade longitudinal aumenta. Este fenômeno é a razão do estreitamento do feixe de radiação principal para baixos valores de ε_t (Figura 5.6).

Figura 5.8 – Comparação entre distribuição da intensidade do campo elétrico transversal normalizado na abertura do guia cilíndrico corrugado com dielétrico anisotrópico do modo HE11, dos casos anisotrópicos $\varepsilon_t = 1.5$ e $\varepsilon_z = 1,1$; $\varepsilon_t = 1,5$ e $\varepsilon_z = 1,9$. Cortes nos planos YZ e XZ. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm, f = 5,36 GHz.

Para ilustrar a influência da variação de ε_t nas características do diagrama de radiação na freqüência de 5.36 GHz, a Figura 5.9 apresenta os diagramas de radiação das polarizações principal e cruzada, no plano ϕ =45°, plano onde ocorre o pico de polarização cruzada.

Conforme pode ser observado dos diagramas de radiação apresentados na Figura 5.9, a polarização principal se mostra menos sensível às variações de ε_t , quando comparado ao conjunto de resultados mostrados na Figura 5.6 para variações em ε_z . Isto é previsto devido à baixa variação nas curvas de dispersão e conseqüente distribuição de campos transversais na abertura do guia. Por outro lado, o nível máximo de polarização cruzada cai à medida que ε_t se aproxima da unidade, ficando abaixo de -47 dB para valores de ε_t =1,1. Para este valor de ε_t =1,1, existe um nulo na polarização cruzada na região próxima ao eixo de simetria, com níveis de polarização cruzada abaixo de -70 dB entre 0⁰ e 30⁰. Para este caso em especial observa-se que o máximo da polarização cruzada foi de -47 dB, que foi deslocado para o ângulo θ =56⁰. Este é um efeito que exige futuros estudos e é de particular interesse para uso em antenas refletoras, ou

onde a área de iluminação desejada corresponde a um ângulo inferior ao do máximo da polarização cruzada. Para todos os valores de ε_t considerados, o nível máximo para a polarização cruzada permanece abaixo de -30 dB no limite superior da faixa de valores analisados, ε_t =1,9.

Figura 5.9 - Diagramas de radiação do modo HE11, para as polarizações principal e cruzada, no plano ϕ =45°, para o guia cilíndrico corrugado com dielétrico anisotrópico, de um caso degenerado com $\varepsilon_r = \varepsilon_z = \varepsilon_t = 1,05$ (corrugado oco), e de vários casos anisotrópicos mantendo $\varepsilon_z = 1,5$ e variando ε_t . Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm, f = 5,36 GHz.

Para uma análise mais aprofundada, na Figura 5.10 são apresentados gráficos de cortes nos planos YZ e XZ da distribuição da intensidade dos campos elétricos do guia cilíndrico corrugado com dielétrico anisotrópico em estudo (estrutura definida no Capítulo 2), para alguns dos casos apresentados na Figura 5.9 (mantendo ε_z constante e variando ε_t).

Figura 5.10 - Distribuição da intensidade do campo elétrico transversal na abertura do guia cilíndrico corrugado com dielétrico anisotrópico do modo HE11, de vários casos anisotrópicos mantendo $\epsilon_t = 1,5$ e variando ϵ_z . Cortes nos planos YZ e XZ. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm, f = 5,36 GHz.

Das curvas apresentadas no gráfico da Figura 5.10, observou-se a presença da descontinuidade na amplitude do campo elétrico na interface entre o dielétrico e o ar ao longo do eixo y, apresentando, entre os casos considerados, um mínimo para $\varepsilon_t = 1,1$. Este mínimo é devido à variação da permissividade transversa (ε_t) entre os dois meios (condição de contorno para a continuidade de campos na interface ar-dielétrico). Observa-se que o nível de polarização cruzada está associado à amplitude da descontinuidade e assimetria da distribuição de campo, causada pela variação em ε_t .

