3 Expressões para os Campos Eletromagnéticos

Neste Capítulo são apresentados os estudos realizados para a obtenção das expressões dos campos eletromagnéticos do guia de onda cilíndrico corrugado com dielétrico anisotrópico no interior. A região interna do guia é dividida em duas: a região onde existe dielétrico (i) e a região onde não existe dielétrico (o), existindo apenas a corrugação.

Inicialmente, são obtidas as expressões para os campos na abertura para cada região: i e o. Em seguida, com os campos transversos na abertura devidos às regiões i e o, obtém-se as expressões para o campo radiado distante.

3.1. Campos na Abertura

Os campos na abertura são obtidos para cada região dentro do guia. Inicialmente, encontram-se as expressões para os campos na região interna ao dielétrico anisotrópico.

3.1.1. Região Dielétrica Anisotrópica (r ≤ r₁)

Os campos elétrico e magnético em coordenadas cilíndricas na região dielétrica anisotrópica, são obtidos a partir dos potenciais vetores, conforme Apêndice B, cujas Equações são repetidas aqui para uma melhor compreensão:

$$E_z^i = A_n J_n(Kr) \cos(n\phi) e^{-\gamma z}$$
(3.1)

$$H_z^i = B_n J_n(Kr) \operatorname{sen}(n\phi) e^{-\gamma z}$$
(3.2)

$$E_r^i = \frac{1}{K^2} \left[\frac{\partial^2 E_Z}{\partial r \partial z} - \frac{j \omega \mu_0}{r} \frac{\partial H_Z}{\partial \phi} \right]$$
(3.3)

$$H_{r}^{i} = \frac{1}{K^{2}} \left[\frac{\partial^{2} H_{Z}}{\partial r \partial z} + j \omega \varepsilon_{0} \varepsilon_{ii} \frac{1}{r} \frac{\partial E_{Z}}{\partial \phi} \right]$$
(3.4)

$$E_{\phi}^{i} = \frac{1}{K^{2}} \left[\frac{1}{r} \frac{\partial^{2} E_{Z}}{\partial \phi \partial z} + j \omega \mu_{0} \frac{\partial H_{Z}}{\partial r} \right]$$
(3.5)

$$H_{\phi}^{i} = \frac{1}{K^{2}} \left[\frac{1}{r} \frac{\partial^{2} H_{Z}}{\partial \phi \partial z} - j \omega \varepsilon_{0} \varepsilon_{t} \frac{\partial E_{Z}}{\partial r} \right]$$
(3.6)

Substituindo $E_z e H_z$ na Equação (3.3), tem-se:

$$E_{r}^{i} = \frac{1}{K^{2}} \left[\frac{\partial^{2} \left(A_{n} J_{n}(Kr) \cos(n\phi) e^{-\gamma z} \right)}{\partial r \partial z} - \frac{j \omega \mu_{0}}{r} \frac{\partial \left(B_{n} J_{n}(Kr) \sin(n\phi) e^{-\gamma z} \right)}{\partial \phi} \right]$$
(3.7)

que pode ser reorganizada como:

$$E_r^i = -\frac{1}{K^2} \left[\gamma A_n K J'_n(Kr) \cos(n\phi) e^{-\gamma z} + n \frac{j\omega\mu_0}{r} B_n J_n(Kr) \cos(n\phi) e^{-\gamma z} \right]$$
(3.8)

onde

$$\frac{d(J_n(Kr))}{dr} = K \cdot \frac{dJ_n(Kr)}{dr} = K J'_n(Kr)$$
(3.9)

Considerando que

$$K^2 = \omega^2 \mu_0 \varepsilon_0 \varepsilon_{zi} + \gamma^2 \tag{3.10}$$

K é o número de onda no meio i, y_o é a admitância intrínseca do ar dada por:

$$y_o = \frac{1}{Z_0} = \sqrt{\frac{\varepsilon_0}{\mu_0}}$$
 (3.11)

o campo elétrico na direção r, pode ser escrito como:

$$E_{r}^{i} = -\frac{1}{K^{2}} \left[\gamma K A_{n} J'_{n}(Kr) + \frac{jk_{0}n}{y_{0}r} B_{n} J_{n}(Kr) \right] \cos n\phi e^{-\gamma Z}$$
(3.12)

Substituindo $E_z e H_z$ na equação (3.5), tem-se:

$$E_{\phi}^{i} = \frac{1}{K^{2}} \left[\frac{1}{r} \frac{\partial^{2} \left(A_{n} J_{n}(Kr) \cos(n\phi) e^{-\gamma Z} \right)}{\partial \phi \partial z} + j \omega \mu_{0} \frac{\partial \left(B_{n} J_{n}(Kr) \sin(n\phi) e^{-\gamma Z} \right)}{\partial r} \right] (3.13)$$

que pode ser reorganizado como :

$$E_{\phi}^{i} = \frac{1}{K^{2}} \left[\frac{\gamma n A_{n}}{r} J_{n}(Kr) + j \omega \mu_{0} B_{n} K J'_{n}(Kr) \right] \operatorname{sen}(n\phi) e^{-\gamma Z}$$
(3.14)

Substituindo $E_z e H_z$ na equação (3.6), tem-se:

$$H_{\phi}^{i} = \frac{1}{K^{2}} \left[\frac{1}{r} \frac{\partial^{2} \left(B_{n} J_{n}(Kr) \operatorname{sen}(n\phi) e^{-\gamma Z} \right)}{\partial \phi \partial z} - j \omega \varepsilon_{0} \varepsilon_{ii} \frac{\partial \left(A_{n} J_{n}(Kr) \cos(n\phi) e^{-\gamma Z} \right)}{\partial r} \right]$$
(3.15)

ou

$$H_{\phi}^{i} = -\frac{1}{K^{2}} \left[\frac{n\gamma}{r} B_{n} J_{n}(Kr) + jk_{0} y_{o} \varepsilon_{ti} KA_{n} J'_{n}(Kr) \right] \cos(n\phi) e^{-\gamma Z}$$
(3.16)

Substituindo E_z e H_z na equação (3.4) tem-se:

$$H_{r}^{i} = \frac{1}{K^{2}} \left[\frac{\partial^{2} \left(B_{n} J_{n}(Kr) \operatorname{sen}(n\phi) e^{-\gamma Z} \right)}{\partial r \partial z} + j \omega \varepsilon_{0} \varepsilon_{n} \frac{\partial \left(A_{n} J_{n}(Kr) \cos(n\phi) e^{-\gamma Z} \right)}{r \partial \phi} \right] (3.17)$$

Ou, resolvendo as derivadas:

$$H_r^i = -\frac{1}{K^2} \left[\gamma K B_n J'_n(Kr) + \frac{j k_0 y_o \mathcal{E}_{ti} n A_n}{r} J_n(Kr) \right] \operatorname{sen}(n\phi) e^{-\gamma Z} (3.18)$$

Assim, as expressões para os campos transversais em coordenadas cilíndricas na região dielétrica anisotrópica no interior do guia podem ser sumarizadas como:

$$E_{r}^{i} = -\frac{1}{K^{2}} \left[\gamma A_{n} K J'_{n} (Kr) + n \frac{jk_{0}}{y_{0}r} B_{n} J_{n} (Kr) \right] \cos(n\phi) e^{-\gamma z}$$
(3.19)

$$E_{\phi}^{i} = \frac{1}{K^{2}} \left[\frac{n\gamma}{r} A_{n} J_{n}(Kr) + j \frac{k_{0}}{y_{0}} KB_{n} J'_{n}(Kr) \right] \operatorname{sen}(n\phi) e^{-\gamma Z}$$
(3.20)

$$H_{\phi}^{i} = -\frac{1}{K^{2}} \left[\frac{n\gamma}{r} B_{n} J_{n}(Kr) + jk_{0} y_{o} \varepsilon_{ii} KA_{n} J'_{n}(Kr) \right] \cos(n\phi) e^{-\gamma Z}$$
(3.21)

$$H_r^i = -\frac{1}{K^2} \left[\gamma K B_n J'_n(Kr) + \frac{jk_0 y_o \mathcal{E}_{ti}}{r} n A_n J_n(Kr) \right] \operatorname{sen}(n\phi) e^{-\gamma Z}$$
(3.22)

