

Kathy Camila Cardozo Osinski Senhorini

Guia Cilíndrico Corrugado com Dielétrico Anisotrópico

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Elétrica.

> Orientador: Prof. José Ricardo Bergmann Co-orientador: Prof. José Ricardo Descardeci

Rio de Janeiro Fevereiro de 2012

Kathy Camila Cardozo Osinski Senhorini

Guia Cilíndrico Corrugado com Dielétrico Anisotrópico

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. José Ricardo Bergmann Orientador Centro de Estudos em Telecomunicações /PUC-Rio

> > **Prof. José Ricardo Descardeci** Co-orientador Universidade Federal do Tocantins /UFT

Prof. Flavio José Vieira Hasselmann Centro de Estudos em Telecomunicações /PUC-Rio

> Prof. Fernando José da Silva Moreira UFMG

Prof. João Crisostomo Weil Albuquerque Costa UFPA

Prof. Sandro Rogério Zang

Centro de Estudos em Telecomunicações /PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 13 de fevereiro de 2012

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Kathy Camila Cardozo Osinski Senhorini

Graduou-se em engenharia elétrica (1985) pela EEL (Lins, SP), obteve o grau de mestre em engenharia elétrica (2004) pela EESC-USP. Desenvolveu suas atividades na área de sua formação profissional, sendo que desde 2004 é professora na UFT, onde ingressou no curso de ciência da computação, participou da comissão de criação dos cursos de engenharia elétrica e civil pelo REUNI na UFT, e a partir de 2009 passou a fazer parte do curso de engenharia elétrica, como professora e atualmente é coordenadora do mesmo.

Ficha Catalográfica

Senhorini, Kathy Camila Cardozo Osinski

Guia Cilíndrico Corrugado com Dielétrico Anisotrópico / Kathy Camila Cardozo Osinski Senhorini; orientador: José Ricardo Bergmann; co-orientador: José Ricardo Descardeci – 2012.

155 f. il. (color.); 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2012.

Inclui bibliografia

Engenharia elétrica – Teses. 2. Antena. 3.
Corneta. 4. Alimentadores. 5. Guias de onda. I. Bergmann,
José Ricardo. II. Descardeci, José Ricardo III. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Engenharia Elétrica. VI. Título.

À minha família representada pelo meu esposo José Carlos Senhorini, meus filhos João Carlos e Thiago e minha mãe, Odália.

Agradecimentos

Aos meus orientadores Bergmann e Descardeci que acreditaram em mim, por suas orientações, estímulos, amizade e principalmente, paciência.

Ao meu esposo José Carlos por sua dedicação, compreensão e companheirismo, mesmo nos momentos mais difíceis. Aos meus filhos João Carlos e Thiago pelo apoio. À minha mãe por seu incentivo.

Aos colegas do CETUC, pelo apoio e amizade, em especial ao André, Fábio, Fabrício, Juliana, Maiquel, Marco Aurélio, Pedro e Ramirez.

Aos professores do CETUC pelos ensinamentos e pela ajuda.

Aos funcionários da Vice-Reitoria para Assuntos Acadêmicos, em especial à Ana Lúcia e Célia pelo carinho e pela colaboração. À Alcina e demais funcionários do CETUC e da PUC-Rio.

A todos os amigos e familiares que de uma forma ou de outra me estimularam ou me ajudaram.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais esse trabalho não poderia ter sido realizado.