Figura 5.11 – Comparação entre distribuição da intensidade do campo elétrico transversal normalizado na abertura do guia cilíndrico corrugado com dielétrico anisotrópico do modo HE11, dos casos anisotrópicos ε_z =1,5 e ε_t =1.1; ε_z =1,5 e ε_t =1,9.
Cortes nos planos YZ e XZ. Parâmetros: r₀ = 63,17 mm, r₁ = 0,8 r₀, r₂ = r₀ + d, d = 14 mm, f = 5,36 GHz.

Para uma melhor comparação da distribuição entre os diversos casos analisados, estes foram colocados em um único gráfico, apresentado na Figura 5.11, onde, verifica-se que, o caso com ε_t =1,5 e ε_z =1,1 apresenta uma distribuição menos atenuada nas bordas do que a correspondente à distribuição do caso ε_t =1,5 e ε_z =1,9. O estreitamento do feixe de radiação principal para baixos valores de ε_t (Figura 5.9) é devido à distribuição do campo transversal, considerando o efeito do degrau na interface r=r₁.

Após obter os campos radiados distantes, foram obtidos os valores da Largura de Feixe de Meia Potência (HPBW) para a freqüência de 5,36 GHz do guia cilíndrico corrugado com dielétrico anisotrópico em estudo, para os casos mostrados nos diagramas de radiação das Figuras 5.6 e 5.9. Estes valores são apresentados na Figura 5.12.

Figura 5.12 - Largura de Feixe de Meia Potência (-3 dB) em função da permissividade para o guia cilíndrico corrugado com dielétrico anisotrópico mantendo $\varepsilon_t = 1,5$ e variando ε_z e, mantendo $\varepsilon_z = 1,5$ e variando ε_t . Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm, f = 5,36 GHz.

Da análise dos dois casos apresentados na Figura 5.12, observa-se que a largura de feixe aumenta com o aumento de ε_z ou ε_t , mas sendo mais sensível à variação em ε_t . Para esta faixa de valores, observa-se uma variação da ordem de 5% na largura de feixe, implicando em uma variação da ordem de 0.5 dB no ganho do guia.

Para os diagramas mostrados nas Figuras 5.6 e 5.9, foram geradas curvas para os Níveis Máximos de Polarização Cruzada em função da permissividade para o guia cilíndrico corrugado com dielétrico anisotrópico, sendo estas curvas apresentadas na Figura 5.13.

Figura 5.13 - Nível de Polarização Cruzada Máxima em função da permissividade para o guia cilíndrico corrugado com dielétrico anisotrópico em estudo, mantendo $\varepsilon_t = 1,5$ e variando ε_z e, mantendo $\varepsilon_z = 1,5$ e variando ε_t . Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm, f = 5,36 GHz.

Como pode ser observado na Figura 5.13, o nível de polarização cruzada aumenta com o aumento de ε_t ou com a diminuição de ε_z, para a configuração e freqüência apresentada.

5.2.3. Influência da Freqüência nos Padrões de Radiação e Polarização Cruzada

Para verificar a influência da freqüência no diagrama de radiação para as polarizações principal e cruzada, utilizou-se a estrutura definida no Capítulo 2 (r_0 = 63,17 mm, r_1 = 0,8 r_0 , r_2 = r_0 + d, d = 14 mm) com diversos parâmetros ε_z e ε_t . Para cada um dos casos, a Largura de Feixe de Meia Potência (HPBW) e o Máximo Nível de Polarização Cruzada segundo a 3ª definição de Ludwig [8] foram determinados ao longo de uma banda de freqüência entre 3 e 8 GHz.

Figura 5.14 – Gráfico do Nível da Largura de Feixe de -3 dB em função da freqüência para o guia cilíndrico corrugado com dielétrico anisotrópico em estudo, mantendo $\varepsilon_t = 1,5$ constante e variando ε_z . Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm.