3.1.2. Região do Guia fora do Dielétrico ($r_1 \le r \le r_0$)

Os campos elétrico e magnético transversais na região do guia fora do dielétrico também são obtidos a partir dos potenciais vetores, conforme descrito no Apêndice B, mas, neste caso, o valor do número de onda no meio o (fora do dielétrico) é dado por:

$$K_1^2 = \omega^2 \mu_0 \varepsilon_0 + \gamma^2 \tag{3.23}$$

Com esta definição, os campos na abertura para a região o (ar) podem ser escritos como:

$$E_{z}^{o} = \left\{ C_{n}J_{n}(K_{1}r) + D_{n}Y_{n}(K_{1}r) \right\} \cos(n\phi)e^{-\gamma z}$$
(3.24)

$$H_{z}^{o} = \left\{ E_{n} J_{n}(K_{1}r) + F_{n} Y_{n}(K_{1}r) \right\} \operatorname{sen}(n\phi) e^{-\gamma z}$$
(3.25)

$$E_r^o = \frac{1}{K_1^2} \left[\frac{\partial^2 E_Z}{\partial r \partial z} - \frac{j\omega\mu_0}{r} \frac{\partial H_Z}{\partial \phi} \right]$$
(3.26)

$$H_r^o = \frac{1}{K_1^2} \left[\frac{\partial^2 H_Z}{\partial r \partial z} + j\omega \varepsilon_0 \frac{1}{r} \frac{\partial E_Z}{\partial \phi} \right]$$
(3.27)

$$E_{\phi}^{o} = \frac{1}{K_{1}^{2}} \left[\frac{1}{r} \frac{\partial^{2} E_{Z}}{\partial \phi \partial z} + j \omega \mu_{0} \frac{\partial H_{Z}}{\partial r} \right]$$
(3.28)

$$H_{\phi}^{o} = \frac{1}{K_{1}^{2}} \left[\frac{1}{r} \frac{\partial^{2} H_{Z}}{\partial \phi \partial z} - j \omega \varepsilon_{0} \frac{\partial E_{Z}}{\partial r} \right]$$
(3.29)

Substituindo $E_z e H_z$ na equação (3.26) tem-se:

$$E_r^o = \frac{1}{K_1^2} \begin{bmatrix} \frac{\partial^2 \left[C_n J_n(K_1 r) + D_n Y_n(K_1 r) \right] \cos(n\phi) e^{-\gamma z}}{\partial r \partial z} \\ -\frac{j\omega\mu_0}{r} \frac{\partial \left[E_n J_n(K_1 r) + F_n Y_n(K_1 r) \right] \sin(n\phi) e^{-\gamma z}}{\partial \phi} \end{bmatrix}$$
(3.30)

ou

$$E_{r}^{o} = -\frac{1}{K_{1}^{2}} \begin{bmatrix} \gamma K_{1} \begin{bmatrix} C_{n} J'_{n} (K_{1}r) + D_{n} Y'_{n} (K_{1}r) \end{bmatrix} + \\ \frac{jk_{0}n}{r} \begin{bmatrix} E_{n} J_{n} (K_{1}r) + F_{n} Y_{n} (K_{1}r) \end{bmatrix} \end{bmatrix} \cos n\phi e^{-\gamma Z}$$
(3.31)

Substituindo $E_z e H_z$ na equação (3.28) tem-se:

$$E_{\phi}^{o} = \frac{1}{K_{1}^{2}} \begin{bmatrix} \frac{1}{r} \frac{\partial^{2} \left(\left[C_{n} J_{n}(K_{1}r) + D_{n} Y_{n}(K_{1}r) \right] \cos(n\phi) e^{-\gamma Z} \right)}{\partial \phi \partial z} + \\ j \omega \mu_{0} \frac{\partial \left(\left[E_{n} J_{n}(K_{1}r) + F_{n} Y_{n}(K_{1}r) \right] \sin(n\phi) e^{-\gamma Z} \right)}{\partial r} \end{bmatrix}$$
(3.32)

ou:

$$E_{\phi}^{o} = \frac{1}{K_{1}^{2}} \begin{bmatrix} \frac{n\gamma}{r} \left(C_{n} J_{n} (K_{1}r) + D_{n} Y_{n} (K_{1}r) \right) + \\ j k_{0} K_{1} \left(E_{n} J_{n}' (K_{1}r) + F_{n} Y_{n}' (K_{1}r) \right) \end{bmatrix} \operatorname{sen}(n\phi) e^{-\gamma Z}$$
(3.33)

Substituindo $E_z e H_z$ na equação (3.29) tem-se:

$$H_{\phi}^{o} = \frac{1}{K_{1}^{2}} \begin{bmatrix} \frac{1}{r} \frac{\partial^{2} ((E_{n}J_{n}(K_{1}r) + F_{n}Y_{n}(K_{1}r)) \operatorname{sen}(n\phi)e^{-\gamma Z})}{\partial \phi \partial z} \\ -j\omega\varepsilon_{0} \frac{\partial ((C_{n}J_{n}(K_{1}r) + D_{n}Y_{n}(K_{1}r)) \operatorname{cos}(n\phi)e^{-\gamma Z})}{\partial r} \end{bmatrix}$$
(3.34)

$$H_{\phi}^{o} = -\frac{1}{K_{1}^{2}} \begin{bmatrix} \frac{\gamma n}{r} \left(E_{n} J_{n}(K_{1}r) + F_{n} Y_{n}(K_{1}r) \right) + \\ j k_{0} y_{0} K_{1} \left(C_{n} J_{n}'(K_{1}r) + D_{n} Y_{n}'(K_{1}r) \right) \end{bmatrix} \cos(n\phi) e^{-\gamma Z}$$
(3.35)

54

Substituindo $E_z e H_z$ na equação (3.27) tem-se:

$$H_{r}^{o} = \frac{1}{K_{1}^{2}} \begin{bmatrix} \frac{\partial^{2} \left(\left(E_{n} J_{n}(K_{1}r) + F_{n} Y_{n}(K_{1}r) \right) \operatorname{sen}(n\phi) e^{-\gamma Z} \right)}{\partial r \partial z} + \\ j \omega \varepsilon_{0} \frac{\partial \left(\left(C_{n} J_{n}(K_{1}r) + D_{n} Y_{n}(K_{1}r) \right) \cos(n\phi) e^{-\gamma Z} \right)}{r \partial \phi} \end{bmatrix}$$
(3.36)

ou

$$H_{r}^{o} = -\frac{1}{K_{1}^{2}} \begin{bmatrix} \gamma K_{1} \left(E_{n} J_{n}^{\prime} (K_{1}r) + F_{n} Y_{n}^{\prime} (K_{1}r) \right) + \\ j k_{0} y_{0} \frac{n}{r} \left(C_{n} J_{n} (K_{1}r) + D_{n} Y_{n} (K_{1}r) \right) \end{bmatrix} \operatorname{sen}(n\phi) e^{-\gamma Z}$$
(3.37)

Resumindo, os campos transversais elétrico e magnético, em coordenadas cilíndricas, para a região o são dados por:

$$E_{r}^{o} = -\frac{1}{K_{1}^{2}} \begin{bmatrix} \gamma K_{1} \begin{bmatrix} C_{n} J'_{n} (K_{1}r) + D_{n} Y'_{n} (K_{1}r) \end{bmatrix} + \\ \frac{jk_{0}n}{r} \begin{bmatrix} E_{n} J_{n} (K_{1}r) + F_{n} Y_{n} (K_{1}r) \end{bmatrix} \end{bmatrix} \cos n\phi e^{-\gamma Z}$$
(3.38)

$$E_{\phi}^{o} = \frac{1}{K_{1}^{2}} \begin{bmatrix} \frac{n\gamma}{r} \left(C_{n} J_{n}(K_{1}r) + D_{n} Y_{n}(K_{1}r) \right) + \\ j k_{0} K_{1} \left(E_{n} J_{n}'(K_{1}r) + F_{n} Y_{n}'(K_{1}r) \right) \end{bmatrix} \operatorname{sen}(n\phi) e^{-\gamma Z}$$
(3.39)

$$H_{\phi}^{o} = -\frac{1}{K_{1}^{2}} \begin{bmatrix} \frac{\gamma n}{r} \left(E_{n} J_{n}(K_{1}r) + F_{n} Y_{n}(K_{1}r) \right) + \\ j k_{0} y_{0} K_{1} \left(C_{n} J_{n}'(K_{1}r) + D_{n} Y_{n}'(K_{1}r) \right) \end{bmatrix} \cos(n\phi) e^{-\gamma Z}$$
(3.40)

$$H_{r}^{o} = -\frac{1}{K_{1}^{2}} \begin{bmatrix} \gamma K_{1} \left(E_{n} J'_{n} (K_{1}r) + F_{n} Y'_{n} (K_{1}r) \right) + \\ j k_{0} y_{0} \frac{n}{r} \left(C_{n} J_{n} (K_{1}r) + D_{n} Y_{n} (K_{1}r) \right) \end{bmatrix} \operatorname{sen}(n\phi) e^{-\gamma Z}$$
(3.41)

A partir dos campos transversais na abertura, calculam-se os campos distantes derivados das duas regiões: dentro do dielétrico anisotrópico e fora do dielétrico.