Resumo

Senhorini, Kathy Camila Cardozo Osinski; Bergmann, José Ricardo (Orientador); Descardeci, José Ricardo (Co-orientador). **Guia Cilíndrico Corrugado com Dielétrico Anisotrópico.** Rio de Janeiro, 2012. 155p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese apresenta uma análise de uma estrutura de corneta cônica corrugada com dielétrico anisotrópico, com eixo óptico na direção axial da corneta. Esta configuração de corneta pode ser conseguida utilizando-se a estrutura de uma corneta corrugada com a adição de um cone dielétrico anisotrópico uniaxial. A anisotropia pode ser conseguida artificialmente dopandose o material dielétrico isotrópico ou utilizando-se uma técnica de perfuração na direção axial do cone. Esta técnica de perfuração é sugerida e apresentada nesta Tese. Partindo-se da geometria definida, foram desenvolvidas as expressões dos campos transversais e o equacionamento para a obtenção das curvas características da estrutura. É apresentado ainda um estudo comparativo dos campos transversais com os casos degenerados já conhecidos de guias cilíndricos, entre eles, quia cilíndrico corrugado oco, quia cilíndrico metálico com bastão dielétrico, guia cilíndrico corrugado com bastão dielétrico isotrópico. As expressões para o cálculo dos campos radiados distantes foram obtidas para o quia cilíndrico corrugado com dielétrico anisotrópico. Em adição, expressões para o cálculo dos campos radiados distantes para a corneta cilíndrica corrugada com dielétrico anisotrópico com pequenos ângulos de abertura (flare angle) utilizandose a aproximação por capa esférica foram obtidas e apresentadas. Estas expressões foram baseadas na terceira definição de Ludwig. Foram realizadas análises para estruturas já conhecidas geradas a partir da degeneração do caso mais geral apresentado nesta tese com o objetivo de validar a teoria desenvolvida e os resultados provaram a validade do material teórico desenvolvido. Finalmente, foi desenvolvida uma análise paramétrica da estrutura apresentada com o intuito de verificar o comportamento dos campos radiados e da polarização cruzada máxima em função da anisotropia e da frequência de operação. Verificou-se que a largura de feixe de meia potência foi pouco influenciada pela anisotropia do dielétrico e apresentou comportamento esperado em função da frequencia. A variação da máxima polarização cruzada em função da frequência foi estudada. Em determinados valores de permissividade e anisotropia, para a configuração considerada, foi alcançada a condição híbrida balanceada. Nesta condição a estrutura apresentou baixos níveis de máxima polarização cruzada em uma faixa larga de frequência. Comportamento este muito superior ao da corneta corrugada, corneta metálica com dielétrico e corneta corrugada com dielétrico isotrópico.

Palavras-chave

Antena; Cornetas; Alimentadores; Guias de Onda.

Senhorini, Kathy Camila Cardozo Osinski; Bergmann, José Ricardo (Advisor); Descardeci, José Ricardo (Co-advisor). **Anisotropic Dielectric Corrugated Cylindrical Guide.** Rio de Janeiro, 2012. 155p. Doctoral Thesis - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis presents an analysis of a corrugated conic horn structure with anisotropic dielectric. This dielectric cone is positioned inside the horn and has an optical axis in its longitudinal direction. This horn configuration can be obtained using the structure of corrugated horn and adding an anisotropic dielectric cone. The anisotropy can artificially be obtained by doping the isotropic dielectric or using a perforation technique. This perforation technique is suggested and presented in this Thesis. Expressions for the transverse fields and the propagation constant curves were developed considering this new geometry. It is also presented a comparative study of the degenerated transversal fields with well-known structures. These structures are: hollow cylindrical guide, corrugated cylindrical guide, cylindrical metallic guide with dielectric and corrugated cylindrical guide with dielectric. The expressions to calculate the radiated far fields were obtained for the corrugated cylindrical guide with anisotropic dielectric. In addition, expressions to calculate the radiated far fields for the corrugated cylindrical horn with anisotropic dielectric were developed and presented. These expressions considered horns with small flare angle and used the spherical cap approximation theory. All expressions considered the 3th Ludwig definition for the radiated far field. Far field analyses were conducted for well-known structures. These structures were obtained by degenerating the new configuration presented in this thesis and aimed to validate the theoretical developed theory. The results proved its validity. Finally, a parametric analysis was performed. This analysis considered, for a given structure configuration, the behavior of the radiated far fields and its maximum cross polar levels as a function of the anisotropy and frequency. It was verified that the dielectric anisotropy had very little effect on the half power beam width characteristic. The maximum cross polar level as a function of the frequency was analyzed. For some specific values of permittivity and anisotropy, for the considered

configuration, the balanced hybrid condition was reached. In this condition the structure presented very low cross polar values in a large frequency band. This behavior is much more superior to the corrugated horn, dielectric horn and the isotropic dielectric corrugated horn.

Keywords

Antenna; Horns; Antenna Feeds; Waveguides.