A Figura 5.14 mostra os valores obtidos para a largura de feixe de meia potência (-3 dB) dos casos considerados quando se manteve constante a permissividade na direção transversal (ε_t) e variou-se a permissividade na direção de propagação (ε_z). Para a maior parte da banda analisada, observa-se que a largura de feixe varia inversamente proporcional à freqüência, determinada pela dimensão da abertura em comprimento de onda, com diferenças de 2º (freqüência maior que 3,5 GHz). Entretanto, na região próxima ao limite inferior da banda de freqüência, os guias com ε_z maiores ($\varepsilon_t = 1,5, 1,7 \in 1,9$) apresentam um aumento mais intenso da largura de feixe, indicando uma concentração dos campos no centro do guia, como pode ser observado na Figura 5.11 onde são comparadas as amplitudes dos campos para os casos $\varepsilon_t = 1,1 \in 1,9$.

Figura 5.15 - Gráfico do Nível da Largura de Feixe de -3 dB em função da freqüência para o guia cilíndrico corrugado com dielétrico anisotrópico em estudo, mantendo $\varepsilon_z = 1,5$ constante e variando ε_t . Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, d = 14 mm.

Para o caso apresentado na Figura 5.15, onde se manteve constante a permissividade na direção longitudinal (ε_z) e variou-se a permissividade na direção transversal (ε_t), verificou-se que os níveis da largura de feixe de meia potência (-3 dB) apresentam diferenças menores para as larguras de feixes ao longo da banda de freqüência analisada que as observadas pela variação de ε_z (ver Figura 5.14). Para freqüências acima de 3,5 GHz, as diferenças na largura são inferiores a 1º entre os diferentes valores de ε_t , aumentando para 4º em 3 GHz. Das Figuras 5.14 e 5.15 verifica-se que os padrões de radiação para os casos anisotrópicos são menos sensíveis às variações em ε_t (Figura 5.15) quando comparado ao conjunto de resultados mostrados na Figura 5.14 para variações em ε_z . Isto porque a constante dielétrica na direção de propagação é a que tem a maior contribuição nas curvas de dispersão e conseqüentemente maior contribuição na distribuição de campo na abertura do guia.

Em seguida, foram obtidos os Níveis de Máxima Polarização Cruzada segundo a 3ª definição de Ludwig [11] para os casos de anisotropia analisados nas Figuras 5.12 e 5.13. Foram analisados também, os casos degenerados de

guia cilíndrico corrugado com $\varepsilon_r = 1,05$ (corrugado oco); de guia cilíndrico metálico com núcleo dielétrico isotrópico de $\varepsilon_r = 1,5$ (sem corrugação) e, de guia cilíndrico corrugado com núcleo dielétrico isotrópico com $\varepsilon_r = 1,5$, cujos resultados já foram estudados na literatura [4-7], para verificação das expressões utilizadas.

Figura 5.16 - Nível de Máxima Polarização Cruzada em função da freqüência de operação para o guia cilíndrico corrugado oco, guia cilíndrico metálico com bastão dielétrico (sem corrugação) com ε_r = 1,5 e guia cilíndrico corrugado com bastão dielétrico isotrópico com ε_r = 1,5. Parâmetros: r₀ = 63,17 mm, r₁ = 0,8 r₀, r₂ = r₀ + d, d = 14 mm.

A Figura 5.16 apresenta os níveis de máxima polarização cruzada em função da freqüência de operação para o guia cilíndrico corrugado oco, guia cilíndrico metálico com bastão dielétrico (sem corrugações) com $\varepsilon_r = 1,5$ e guia cilíndrico corrugado com bastão dielétrico isotrópico com $\varepsilon_r = 1,5$, com os parâmetros apresentados no Capítulo2.