3.2. Campo Radiado Distante

No campo distante, em coordenadas esféricas, as seguintes aproximações são válidas [9]:

$$\begin{split} E_{r} &\cong 0\\ E_{\theta} &\cong -C\left(L_{\phi} + \eta N_{\theta}\right)\\ E_{\phi} &\cong C\left(L_{\theta} - \eta N_{\phi}\right) \end{split} \tag{3.42}$$

onde:

е

 $C = \frac{jk_0}{4\pi r} e^{-jk_0 r}$ (3.43)

$$k_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{2\pi f}{c} = \frac{\omega}{c}$$
(3.44)

Os campos N_{θ} , N_{ϕ} , L_{θ} e L_{ϕ} são obtidos usando potenciais vetores e dados por:

$$N_{\theta}(\theta,\phi) = \int_{0}^{2\pi} \int_{0}^{r_{0}} \left\{ J_{r} \cos\theta \cos(\phi-\phi') + J_{\phi} \cos\theta \sin(\phi-\phi') - J_{z} \sin\theta \right\} e^{jkr'\sin\theta\cos(\phi-\phi')}r'dr'd\phi'$$
(3.45)

$$N_{\phi}(\theta,\phi) = \int_{0}^{2\pi} \int_{0}^{r_{0}} \left\{ -J_{r} \sin(\phi-\phi') + J_{\phi} \cos(\phi-\phi') \right\} e^{jkr'\sin\theta\cos(\phi-\phi')}r'dr'd\phi'$$
(3.46)

$$L_{\theta}(\theta,\phi) = \int_{0}^{2\pi} \int_{0}^{r_{0}} \left\{ M_{r} \cos\theta\cos(\phi-\phi') + M_{\phi} \cos\theta\sin(\phi-\phi') \right\} e^{jkr'\sin\theta\cos(\phi-\phi')}r'dr'd\phi'$$
(3.47)

$$L_{\phi}(\theta,\phi) = \int_{0}^{2\pi} \int_{0}^{r_{0}} \left\{ -M_{r} \operatorname{sen}(\phi - \phi') + M_{\phi} \cos(\phi - \phi') \right\} e^{jkr' \operatorname{sen}\theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.48)

$$\vec{M}_{S} = -\hat{n}x\vec{E}_{a} = -\hat{z}x(E_{r}\hat{r} + E_{\phi}\hat{\phi} + E_{Z}\hat{z}) = E_{\phi}\hat{r} - E_{r}\hat{\phi} = M_{Sr}\hat{r} + M_{S\phi}\hat{\phi}$$
(3.49)

$$\vec{J}_{S} = \hat{n}x\vec{H}_{a} = \hat{z}x(H_{r}\hat{r} + H_{\phi}\hat{\phi} + H_{Z}\hat{z}) = -H_{\phi}\hat{r} + H_{r}\hat{\phi} = J_{Sr}\hat{r} + J_{S\phi}\hat{\phi}$$
(3.50)

$$J_{r} = -H_{\phi},$$

$$J_{\phi} = H_{r},$$

$$J_{Z} = 0,$$

$$M_{r} = E_{\phi},$$

$$M_{\phi} = -E_{r},$$

$$M_{Z} = 0$$
(3.51)

A partir destas expressões pode-se, calcular os campos elétricos em coordenadas esféricas nas direções $\hat{\theta} = \hat{\phi}$ no interior do guia cilíndrico com dielétrico anisotrópico. Separando as regiões obtém-se os campos devidos às regiões i e o e, em seguida, os campos radiados totais para o guia cilíndrico corrugado com bastão dielétrico anisotrópico.

3.2.1. Campo Radiado devido à Região i

Substituindo (3.45) e (3.48) em (3.42), desenvolve-se E_{Θ} como:

$$E_{\theta}(\theta,\phi) = \frac{-jke^{-jkr}}{4\pi r} \int_{0}^{2\pi} \int_{0}^{r_{0}} \left\{ \begin{bmatrix} -M_{r} \operatorname{sen}(\phi-\phi') + M_{\phi} \cos(\phi-\phi') \end{bmatrix} + \\ \eta[J_{r} \cos\theta\cos(\phi-\phi') + J_{\phi} \cos\theta \operatorname{sen}(\phi-\phi')] \right\} e^{jkr' \operatorname{sen}\theta\cos(\phi-\phi')} r' dr' d\phi'$$
(3.52)

Chamando:

$$I_1 = \int_{0}^{2\pi} \int_{0}^{r_0} (-M_r + \eta J_\phi \cos\theta) \operatorname{sen}(\phi - \phi') e^{jkr' \sin\theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.53)

Substituindo (3.51) em (3.53) e (3.54), reescreve-se I_1 e I_2 como:

$$I_{1} = \int_{0}^{2\pi} \int_{0}^{r_{0}} (-E_{\phi} + \eta H_{r} \cos \theta) \sin(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.55)
$$I_{2} = \int_{0}^{2\pi} \int_{0}^{r_{0}} (-E_{r} - \eta H_{\phi} \cos \theta) \cos(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.56)

A substituição de E_{ϕ} e H_r na Equação (3.55), permite reescrever I_1 como:

$$I_{1} = -\frac{1}{K^{2}} \begin{cases} \int_{0}^{n} \left[\frac{n\gamma}{r} A_{n} J_{n}(Kr') + j \frac{k_{0}}{y_{0}} KB_{n} J_{n}'(Kr') \right] r' dr' \\ + \int_{0}^{n} \eta \cos \theta \left[\gamma KB_{n} J_{n}'(Kr') + \frac{jk_{0} y_{0} \varepsilon_{n} nA_{n}}{r'} J_{n}(Kr') \right] r' dr' \end{cases} \begin{cases} \int_{0}^{2\pi} \sin(n\phi') \sin(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} d\phi' \\ \int_{0}^{2\pi} \sin(n\phi') \sin(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} d\phi' \end{cases} \end{cases}$$
(3.57)

Chamando

$$c_1 = (\gamma + jk_0\varepsilon_{ii}y_0\eta\cos\theta) \tag{3.58}$$

е

$$c_2 = (\eta \gamma \cos \theta + j \frac{k_0}{y_o})$$
(3.59)

Substituindo (3.58), (3.59) e (E.3) em (3.57), pode-se reescrever a Equação (3.57) como:

$$I_{1} = -\frac{2\pi j^{n-1}}{K^{2}} \cos(n\phi) \int_{0}^{r_{1}} \frac{J_{n}(kr' \sin \theta)}{kr' \sin \theta} \left(nc_{1}A_{n} \frac{J_{n}(Kr')}{r'} + c_{2}B_{n}J'_{n}(Kr') \right) r' dr'$$
(3.60)

A substituição de $E_r e H_{\phi}$ na Equação (3.56), permite reescrever I_2 como:

$$I_{2} = \int_{0}^{n} \int_{0}^{2\pi} \frac{1}{K^{2}} \begin{cases} \gamma K A_{n} J'_{n}(Kr') + jn \frac{k_{0}}{y_{o}} B_{n} \frac{J_{n}(Kr')}{r'} + jk_{0} y_{o} K A_{n} J'_{n}(Kr') \\ \eta \cos \theta \left(n\gamma B_{n} \frac{J_{n}(Kr')}{r'} + jk_{0} y_{o} K A_{n} J'_{n}(Kr') \right) \end{cases} \cos(n\phi') \cos(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} d\phi' r' dr'$$
(3.61)

Substituindo (3.58), (3.59) e (E.2) na Equação (3.61), reescreve-se I₂:

$$I_{2} = \frac{2\pi}{K^{2}} \cos(n\phi) j^{(n-1)} \int_{0}^{n} \left\{ c_{1}A_{n}KJ'_{n}(Kr') + nc_{2}B_{n}\frac{J_{n}(Kr')}{r'} \right\} J'_{n}(kr' \sin\theta)r' dr'$$
(3.62)