Para o caso degenerado de guia cilíndrico corrugado com $\varepsilon_r = 1,05$, a máxima polarização cruzada tem um mínimo quando a profundidade de corrugação está próxima de um quarto do comprimento de onda. Este resultado é muito semelhante ao resultado esperado para o guia corrugado oco [4]. Para o caso degenerado de guia cilíndrico metálico com bastão dielétrico isotrópico de

1,5 (sem corrugações), os níveis de máxima polarização cruzada ε_r = apresentados na Figura 5.16 também concordam com os existentes na literatura [4-7]. Para o caso de guia cilíndrico corrugado com dielétrico isotrópico com ε_r = 1,5, o Nível de Máxima Polarização Cruzada tem um máximo de (-16 dB) na freqüência de 3 GHz e vai diminuindo até chegar próximo de -45 dB permanecendo neste valor por uma grande faixa de freqüência, conforme pode ser visto na Figura 5.16. Pode ser verificado, então, que os níveis de máxima polarização cruzada para o caso de guia cilíndrico corrugado com dielétrico isotrópico se encontram em um intervalo entre os níveis do caso de guia cilíndrico corrugado oco (ε_r =1,05) e os níveis do caso de guia cilíndrico metálico com bastão dielétrico (sem corrugações, ε_r =1,5), permanecendo em níveis inferiores a este por uma grande faixa de freqüência, como era esperado [6]. Cabe observar que a análise não incluiu modos superiores ao HE11 e estes modos começam a contribuir para o resultado final à medida que a fregüência se eleva. Esta, portanto, é uma análise parcial, onde apenas o modo HE11 é considerado.

Figura 5.17 – Gráfico do Nível da Polarização Cruzada Máxima em função da freqüência de operação para o guia cilíndrico corrugado com dielétrico anisotrópico, de um caso degenerado com $\varepsilon_r = \varepsilon_z = \varepsilon_t = 1$ e de vários casos anisotrópicos mantendo $\varepsilon_z = 1,5$ e variando ε_t . Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8 r_0$, $r_2 = r_0 + d$, d = 14 mm.

Após a verificação dos casos já existentes na literatura, foram simulados os casos de guia cilíndrico corrugado com dielétrico anisotrópico apresentados nas Figuras 5.12 e 5.13, sendo os níveis de máxima polarização cruzada em função da freqüência de operação apresentados nas Figuras 5.17, 5.18 e 5.19.

Conforme pode ser visto na Figura 5.17, para os casos de anisotropia em que a permissividade transversal era menor do que a permissividade na direção de propagação, os níveis mínimos de polarização cruzada máxima ficaram em torno de -50 dB para freqüência de 5 GHz para $\varepsilon_t = 1,1$ e $\varepsilon_z = 1,5$ e, em torno de -65 dB para freqüência de 6 GHz para $\varepsilon_t = 1,3$ e $\varepsilon_z = 1,5$, voltando a aumentar para as freqüências seguintes. Dos casos analisados, observa-se que foi atingida a condição de balanceamento híbrido (na freqüência de 6 GHz) com $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,3$, onde os vários fatores combinados resultam em uma distribuição de campo transversal no guia que produzem níveis de polarização cruzada praticamente nulos (campos transversais na direção y). Nos demais casos com $\varepsilon_z = 1,5$ e ε_t maior do que 1,5, a máxima polarização cruzada variou mais suavemente, permanecendo em níveis abaixo de aproximadamente -30 dB por quase toda a faixa de freqüência de operação.

Figura 5.18 – Gráfico do Nível de Polarização Cruzada Máxima em função da freqüência de operação para o guia cilíndrico corrugado com dielétrico anisotrópico mantendo ε_t = 1,5 e variando ε_z (ε_t = 1,5, ε_z variando de 1,1 a 1,9). Parâmetros: r_0 = 63,17 mm, r_1 = 0,8 r_0 , r_2 = r_0 + d, d = 14 mm.

Em seguida, analisou-se o desempenho da polarização cruzada máxima na faixa de 3 a 8 GHz para o guia corrugado descrito no Capítulo 2 ($r_0 = 63,17$ mm, $r_1 = 0,8 r_0$, $r_2 = r_0 + d$, d = 14 mm), considerando os casos com ε_t constante ($\varepsilon_t = 1,5$) e ε_z variando entre 1,1 e 1,9.

A Figura 5.18 apresenta os resultados, onde, observa-se um comportamento semelhante para os casos em que $\varepsilon_z < 1,9$, decaindo à medida que a freqüência aumenta. Para o caso em que $\varepsilon_z = 1,9$ a curva apresenta um decaimento abrupto próximo a 6 GHz, com valores abaixo de – 60 dB, e estando associado à condição de balanceamento híbrido para a distribuição de campo do modo.

Figura 5.19 – Gráfico do Nível de Polarização Cruzada Máxima em função da freqüência de operação para o guia cilíndrico corrugado oco (ε_r = 1,05), guia cilíndrico metálico dielétrico (ε_r = 1,5 sem corrugações), guia cilíndrico corrugado com dielétrico: isotrópico com ε_r = 1,5, anisotrópico com ε_z = 1,5 e ε_t = 1,3 e anisotrópico com ε_z = 1,9 e ε_t = 1,5. Parâmetros: r₀ = 63,17 mm, r₁ = 0,8 r₀, r₂ = r₀ + d, d = 14 mm.

Na Figura 5.19 são apresentados os resultados para a Máxima Polarização Cruzada em função da freqüência para o guia cilíndrico corrugado oco, guia cilíndrico metálico com bastão dielétrico isotrópico (sem corrugações) $\varepsilon_r = 1,5$, guia cilíndrico corrugado com dielétrico isotrópico $\varepsilon_r = 1,5$, guia cilíndrico corrugado com dielétrico anisotrópico com $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,3$ e para o guia cilíndrico corrugado com dielétrico anisotrópico com ε_z = 1,9 e ε_t = 1,5, casos onde foram observadas as condições de balanceamento híbrido.

Da Figuras 5.19, observa-se que o dielétrico apresentou o pior resultado, com altos níveis de polarização cruzada em toda a faixa de freqüência, provavelmente devido à relação de r0 e r1 escolhida, a qual pode ser estudada futuramente, para verificar melhores resultados. A inclusão da corrugação na estrutura melhorou o comportamento do guia, obtendo bons níveis de máxima polarização cruzada (inferior a -40 dB) em uma faixa muito maior do que a do guia corrugado oco. Observou-se que a inclusão da anisotropia criou parâmetros adicionais na configuração, possibilitando a obtenção de uma condição balanceada híbrida, condição essa que não pode ser atingida com o dielétrico isotrópico. Para o caso em questão, a condição de balanceamento híbrido foi atingida em uma freqüência de aproximadamente 6 GHz.

Cabe acrescentar que, conforme a freqüência aumenta (acima de 8 GHz), a influência dos modos superiores começa a ficar significativa e, existe uma limitação numérica associada às funções de Bessel com argumento complexo. Nos casos de freqüências elevadas, a aproximação de que existe influência apenas do modo HE11 falha, tornando-se necessária a aplicação de técnicas que considerem os modos superiores no cálculo dos campos radiados distantes, como por exemplo, a técnica de casamento modal.

5.3. Análise Paramétrica para a Corneta com ângulo *flare* de 12 Graus

Após ser realizada a análise para o guia cilíndrico corrugado com dielétrico anisotrópico, considerou-se o guia transformado em corneta cilíndrica cônica com ângulo de abertura (*flare*) igual a 12º, utilizando a técnica apresentada no Capítulo 3. Verificou-se o efeito do ângulo de abertura (*flare*) sobre o diagrama de radiação, da variação da permissividade do dielétrico sobre o campo radiado e a influência da freqüência nos padrões de radiação e polarização cruzada.

5.3.1. Efeito do ângulo de *flare* no Diagrama de Radiação

Nesta Seção, para uma freqüência de 5,36 GHz, analisou-se a influência da variação de ε_t na largura de feixe de -3 dB e no nível do primeiro lóbulo.