Juntando $I_1 e I_2$:

$$I_{1} + I_{2} = -\frac{2\pi j^{n-1}}{K^{2}} \cos(n\phi) \int_{0}^{r_{1}} \frac{J_{n}(kr' \operatorname{sen} \theta)}{kr' \operatorname{sen} \theta} \left(nc_{1}A_{n} \frac{J_{n}(Kr')}{r'} + c_{2}KB_{n}J'_{n}(Kr') \right) r' dr' + \frac{2\pi}{K^{2}} \cos(n\phi) j^{n-1} \int_{0}^{r_{1}} \left(c_{1}KA_{n}J'_{n}(Kr') + nc_{2}B_{n} \frac{J_{n}(Kr')}{r'} \right) J'_{n}(kr' \operatorname{sen} \theta) r' dr'$$
(3.63)

Pode-se reescrever o campo elétrico na direção $\hat{\theta}$ na região interna ao dielétrico anisotrópico como:

$$E_{\theta}^{i}(\theta,\phi) \cong \frac{-jke^{-jkr}}{4\pi rK^{2}} 2\pi \cos(n\phi) j^{(n-1)} \begin{cases} \int_{0}^{n} \left(c_{1}KA_{n}J'_{n}(Kr') + nc_{2}B_{n}\frac{J_{n}(Kr')}{r'} \right) J'_{n}(kr' \sin\theta)r'dr' \\ -\int_{0}^{n} \frac{J_{n}(kr' \sin\theta)}{kr' \sin\theta} \left(nc_{1}A_{n}\frac{J_{n}(Kr')}{r'} + c_{2}KB_{n}J'_{n}(Kr') \right)r'dr' \end{cases}$$
(3.64)

Em seguida, desenvolvendo (3.42) para o campo na direção $\hat{\phi}$, substituindo (3.46) e (3.47) em (3.42), resulta:

$$E_{\phi}(\theta,\phi) = \frac{-jke^{-jkr}}{4\pi r} \int_{0}^{2\pi} \int_{0}^{r_{1}} \left\{ \begin{bmatrix} M_{r}\cos\theta\cos(\phi-\phi') + M_{\phi}\cos\theta\sin(\phi-\phi') \end{bmatrix} - \frac{1}{2} e^{jkr'\sin\theta\cos(\phi-\phi')}r'dr'd\phi' \\ \eta[-J_{r}\sin(\phi-\phi') + J_{\phi}\cos(\phi-\phi')] \end{bmatrix} \right\} e^{jkr'\sin\theta\cos(\phi-\phi')}r'dr'd\phi'$$
(3.65)

e, chamando:

$$I_{3} = \int_{0}^{2\pi} \int_{0}^{r_{1}} \left(M_{r} \cos \theta - \eta J_{\phi} \right) \cos(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} r' dr' d\phi'$$

$$I_{4} = \int_{0}^{2\pi} \int_{0}^{r_{1}} \left(M_{\phi} \cos \theta + \eta J_{r} \right) \sin(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.66)
$$(3.67)$$

Substituindo $E_{\phi}e H_r em$ (3.66) $e E_r e H_{\phi} em$ (3.67), tem-se:

$$I_{3} = \int_{0}^{2\pi} \int_{0}^{r_{1}} \left(E_{\phi} \cos \theta - \eta H_{r} \right) \cos(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.68)

е

$$I_4 = \int_{0}^{2\pi} \int_{0}^{r_1} \left[-E_r \cos \theta - \eta H_\phi \right] \operatorname{sen}(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.69)

Substituindo (3.51) em (3.68) e (3.69), reescreve-se I_3 e I_4 como:

$$I_{3} = \int_{0}^{n} \frac{1}{K^{2}} \begin{cases} \left[A_{n} \frac{n\gamma}{r'} J_{n}(Kr') + j \frac{k_{0}}{y_{0}} KB_{n} J'_{n}(Kr') \right] \cos \theta + \\ \eta \left[\gamma KB_{n} J'_{n}(Kr') + \frac{jk_{0} y_{0} \varepsilon_{n}}{r'} nA_{n} J_{n}(Kr') \right] \end{cases} \int_{0}^{2\pi} \sin(n\phi) \cos(\phi - \phi') e^{jkr' \sin\theta \cos(\phi - \phi')} d\phi' r' dr' \end{cases}$$
(3.70)

е

$$I_{4} = \int_{0}^{2\pi} \int_{0}^{r} \frac{1}{K^{2}} \begin{cases} \left(\gamma K A_{n} J'_{n}(Kr) + \frac{jnk_{0}}{y_{0}r} B_{n} J_{n}(Kr) \right) \cos \theta + \\ \eta \left(\frac{n\gamma}{r} B_{n} J_{n}(Kr) + jk_{0} y_{0} \varepsilon_{n} K A_{n} J'_{n}(Kr) \right) \end{cases} \cos \theta + \\ \end{cases} \cos(n\phi) \sin(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} r' dr' d\phi'$$
(3.71)

chamando:

$$c_{3} = \left(\gamma \cos \theta + jk_{0}y_{0}\varepsilon_{ti}\eta\right)$$
(3.72)

е

$$c_4 = \left(\eta\gamma + j\frac{k_0}{y_0}\cos\theta\right) \tag{3.73}$$

Substituindo (3.72), (3.73) e (E.4) em (3.70) pode-se reescrever I_3 como:

$$I_{3} = -2\pi \operatorname{sen}(n\phi) j^{(n-1)} \int_{0}^{r_{1}} \frac{1}{K^{2}} \left(nc3A_{n} \frac{J_{n}(Kr')}{r'} + c4KB_{n}J_{n}'(Kr') \right) J'_{n}(kr' \operatorname{sen} \theta) r' dr' (3.74)$$

Substituindo (3.72), (3.73) e (E.1) em (3.71) pode-se reescrever I_4 como:

$$I_{4} = -2\pi \operatorname{sen} n\phi j^{(n-1)} \int_{0}^{r_{1}} \frac{1}{K^{2}} \left(c_{3}KA_{n}J'_{n}(Kr) + nc_{4}B_{n}\frac{J_{n}(Kr)}{r'} \right) \frac{J_{n}(kr'\operatorname{sen}\theta)}{kr'\operatorname{sen}\theta} r'dr'$$
(3.75)

Juntando I3 e I4:

$$I_{3} + I_{4} = -2\pi \operatorname{sen}(n\phi) j^{(n-1)} \begin{cases} \int_{0}^{n} \frac{1}{K^{2}} \left(nc_{3}A_{n} \frac{J_{n}(Kr')}{r'} + c_{4}KB_{n}J'_{n}(Kr') \right) J'_{n}(Kr'\operatorname{sen}\theta)r'dr' \\ + \int_{0}^{n} \frac{1}{K^{2}} \left(c_{3}KA_{n}J'_{n}(Kr) + nc_{4}B_{n} \frac{J_{n}(Kr)}{r'} \right) \frac{J_{n}(kr'\operatorname{sen}\theta)}{kr'\operatorname{sen}\theta}r'dr' \end{cases}$$
(3.76)

O campo elétrico na direção $\hat{\phi}$ devido à região i é dado então, por:

$$E_{\phi}i(\theta,\phi) \simeq -\frac{j^{n}ke^{-jkr}}{2K^{2}r} \operatorname{sen}(n\phi) \begin{cases} \int_{0}^{n} \left[nc_{3}A_{n}\frac{J_{n}(Kr')}{r'} + c_{4}KB_{n}J'_{n}(Kr') \right] J'_{n}(kr'\operatorname{sen}\theta)r'dr' \\ + \int_{0}^{n} \left(c_{3}KA_{n}J'_{n}(Kr) + nc_{4}B_{n}\frac{J_{n}(Kr)}{r'} \right) \frac{J_{n}(kr'\operatorname{sen}\theta)}{kr'\operatorname{sen}\theta}r'dr' \end{cases}$$
(3.77)

Resumindo, os campos esféricos devidos à região i são dados por:

$$E_{\theta}^{i}(\theta,\phi) \cong \frac{-j^{n}ke^{-jkr}}{2K^{2}r} \cos(n\phi) \begin{cases} \int_{0}^{r} \left(c_{1}KA_{n}J_{n}^{'}(Kr') + nc_{2}B_{n}\frac{J_{n}(Kr')}{r'} \right) J_{n}^{'}(kr'\operatorname{sen}\theta)r'dr' \\ -\int_{0}^{r} \left(nc_{1}A_{n}\frac{J_{n}(Kr')}{r'} + c_{2}KB_{n}J_{n}^{'}(Kr') \right) \frac{J_{n}(kr'\operatorname{sen}\theta)}{kr'\operatorname{sen}\theta}r'dr' \end{cases}$$
(3.78)