Inicialmente, foram obtidos os diagramas de radiação para a a corneta cônica corrugada com dielétrico anisotrópico e ângulo flare de 12º para analisar o comportamento das componentes de polarização principal e cruzada. Na Figura 5.20 são apresentados os diagramas de radiação para a corneta na freqüência escolhida de 5,36 GHz, considerando os casos em que se manteve ε_z constante ($\varepsilon_z = 1,5$) e variou-se ε_t . No guia cilíndrico, esta análise apresentou os menores valores de polarização cruzada máxima, podendo ser verificado que o máximo valor de polarização cruzada obtido esteve abaixo de -30 dB sendo este valor obtido para o caso limite superior de $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,9$.

Figura 5.20 - Diagramas de radiação para corneta cônica corrugada com dielétrico anisotrópico, para freqüência de 5,36 GHz, ângulo *flare* de 12°. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8 r_0$, $r_2 = r_0 + d$, d = 14 mm.

Para comparar a corneta com o guia foram gerados diagramas de radiação para as componentes de polarização principal e cruzada separadamente para os dois casos (corneta e guia). Estes diagramas são apresentados nas Figuras 5.21 e 5.22.

Na Figura 5.21, os diagramas de radiação da polarização principal para diversos casos de isotropia e anisotropia, para a corneta cônica corrugada com dielétrico anisotrópico e ângulo *flare* de 12º e para o guia cilíndrico corrugado com dielétrico anisotrópico são apresentados, onde se verifica que o lobo

principal tem seu primeiro nulo preenchido em relação ao guia corrugado com núcleo dielétrico anisotrópico. Este resultado era previsto na literatura [4-7].

Figura 5.21 - Diagramas de radiação para casos degenerados de guia cilíndrico corrugado com dielétrico anisotrópico e para corneta cônica corrugada com dielétrico anisotrópico, para freqüência de 5,36 GHz, ângulo *flare* de 12º. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8 r_0$, $r_2 = r_0 + d$, d = 14 mm.

Na polarização cruzada apresentada na Figura 5.22, pode-se visualizar que os níveis para a corneta cônica corrugada com núcleo dielétrico anisotrópico permanecem praticamente os mesmos que os do guia cilíndrico corrugado com núcleo dielétrico, a única diferença pode ser vista para o caso de $\varepsilon_z = 1,5$ e $\varepsilon_t =$ 1,1, onde estes níveis se elevam, apesar de ainda se encontrarem abaixo de -60 dB. Para a corneta corrugada com bastão dielétrico anisotrópico ângulo *flare* de 12º e para o guia cilíndrico corrugado com bastão dielétrico anisotrópico com $\varepsilon_z =$ 1,5 e $\varepsilon_t =$ 1,3, condição híbrida balanceada, a polarização cruzada é aproximadamente a mesma que a do caso do guia corrugado oco até aproximadamente 60º, quando a polarização cruzada da corneta fica pior (aproximadamente 3 dB abaixo) do que a do guia.

Figura 5.22 - Diagramas de radiação para casos degenerados de guia cilíndrico corrugado com dielétrico anisotrópico e para corneta cônica corrugada com dielétrico anisotrópico, para freqüência de 5,36 GHz, ângulo *flare* de 12°. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8 r_0$, $r_2 = r_0 + d$, d = 14 mm.

5.3.2. Influência da Freqüência nos Padrões de Radiação e Polarização Cruzada

Nesta Seção é verificada a influência da freqüência no diagrama de radiação para polarização cruzada para a relação de anisotropia mencionada na Seção 5.1. Escolheu-se o caso em que ε_z = constante, variando ε_t , pois este foi o caso que forneceu menor polarização cruzada. Nas Figuras 5.23 e 5.24 são apresentados os diagramas de radiação de vários casos estudados para a corneta corrugada com núcleo dielétrico anisotrópico com a estrutura definida no Capítulo 3 (r_0 = 63,17 mm, r_1 =0,8 r_0 , r_2 = r_0 + d, d= 14 mm, ângulo *flare* = 12°), variando a freqüência de 3 a 8 GHz. Destes resultados foram extraídos os resultados e análises apresentados anteriormente.

Figura 5.23 - Diagramas de radiação em função da freqüência para corneta cônica corrugada com núcleo dielétrico isotrópico com dimensões: r₀ = 63,17 mm, r₁=0,8 r₀, r₂ = r₀ + d, d= 14 mm, ângulo *flare*=12°. Casos: a) ε_r = 1,05; b) ε_r = 1,5.

Na Figura 5.23 verifica-se que o aumento na freqüência, para o caso de corneta cônica corrugada com núcleo dielétrico isotrópico, praticamente não influencia na largura de feixe da polarização direta, mas melhora a polarização cruzada até atingir a freqüência de balanceamento híbrido, e volta a piorar para freqüências maiores do que 6 GHz para o caso de permissividade relativa próxima de 1,0 ($\varepsilon_r = 1,05$). Para o caso de dielétrico com permissividade relativa mais alta ($\varepsilon_r = 1,5$), a polarização cruzada melhora com o aumento da freqüência até a freqüência de 8 GHz.

Observou-se na polarização direta (*co-polar*) o preenchimento parcial do primeiro nulo. Isto foi observado em todos os casos estudados, onde se manteve ε_z constante e variou-se ε_t de 1,1 a 1,9, conforme pode ser visto na Figura 5.24. Verificou-se que a variação na freqüência, na faixa analisada, não afetou a largura de feixe da polarização direta e, a polarização cruzada próximo ao eixo (ângulos menores de 10°) se manteve em níveis abaixo de -30 dB para todos os casos. E, para as freqüências maiores do que 4 GHz, estes níveis se mantiveram abaixo de -30 dB por uma faixa bastante ampla (na Figura 5.24, esta faixa se estende até 60° para freqüências maiores de 3 GHz).

Das Figuras 5.23 e 5.24, observa-se que os valores obtidos para a corneta cônica com dielétrico anisotrópico e ângulo *flare* de 12º, são similares aos obtidos para o guia cilíndrico corrugado com dielétrico anisotrópico.

Figura 5.24 - Diagramas de radiação em função da freqüência para corneta cônica corrugada com núcleo dielétrico anisotrópico com dimensões: $r_0 = 63,17$ mm, $r_1=0,8$ r_0 , $r_2 = r_0 + d$, d= 14 mm, ângulo *flare*=12°. Casos: a) $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,1$, b) $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,3$, c) $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,7$, d) $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,9$.

Para aprofundar a análise da influência da permissividade no diagrama de radiação, foram considerados os níveis de largura de feixe de meia potencia (-3 dB) para o guia cilíndrico corrugado com dielétrico anisotrópico e para a corneta cônica corrugada com dielétrico anisotrópico em função da permissividade. Inicialmente, manteve-se $\varepsilon_z = 1,5$, variou-se ε_t e a freqüência, obtendo-se o nível da largura de feixe de -3 dB para uma faixa de freqüência de 3 a 8 GHz. A Figura 5.25 apresenta uma comparação dos níveis de largura de feixe de meia potência entre a configuração da corneta cônica corrugada com dielétrico anisotrópico e a do guia cilíndrico corrugado com dielétrico anisotrópico em estudo para a freqüência de 5,36 GHz, onde pode ser visto que a largura de feixe de meia potência (3 dB) aumenta 0,4º para a corneta cônica, em toda a faixa de permissividade analisada ($\varepsilon_z = 1,5$, constante e ε_t variando de 1,1 a 1,9). Isto é

devido à capa esférica impressa na distribuição de fase na abertura, que, quando comparado ao caso de distribuição de fase constante, alarga o feixe principal, preenche os nulos do diagrama e eleva o nível dos lóbulos secundários.