е

$$E_{\phi}^{i}(\theta,\phi) \cong -\frac{j^{n}ke^{-jkr}}{2K^{2}r}\operatorname{sen}(n\phi) \begin{cases} \int_{0}^{n} \left[nc_{3}A_{n} \frac{J_{n}(Kr')}{r'} + c_{4}KB_{n}J_{n}^{'}(Kr') \right] J_{n}^{i}(kr'\operatorname{sen}\theta)r'dr' \\ + \int_{0}^{n} \left(c_{3}KA_{n}J_{n}^{'}(Kr) + nc_{4}B_{n} \frac{J_{n}(Kr)}{r'} \right) \frac{J_{n}(kr'\operatorname{sen}\theta)r'dr'}{kr'\operatorname{sen}\theta} r'dr' \end{cases}$$
(3.79)

com:

$$c_1 = (\gamma + jk_0\varepsilon_{ii}y_0\eta\cos\theta)$$
(3.80)

$$c_2 = (\eta \gamma \cos \theta + j \frac{k_0}{y_o})$$
(3.81)

$$c_{3} = \left(\gamma \cos \theta + jk_{0}y_{0}\varepsilon_{ti}\eta\right)$$
(3.82)

$$c_4 = \left(\eta\gamma + j\frac{k_0}{y_0}\cos\theta\right) \tag{3.83}$$

Após obter os campos devidos à região interna ao dielétrico anisotrópico, obtém-se os campos devidos à região externa, utilizando o mesmo procedimento que o utilizado para a região interna.

3.3. Campo Radiado devido à Região o

Para a região externa ao dielétrico anisotrópico $(r_1 \le r \le r_0)$, utilizando as Equações (3.55), (3.39) e (3.41), reescreve-se I1:

$$I_{1} = -\int_{0}^{2\pi} \int_{r^{2}}^{r^{2}} \frac{1}{K_{1}^{2}} \begin{cases} \left(\gamma + jk_{0}\eta y_{o}\cos\theta\right) \frac{n}{r'} \left[C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r')\right] + \\ \left(\eta\gamma\cos\theta + jk_{0}y_{0}\right) K_{1}\left[E_{n}J_{n}^{'}(K_{1}r') + F_{n}Y_{n}^{'}(K_{1}r')\right] \end{cases} \\ \text{sen}(n\phi') \operatorname{sen}(\phi - \phi')e^{jkr'\sin\theta\cos(\phi - \phi')}r'dr'd\phi' \end{cases}$$
(3.84)

Chamando:

$$c_5 = (\gamma + jk_0 y_0 \eta \cos \theta) \tag{3.85}$$

$$c_6 = (\gamma \eta \cos \theta + jk_0 y_o) \tag{3.86}$$

Substituindo (3.85) e (3.86) e (E.3) em (3.84), reescreve-se I_1 como:

$$I_{1} = -\frac{2\pi j^{n-1} \cos(n\phi)}{K_{1}^{2}} \int_{r^{1}}^{r^{2}} \left\{ \frac{nc_{5}}{r} \left(C_{n} J_{n}(K_{1}r') + D_{n} Y_{n}(K_{1}r') \right) + C_{6} K_{1} \left(E_{n} J_{n}(K_{1}r') + F_{n} Y_{n}(K_{1}r') \right) \right\} \frac{J_{n}(kr' \sin\theta)}{kr' \sin\theta} r' dr' (3.87)$$

A partir das Equações (3.56), (3.38) e (3.40) reescreve-se I_2 devido à região o:

$$I_{2} = \int_{0}^{2\pi r^{2}} \int_{r}^{1} \frac{1}{K_{1}^{2}} \left\{ n \left(\frac{\gamma \eta \cos \theta}{r'} + j \frac{k_{0}}{y_{o}r'} \right) \left(E_{n} J_{n}(K_{1}r') + F_{n} Y_{n}(K_{1}r') \right) + F_{n} Y_{n}(K_{1}r') \right) \right\}^{2\pi r^{2}} \cos(n\phi') \cos(\phi - \phi') e^{jkr' \sin \theta \cos(\phi - \phi')} d\phi' r' dr'$$
(3.88)

Substituindo (3.85), (3.86) e (E.2) em (3.88), reescreve-se I₂:

$$I_{2} = \frac{2\pi \cos(n\phi) j^{(n-1)}}{K_{1}^{2}} \int_{r_{1}}^{r_{2}} \int_{r_{1}}^{r_{2}} \left\{ c_{5}K_{1} \left(C_{n}J_{n}^{'}(K_{1}r') + D_{n}Y_{n}^{'}(K_{1}r') \right) + F_{n}Y_{n}(K_{1}r') \right) \right\} J_{n}^{'}(kr' \sin\theta)r' dr'$$
(3.89)

Juntando I_1 e I_2 devido à região o, tem-se:

$$I_{1}+I_{2} = \frac{2\pi j^{n-1}\cos(n\phi)}{K_{1}^{2}} \begin{cases} \sum_{r=1}^{r^{2}} \left\{ c_{5}K_{1}\left(C_{n}J_{n}(K_{1}r')+D_{n}Y_{n}(K_{1}r')\right)+ \\ \frac{nc_{6}}{r'}\left(E_{n}J_{n}(K_{1}r')+F_{n}Y_{n}(K_{1}r')\right) \right\} J_{n}(kr'\sin\theta)r'dr' \\ -\int_{r=1}^{r^{2}} \left\{ \frac{nc_{5}}{r'}\left(C_{n}J_{n}(K_{1}r')+D_{n}Y_{n}(K_{1}r')\right)+ \\ \frac{c_{6}K_{1}\left(E_{n}J_{n}(K_{1}r')+F_{n}Y_{n}(K_{1}r')\right) \right\} J_{n}(kr'\sin\theta)r'dr' \\ \frac{d_{6}K_{1}\left(E_{n}J_{n}(K_{1}r')+F_{n}Y_{n}(K_{1}r')\right)}{kr'\sin\theta} \end{cases}$$
(3.90)

O campo elétrico na direção $\hat{\theta}$ devido à região o é dado por:

$$E_{\theta}o(\theta,\phi) \simeq -\frac{j^{n}ke^{-jkr}}{2K_{1}^{2}r}\cos(n\phi) \begin{cases} \sum_{r=1}^{r^{2}} \left\{ c_{5}K_{1}\left(C_{n}J_{n}^{'}(K_{1}r^{'})+D_{n}Y_{n}^{'}(K_{1}r^{'})\right) + \\ \frac{nc_{6}}{r^{'}}\left(E_{n}J_{n}(K_{1}r^{'})+F_{n}Y_{n}(K_{1}r^{'})\right) + \\ -\int_{r^{2}}^{r^{2}} \left\{ \frac{nc_{5}}{r^{'}}\left(C_{n}J_{n}(K_{1}r^{'})+D_{n}Y_{n}(K_{1}r^{'})\right) + \\ C_{6}K_{1}\left(E_{n}J_{n}^{'}(K_{1}r^{'})+F_{n}Y_{n}^{'}(K_{1}r^{'})\right) + \\ \frac{J_{n}(kr^{'}\operatorname{sen}\theta)}{kr^{'}\operatorname{sen}\theta}r^{'}dr^{'} \right\} \end{cases}$$
(3.91)

Através de I₃ e I₄, desenvolvidos na Seção 3.2.1 (Equações (3.70) e (3.71)), junto com as Equações (3.38), (3.39), (3.40) e (3.41), obtém-se o campo elétrico na direção $\hat{\phi}$ devido à região o:

$$I_{3} = \int_{r_{1}}^{r_{2}} \frac{1}{K_{1}^{2}} \begin{cases} (\gamma \cos \theta + jk_{0}y_{o}\eta) \frac{n}{r'} [C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r')] + \\ + \left(\eta y_{o}\gamma + j\frac{k_{0}}{y_{0}}\cos \theta\right) K_{1} [E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r')] \end{cases} \begin{cases} 2\pi \\ \int_{0}^{2\pi} \sin(n\phi')\cos(\phi - \phi')e^{jkr'\sin\theta\cos(\phi - \phi')}d\phi'r'dr' \end{cases}$$
(3.92)

е

$$I_{4} = \int_{0}^{2\pi r^{2}} \int_{r_{1}}^{1} \frac{1}{K_{1}^{2}} \left\{ K_{1}(\gamma \cos \theta + jk_{0}y_{0}\eta) \left[C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right] + \left[(n\gamma y_{0}\eta + j\frac{k_{0}}{y_{0}}n\cos \theta)\frac{1}{r'} \left[E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r') \right] \right\} \right\} \left\{ \cos n\phi' \sin (\phi - \phi')e^{jkr' \sin \theta \cos(\phi - \phi')}d\phi' r' dr' \right\}$$
(3.93)