Figura 5.25 - Nível de Largura de Feixe de -3 dB para guia cilíndrico corrugado com dielétrico anisotrópico e para corneta cônica corrugada com dielétrico anisotrópico e ângulo "flare" de 12º em função da permissividade, mantendo ε_z = 1,5 e variando ε_t, para a freqüência de 5,36 GHz. Parâmetros: r₀ = 63,17 mm, r₁ = 0,8 r₀, r₂ = r₀ + d, d = 14 mm.

Após analisar a largura de feixe para os casos de anisotropia dos dois casos estudados (corneta e guia), foram obtidos os máximos níveis de polarização cruzada segundo a 3^a definição de Ludwig [11] para os casos de isotropia e anisotropia apresentados nas Figuras 5.24.a-d. Foram considerados os casos degenerados da corneta cônica corrugada com $\varepsilon_r = 1,05$ e o caso degenerado de corneta cônica com núcleo dielétrico isotrópico $\varepsilon_r = 1,5$, cujos resultados são referenciados em [4-7], e apresentados na Figura 5.23. Em seguida, foram analisados os casos de corneta cônica com núcleo dielétrico anisotrópico $\varepsilon_z = 1,5$ e variando ε_t de 1,1 a 1,9. A máxima polarização cruzada em função da freqüência para os casos descritos é apresentada na Figura 5.26.

Figura 5.26 - Máxima polarização cruzada em função da freqüência para corneta cônica corrugada com núcleo dielétrico anisotrópico, ângulo "flare" de 12° e guia cilíndrico corrugado com dielétrico anisotrópico mantendo $\varepsilon_z = 1,5$ e variando ε_t e para os casos isotrópico com $\varepsilon_r = 1,5$ e degenerado para $\varepsilon_r = 1,05$. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ $r_0, r_2 = r_0 + d, d = 14$ mm.

Na Figura 5.26 verifica-se que os valores de polarização cruzada da corneta para todos os casos analisados foram semelhantes aos do guia cilíndrico, indicando a pouca influência do ângulo de *flare* (que foi escolhido pequeno devido à exigência da metodologia utilizando a aproximação por fase esférica).

5.4 Discussões e Conclusões

O comportamento obtido para o guia corrugado com dielétrico anisotrópico para a estrutura descrita no Capítulo 2, esteve entre os casos de guia corrugado e de guia dielétrico, conforme pode ser visualizado na Figura 5.16. A anisotropia alterou a condição híbrida balanceada. Para o caso onde $\varepsilon_z = 1,5$ e $\varepsilon_t = 1,3$, a condição híbrida balanceada foi alcançada (em f=6 GHz). No caso, $\varepsilon_t = 1,5$ e $\varepsilon_z =$ 1,9, esta condição também foi atingida (em f=6 GHz). Acredita-se que com ε_z muito alto a reflexão aumente nas transições localizadas no início do dielétrico e na abertura da corneta. A implementação de uma transição de permissividade é um estudo a ser desenvolvido buscando a diminuição desta reflexão.

Para a corneta corrugada com dielétrico anisotrópico e com a estrutura descrita no Capítulo 3, observou-se na polarização direta (*co-polar*) o preenchimento parcial do primeiro nulo. Isto foi observado em todos os casos estudados, onde se manteve ε_z constante e variou-se ε_t de 1,1 a 1,9, conforme pode ser visto nas Figuras 5.23 e 5.24. Na Figura 5.25, é apresentada uma comparação entre o guia cilíndrico corrugado com dielétrico anisotrópico e uma corneta cônica com dielétrico anisotrópico descritos nos Capítulos 2 e 3 respectivamente, onde pode ser visto que o nível de 3 dB (HPBW) aumentou cerca de 0,4° para a corneta em relação ao guia em toda a faixa de permissividade estudada. A máxima polarização cruzada para a corneta cônica com núcleo dielétrico anisotrópico apresentou resultados similares aos do guia cilíndrico corrugado com núcleo dielétrico anisotrópico (Figura 5.26), sendo que a condição balanceada híbrida foi conseguida com $\varepsilon_z = 1,5 e \varepsilon_t = 1,3$ nos dois casos (guia e corneta).