Chamando:

$$c_{\gamma} = \left(\gamma \cos \theta + jk_0 y_o \eta\right) \tag{3.94}$$

$$c_8 = \left(\eta y_o \gamma + j \frac{k_0}{y_0} \cos \theta\right)$$
(3.95)

Então, substituindo (3.94), (3.95) e (E.4) em (3.92) e (3.94), (3.95) e (E.1) em (3.93), reescreve-se I_3 e I_4 respectivamente, como:

$$I_{3} = -\frac{2\pi \operatorname{sen}(n\phi) j^{(n-1)}}{K_{1}^{2}} \int_{r_{1}}^{r_{2}} \left[\frac{nc_{7}}{r'} \left[C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right] + \\ c_{8}K_{1} \left[E_{n}J_{n}'(K_{1}r') + F_{n}Y_{n}'(K_{1}r') \right] \right] J_{n}'(kr' \operatorname{sen} \theta)r' dr' (3.96)$$

$$I_{4} = -\frac{2\pi \operatorname{sen}(n\phi) j^{(n-1)}}{K_{1}^{2}} \int_{r_{1}}^{r_{2}} \left\{ \frac{c_{7}K_{1} \left(C_{n}J_{n}'(K_{1}r') + D_{n}Y_{n}'(K_{1}r') \right) + \\ \frac{nc_{8}}{r'} \left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r') \right) \right\} \frac{J_{n}(kr' \operatorname{sen} \theta)}{kr' \operatorname{sen} \theta} r' dr' (3.97)$$

Juntando $I_3 e I_4$:

$$I_{3} + I_{4} = \frac{1}{K_{1}^{2}} \int_{r_{1}}^{r_{2}} \left(\frac{nc_{7}}{r'} \left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right) + c_{8}K_{1} \left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r') \right) \right) J_{n}(kr' \sin \theta) r' dr' + (3.98)$$

+ $\frac{1}{K_{1}^{2}} \int_{r_{1}}^{r_{2}^{2}} \left(c_{7}K_{1} \left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right) + \frac{nc_{8}}{r'} \left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r') \right) \right) \frac{J_{n}(kr' \sin \theta)}{kr' \sin \theta} r' dr'$

Obtém-se o campo elétrico na direção $\hat{\phi}$, devido à região o:

$$E_{\phi}^{o}(\theta,\phi) \cong -j^{n}ke^{-jkr} \frac{\operatorname{sen}(n\phi)}{2K_{1}^{2}r} \begin{cases} \sum_{r=1}^{r_{2}^{2}} \left(\frac{nc_{7}}{r'} \left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right) + c_{8}K_{1} \left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r') \right) \right) J_{n}(kr'\operatorname{sen}\theta)r'dr' + \\ \sum_{r=1}^{r_{2}^{2}} \left(c_{7}K_{1} \left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right) + \frac{nc_{8}}{r'} \left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r') \right) \right) J_{n}(kr'\operatorname{sen}\theta)r'dr' + \\ \end{cases} \end{cases}$$

Resumindo, os campos elétricos devidos à região o são dados por:

$$E_{\theta}^{o}(\theta,\phi) \cong -\frac{j^{n}ke^{-jkr}\cos(n\phi)}{2K_{1}^{2}r} \begin{cases} r_{1}^{2} \left\{ c_{5}K_{1}\left(C_{n}J_{n}^{'}(K_{1}r^{'})+D_{n}Y_{n}^{'}(K_{1}r^{'})\right)+\\ \frac{nc_{6}}{r'}\left(E_{n}J_{n}(K_{1}r^{'})+F_{n}Y_{n}(K_{1}r^{'})\right) \right\} \\ J_{n}^{'}(kr^{'}\sin\theta)r^{'}dr^{'} \\ -\int_{r^{1}}^{2} \left\{ \frac{nc_{5}}{r'}\left(C_{n}J_{n}(K_{1}r^{'})+D_{n}Y_{n}(K_{1}r^{'})\right)+\\ \frac{1}{c_{6}K_{1}\left(E_{n}J_{n}^{'}(K_{1}r^{'})+F_{n}Y_{n}^{'}(K_{1}r^{'})\right) \right\} \\ \frac{J_{n}(kr^{'}\sin\theta)}{kr^{'}\sin\theta}r^{'}dr^{'} \end{cases} \end{cases}$$
(3.100)

е

$$E_{\phi}^{o}(\theta,\phi) \cong -\frac{j^{n}ke^{-jkr}\operatorname{sen}(n\phi)}{2K_{1}^{2}r} \begin{cases} r_{1}^{c} \left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r')\right) + \\ c_{8}K_{1}\left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r')\right) \\ \int_{r_{1}}^{r} \left(c_{7}K_{1}\left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r')\right) + \\ \int_{r_{1}}^{r} \left(\frac{c_{7}K_{1}\left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r')\right) + \\ r_{1}^{c}\left(\frac{nc_{8}}{r'}\left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r')\right) + \\ \frac{J_{n}(kr'\operatorname{sen}\theta)}{kr'\operatorname{sen}\theta}r'dr' \right) \end{cases} \end{cases}$$
(3.101)

com

$$c_5 = \left(\gamma + jk_0 y_o \eta \cos \theta\right) \tag{3.102}$$

$$c_6 = \left(\frac{\gamma\eta\cos\theta}{r'} + j\frac{k_0}{y_or'}\right)$$
(3.103)

$$c_7 = (\gamma \cos \theta + jk_0 y_0 \eta) \tag{3.104}$$

$$c_8 = (\gamma y_0 \eta + j \frac{k_0}{y_0} \cos \theta)$$
(3.105)

3.3.1. Campo Radiado devido à Abertura Completa

Após calcular os campos radiados distante devidos às regiões interna e externa ao dielétrico anisotrópico, obtém-se os campos radiados distantes, somando-se os campos devidos às regiões interna e externa. Ou seja, o campo geral radiado devido à abertura será dado por:

$$E_{\theta rad}(\theta,\phi) = E_{\theta}^{i}(\theta,\phi) + E_{\theta}^{o}(\theta,\phi)$$
(3.106)

е

$$E_{\phi rad}(\theta,\phi) = E_{\phi}^{i}(\theta,\phi) + E_{\phi}^{o}(\theta,\phi)$$
(3.107)

Ou, substituindo as Equações (3.78) e (3.100) na Equação (3.106), obtémse:

E, substituindo as Equações (3.79) e (3.102) na Equação (3.107), obtémse:

$$E_{\phi rad}(\theta,\phi) = -\frac{j^{n}ke^{-jkr}}{2r} \operatorname{sen}(n\phi) \begin{cases} \frac{1}{K^{2}} \begin{cases} \int_{0}^{n} \left(nc_{3}A_{n} \frac{J_{n}(Kr')}{r'} + c_{4}KB_{n}J_{n}(Kr') \right) J_{n}(kr'\operatorname{sen}\theta)r'dr' \\ + \int_{0}^{n} \left(c_{3}KA_{n}J_{n}(Kr) + nc_{4}B_{n} \frac{J_{n}(Kr)}{r'} \right) \frac{J_{n}(kr'\operatorname{sen}\theta)}{kr'\operatorname{sen}\theta}r'dr' \end{cases} + \\ \frac{1}{K^{2}_{1}} \begin{cases} \int_{r^{2}}^{r^{2}} \left(\frac{nc_{7}}{r'} \left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right) + \\ c_{8}K_{1}\left(E_{n}J_{n}(K_{1}r') + F_{n}Y_{n}(K_{1}r') \right) \end{array} \right) J_{n}(kr'\operatorname{sen}\theta)r'dr' + \\ \begin{cases} \int_{r^{2}}^{r^{2}} \left(c_{7}K_{1}\left(C_{n}J_{n}(K_{1}r') + D_{n}Y_{n}(K_{1}r') \right) + \\ \frac{1}{kr'\operatorname{sen}\theta}r'dr' + \\ \frac{1}{kr'\operatorname{sen}\theta}r'dr' \end{array} \right) \end{cases} \end{cases}$$

com:

$$c_1 = (\gamma + jk_0 \varepsilon_{ti} y_0 \eta \cos \theta)$$
(3.110)

$$c_2 = (\eta \gamma \cos \theta + j \frac{k_0}{y_o}) \tag{3.111}$$

$$c_3 = \left(\gamma \cos \theta + jk_0 y_0 \varepsilon_{ti} \eta\right) \tag{3.112}$$

$$c_4 = \left(\eta\gamma + j\frac{k_0}{y_0}\cos\theta\right) \tag{3.113}$$

$$c_5 = \left(\gamma + jk_0 y_o \eta \cos \theta\right) \tag{3.114}$$

$$c_6 = \left(\frac{\gamma\eta\cos\theta}{r'} + j\frac{k_0}{y_or'}\right)$$
(3.115)

$$c_{\gamma} = (\gamma \cos \theta + jk_0 y_0 \eta) \tag{3.116}$$

$$c_8 = (\gamma y_0 \eta + j \frac{k_0}{y_0} \cos \theta)$$
 (3.117)

Os campos radiados são reescritos, em função de An:

$$E_{\theta rad}(\theta,\phi) = \frac{-j^{n}ke^{-jkr}}{2r} A_{n}\cos(n\phi) \begin{cases} \frac{1}{k^{2}} \begin{cases} \int_{0}^{1} \left(c_{1}KJ_{n}^{'}(Kr') + nc_{2}M\frac{J_{n}(Kr')}{r'} \right) J_{n}^{'}(kr'\sin\theta)r'dr' \\ -\int_{0}^{1} \left(nc_{1}\frac{J_{n}(Kr')}{r'} + c_{2}KMJ_{n}^{'}(Kr') \right) \frac{J_{n}(kr'\sin\theta)}{kr'\sin\theta}r'dr' \right) + \\ + \frac{1}{K_{1}^{2}} \begin{cases} r_{1}^{2} \left(c_{5}K_{1}\left(NJ_{n}^{'}(K_{1}r') + PY_{n}^{'}(K_{1}r')\right) + \right) \\ -\int_{0}^{2} \left(\frac{nc_{6}}{r'}\left(-QJ_{n}(K_{1}r') - LY_{n}(K_{1}r')\right) + \right) J_{n}^{'}(kr'\sin\theta)r'dr' \\ -\int_{1}^{2} \left(\frac{nc_{5}}{r'}\left(NJ_{n}(K_{1}r') - LY_{n}(K_{1}r')\right) + \right) \frac{J_{n}(kr'\sin\theta)}{kr'\sin\theta}r'dr' \\ -\int_{0}^{2} \left(\frac{nc_{5}}{r'}\left(NJ_{n}(K_{1}r') - LY_{n}^{'}(K_{1}r')\right) + \left(\frac{J_{n}(kr'\sin\theta)}{kr'\sin\theta}r'dr' \right) \right) \end{cases} \end{cases}$$
(3.118)

$$E_{\phi rad}(\theta,\phi) = -\frac{j^{n}ke^{-jkr}}{2r}A_{n}\operatorname{sen}(n\phi) \begin{cases} \frac{1}{K^{2}} \begin{cases} \int_{0}^{n} \left(nc_{3}\frac{J_{n}(Kr')}{r'} + c_{4}KMJ_{n}^{'}(Kr') \right)J_{n}^{'}(kr'\operatorname{sen}\theta)r'dr' \\ +\int_{0}^{n} \left(c_{3}KJ_{n}^{'}(Kr) + nc_{4}M\frac{J_{n}(Kr)}{r'} \right)\frac{J_{n}(kr'\operatorname{sen}\theta)}{kr'\operatorname{sen}\theta}r'dr' \end{cases} + \\ \frac{1}{K_{1}^{2}} \begin{cases} r_{1}^{2} \left(\frac{nc_{7}}{r'} \left(NJ_{n}(K_{1}r') + PY_{n}(K_{1}r') \right) + \\ c_{8}K_{1} \left(-QJ_{n}^{'}(K_{1}r') - LY_{n}^{'}(K_{1}r') \right) \end{array} \right) J_{n}^{'}(kr'\operatorname{sen}\theta)r'dr' + \\ \frac{1}{K_{1}^{2}} \begin{cases} r_{1}^{2} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}^{'}(K_{1}r') \right) + \\ c_{8}K_{1} \left(-QJ_{n}(K_{1}r') - LY_{n}^{'}(K_{1}r') \right) \end{array} \right) J_{n}^{'}(kr'\operatorname{sen}\theta)r'dr' + \\ \frac{1}{K_{1}^{2}} \begin{cases} r_{1}^{2} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}^{'}(K_{1}r') \right) + \\ c_{8}K_{1} \left(-QJ_{n}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{1}{K_{1}^{2}} \left(\frac{c_{7}K_{1} \left(NJ_{n}^{'}(K_{1}r') - LY_{n}(K_{1}r') \right) + \\ \frac{c_{7}K_{1} \left(\frac{c_{7}K_{1}}{K_{1}^{2}} \right) \right) }{\left(\frac{c_{7}K_{1}} \left(\frac{c_{7}K_{1}}{K_{1}^{2}} \right) \right) } \right)$$

66

Com L,M,N,P e Q dados pelas Equações do Apêndice D.

Após serem realizados estudos com o guia cilíndrico corrugado com núcleo dielétrico anisotrópico, cuja análise paramétrica é apresentada no Capítulo 5, são realizados estudos com corneta cônica corrugada com aproximação por fase esférica, os quais são apresentados na Seção 3.3.

3.4. Campo Radiado Distante para Corneta (Aproximação por fase esférica)

3.4.1. Introdução

Muitos alimentadores usados com antenas refletoras possuem a forma de cornetas cônicas ou possuem uma região cônica, mesmo que a região de abertura seja cilíndrica [5]. Para cornetas com semi-ângulo de abertura pequenos, na faixa entre 6º a 15º, a corneta se comporta como um guia cilíndrico, mas uma correção deve ser feita para a variação de fase esférica através da abertura da corneta. Este procedimento, explorado por Parini and Olver [5], permite caracterizar o campo na abertura muito precisamente desde que harmônicos no espaço possam ser descritos em um guia cilíndrico. A partir do campo na abertura, o campo radiado pode ser obtido utilizando potenciais vetores, técnica utilizada neste trabalho.

Para cornetas com semi-ângulos de abertura entre 10º e 80º, pode-se aproximar os campos na corneta e na abertura pelos modos esféricos, permitindo que o diagrama de radiação seja obtido pela integração sobre a superfície de fase esférica ou por meios de uma expansão. Dois métodos são apresentados na literatura: o método de expansão de onda esférica, desenvolvido por Clarricoats, Saha and Olver [5] e sua extensão desenvolvida por Mahmoud and Clarricoats [5]; e o método Laguerre-Gaussian desenvolvido por Bitter and Aubry [5]. O último método é útil quando um radiador corrugado faz parte de um sistema refletor múltiplo projetado usando aproximações de feixe Gaussiano [5].

Cornetas com semi-ângulo de abertura pequeno e grande abertura são mais simples de serem projetadas, pois, o grande diâmetro torna a corneta muito menos sensível à polarização cruzada e aos problemas de conversão de modos. Cornetas de abertura pequena possuem um desempenho que é estritamente determinado pelo diâmetro da abertura, com desempenho dependente da freqüência e da presença da *flange* na abertura da corneta [5].

Com a correção de fase esférica, os nulos do campo co-polar são preenchidos. Para ângulos maiores do que 20º, os padrões de radiação se tornam função, principalmente, do ângulo de abertura (*flare*) e não do diâmetro da abertura. A fase esférica faz com que a energia radiada do centro da abertura esteja fora de fase com a energia radiada próximo à borda da abertura, sendo mantidas as freqüências constantes [5].

Neste capítulo é obtido o campo radiado distante para uma corneta cilíndrica corrugada com dielétrico anisotrópico com as mesmas especificações do guia descrito no Capítulo 2 e desenvolvido anteriormente. É explorado o método de aproximação por fase esférica, devido a sua grande simplicidade, o qual adiciona um termo à equação do campo representando a fase esférica [4]. Esta aproximação fornece bons resultados para pequenos semi-ângulos de abertura da corneta, sendo o ângulo escolhido para a análise neste trabalho 12º devido a este fato.

3.4.2. Corneta Cônica Corrugada com Núcleo Dielétrico Anisotrópico

O método de aproximação por capa esférica utiliza as expressões dos campos na abertura do guia cilíndrico corrugado com núcleo dielétrico adicionadas a um fator de fase esférica que representa a influência do ângulo *flare* finito. Estes campos são então, integrados para a obtenção do campo distante. A Figura 3.1 apresenta uma vista lateral de uma corneta

com parede corrugada, com as configurações geométricas utilizadas neste trabalho.

Figura 3.1 - Vista lateral de uma corneta cônica corrugada, onde r_0 varia com o ângulo de abertura, $\theta \in R = r_0/sen\theta$.

O fator de fase esférica pode ser simulado na abertura, multiplicando o campo elétrico na abertura por um fator de fase. Os campos através da abertura de uma corneta são gerados por ondas esféricas com a origem no eixo. As ondas esféricas podem ser aproximadas na abertura por ondas planas com um fator de fase esférica adicional Δ para considerar o caminho extra a ser percorrido pelas ondas em um ponto arbitrário X na abertura [4,5]. Este fator é obtido pela Figura 3.1 e o termo a ser multiplicado é $e^{jk\Delta}$, com:

$$\Delta = R(1 - \cos \theta) \tag{3.120}$$

ou

$$\Delta = r_0 \frac{1 - \cos \theta}{sen\theta} = r_0 \tan \frac{\theta}{2} \approx \frac{r_0^2}{2R}$$
(3.121)

onde, r_0 é o raio da corneta na abertura, R é o comprimento da corneta, θ é o ângulo formado entre o eixo e a lateral da corneta (semi-ângulo de abertura). Esta aproximação é válida para pequenos ângulos de abertura [4,5].

Em seguida, são obtidas as expressões para o campo radiado total na abertura da corneta com a inclusão do semi-ângulo. As Equações para os campos nas direções $\theta \in \phi$ são dadas por:

$$E_{\theta rad}(\theta,\phi) = \frac{-j^{n}ke^{-jkr}}{2r} A_{n} \cos(n\phi) \begin{cases} \frac{1}{K^{2}} \left\{ \int_{0}^{n} \left(c_{1}KJ'_{n}(Kr') + nc_{2}M \frac{J_{n}(Kr')}{r'} \right) J'_{n}(kr'\sin\theta)e^{-jk\Delta}r'dr' \\ -\int_{0}^{n} \left(nc_{1} \frac{J_{n}(Kr')}{r'} + c_{2}KMJ'_{n}(Kr') \right) \frac{J_{n}(kr'\sin\theta)}{kr'\sin\theta}e^{-jk\Delta}r'dr' \\ + \\ \frac{1}{K_{1}^{2}} \left\{ \int_{r}^{r_{2}} \left(c_{5}K_{1}(NJ'_{n}(K_{1}r') + PY'_{n}(K_{1}r')) + \\ \frac{nc_{6}}{r'} \left(-QJ_{n}(K_{1}r') - LY_{n}(K_{1}r') \right) \right) \int_{r}^{n} (kr'\sin\theta)e^{-jk\Delta}r'dr' \\ + \\ -\int_{r}^{r_{2}} \left(\frac{nc_{5}}{r'} \left(NJ_{n}(K_{1}r') + PY_{n}(K_{1}r') \right) \right) \frac{J_{n}(kr'\sin\theta)e^{-jk\Delta}r'dr'}{kr'\sin\theta} \right\} \end{cases}$$

$$(3.122)$$

$$E_{\phi rad}(\theta,\phi) = -\frac{j^{n}ke^{-jkr}}{2r}A_{n}\sin(n\phi) \begin{cases} \frac{1}{K^{2}} \begin{cases} \int_{0}^{r_{0}} \left(nc_{3}\frac{J_{n}(Kr')}{r'} + c_{4}KMJ'_{n}(Kr')\right)J'_{n}(kr'\sin\theta)e^{-jk\Delta}r'dr' \\ +\int_{0}^{r} \left(c_{3}KJ'_{n}(Kr) + nc_{4}M\frac{J_{n}(Kr)}{r'}\right)\frac{J_{n}(kr'\sin\theta)}{kr'\sin\theta}e^{-jk\Delta}r'dr' \end{cases} + \\ \frac{1}{K^{2}_{1}} \begin{cases} r_{2}^{r} \left(\frac{nc_{7}}{r'}\left(NJ_{n}(K_{1}r') + PY_{n}(K_{1}r')\right) + \\ c_{8}K_{1}\left(-QJ'_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(c_{7}K_{1}\left(NJ'_{n}(K_{1}r') + PY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(-QJ_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(c_{7}K_{1}\left(NJ'_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(-QJ_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'\sin\theta}e^{-jk\Delta}r'dr'\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(-QJ_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'\sin\theta}e^{-jk\Delta}r'dr'\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(-QJ_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'\sin\theta}e^{-jk\Delta}r'dr'\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(-QJ_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'\sin\theta}e^{-jk\Delta}r'dr'\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(-2J_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'\sin\theta}e^{-jk\Delta}r'dr'\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(-2J_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'\sin\theta}e^{-jk\Delta}r'dr'\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'\sin\theta}e^{-jk\Delta}r'dr'\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\left(-2J_{n}(K_{1}r') - LY'_{n}(K_{1}r')\right)\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\right)\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\right)\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\right)\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}\right)\right) + \\ r_{1}^{r'} \left(\frac{nc_{8}}{r'}\left(\frac{nc_{8}}{r'}$$

com c₁ a c₈ dados por (3.100) a (3.117) , $A_n = 1$, L, M, N, P e Q dados pelas Equações do Apêndice D.

Com estas Equações, são realizadas as simulações apresentadas no Capítulo 5.

3.5.

Caso Particular: Simulação do Guia Anisotrópico com Anisotropia criada a partir da Técnica de Perfuração do Bastão Dielétrico

Foram efetuadas várias simulações do guia Anisotrópico com anisotropia criada a partir da técnica de perfuração do bastão dielétrico introduzida no Capítulo 2 [8]. Nesta Seção é apresentado um caso utilizando um dielétrico com permissividade muito alta, no caso o alumina cerâmica [8] com $\varepsilon_r = 10,3$, perfurando-o no sentido axial com diversas configurações de furos, chegando a um valor com 450 furos de 4 mm de diâmetro cada, obtendo-se um material com anisotropia simulada de $\varepsilon_z = 3,745$ e $\varepsilon_t = 2,737$. Estes valores foram obtidos considerando-se um cilindro de área $A_{cilindro} = \pi (d_c/2)^2$ e a área do furo sendo dada por $A_F = \pi (d_f/2)^2$.

A Figura 3.2 apresenta as curvas de dispersão para os principais modos (EH11 e HE11) para o material isotrópico de permissividade relativa igual a 3,745 e do material anisotrópico simulado ($\varepsilon_z = 3,745$ e $\varepsilon_t = 2,737$). A permissividade de 3,745 pode ser obtida com os seguintes materiais: *Cross linked poly styrene / ceramic powder-filled, Silicone resion ceramic powder-filled, air with rexolite standoffs fused quartz* [8].

Figura 3.2 - Curvas de dispersão simuladas. Guia cilíndrico corrugado com dielétrico isotrópico perfurado para simular anisotropia: $\varepsilon_r = 10,3$ (alumina ceramica), com $r_1 = 50,54$ mm, $r_0 = 63,17$ mm e profundidade de corrugação d = 8 mm. Anisotropia criada inserindo 450 furos axiais, com diametro $\phi = 4$ mm, no dielétrico, resultando em $\varepsilon_t = 2,745$ e $\varepsilon_z = 3,745$. Dielétrico isotrópico $\varepsilon_r = 3,745$.

Verificou-se na Figura 3.2 que as curvas do dielétrico isotrópico de permissividade igual a 3,745 e do dielétrico com anisotropia obtida a partir das perfurações no dielétrico isotrópico com permissividade elevada (ε_r =10,3) ficaram praticamente iguais, ocorrendo um aumento na freqüência de corte do modo HE11 para o caso anisotrópico.

Os padrões de radiação para os dois casos analisados são apresentados na Figura 3.3, onde é verificado que a presença da anisotropia trouxe um incremento de aproximadamente 3 dB na polarização cruzada. O campo radiado com polarização direta apresentou valor de lóbulo secundário menor para o caso anisotrópico.

Figura 3.3 - Padrões de radiação para o guia cilíndrico corrugado com dielétrico isotrópico e com dielétrico anisotrópico, com $r_1 = 50,54$ mm, $r_0 = 63,17$ mm e profundidade de corrugação d = 8 mm. Anisotropia criada inserindo 450 furos axiais, com diametro $\phi = 4$ mm, no dielétrico isotrópico com permissividade $\varepsilon_r = 10,3$, resultando em anisotropia com $\varepsilon_t = 2,745$ e $\varepsilon_z = 3,745$. Dielétrico isotrópico $\varepsilon_r = 3,745$.

Em seguida, foram realizadas várias simulações para obter o campo na abertura de diversas configurações, as quais são apresentadas no Capítulo 4.