Sumário

1 Introdução	19
2 Desenvolvimento das Expressões dos Campos no Interior do Guia Cilíndrico	0
Corrugado com Bastão Dielétrico Anisotrópico	24
2.1. Introdução	24
2.2. Geometria da Estrutura Analisada	24
2.3. Expressões dos Campos	26
2.4. Estudo Teórico da Equação Característica para Casos Degenerados	35
2.4.1. Guia Cilíndrico Corrugado Oco	36
2.4.2. Guia Metálico Liso com Bastão Dielétrico	40
2.4.3. Guia Cilíndrico Corrugado com Bastão Dielétrico Isotrópico	43
2.4.4. Guia Metálico Cilíndrico Corrugado com Bastão Dielétrico Anisotrópico	46
	40
3 Expressões para os Campos Eletromagneticos	49
3.1. Campos na Abertura	49
3.1.1. Regiao Dieletrica Anisotropica ($r \le r_1$)	49
3.1.2. Região do Guia fora do Dielétrico ($r_1 \le r \le r_0$)	52
3.2. Campo Radiado Distante	55
3.2.1. Campo Radiado devido à Região i	56
3.3. Campo Radiado devido à Região o	61
3.3.1. Campo Radiado devido à Abertura Completa	64
3.4. Campo Radiado Distante para Corneta (Aproximação por fase esférica)	66
3.4.1. Introdução	66
3.4.2. Corneta Cônica Corrugada com Núcleo Dielétrico Anisotrópico	67
3.5. Caso Particular: Simulação do Guia Anisotrópico com Anisotropia	
criada a partir da Técnica de Perfuração do Bastão Dielétrico	69
4 Análise do Comportamento dos Campos Transversais na Estrutura	
Guiada em Estudo	72
4.1. Introdução	72
4.2. Estruturas Conhecidas	72
4.2.1. Guia Cilíndrico Oco (modo principal TE11)	72
4.2.2. Guia Cilíndrico Corrugado (modos Híbridos)	73

4.2.2.1. Modo EH11	74
4.2.2.2. Modo HE11	75
4.2.3. Guia Cilíndrico Metálico Liso com Bastão Dielétrico (modos Híbridos)	75
4.2.3.1. Modo EH11	76
4.2.3.2. Modo HE11	77
4.2.4. Guia Cilíndrico Corrugado com Bastão Dielétrico Isotrópico	
(modos Híbridos)	77
4.2.4.1. Modo EH11	78
4.2.4.2. Modo HE11	79
4.3. Estrutura em estudo: Guia Cilíndrico Corrugado com Bastão	
Dielétrico Anisotrópico	80
4.3.1. Efeito da Anisotropia no Bastão Dielétrico nos Campos Transversais	80
4.3.1.1. Dielétrico Isotrópico, $\varepsilon_r = \varepsilon_z = \varepsilon_t = 1,5$	80
4.3.1.2. Dielétrico Anisotrópico, ε_z = 1,5, ε_t = 1,1	81
4.3.1.3. Dielétrico Anisotrópico, ε_z = 1,1, ε_t = 1,5	82
4.4. Discussão e Conclusões	84
5 Análise Paramétrica	85
5.1. Análise Paramétrica para o Guia Cilíndrico Corrugado com	
Dielétrico Anisotrópico	85
5.2. Efeito da Anisotropia do Dielétrico sobre a Freqüência de Corte	86
5.2.1.1. Variação da Permissividade Longitudinal	86
5.2.1.2. Variação da Permissividade Transversal	88
5.2.2. Influência da Permissividade do Dielétrico sobre o Campo Radiado	91
5.2.3. Influência da Freqüência nos Padrões de Radiação e Polarização	
Cruzada	99
5.3. Análise Paramétrica para a Corneta com ângulo flare de 12 Graus	106
5.3.1. Efeito do ângulo de <i>flare</i> no Diagrama de Radiação	106
5.3.2. Influência da Freqüência nos Padrões de Radiação e Polarização	
Cruzada	109
5.4 Discussões e Conclusões	113
6 Conclusões	115
6.1. Introdução	115
6.2. Trabalhos Futuros	120
6.3. Dificuldades Encontradas	120
6.4. Contribuição da Pesquisa	121

6.5. Trabalhos Científicos Gerados	122
Referências Bibliográficas	123
APENDICE A Obtenção dos Potenciais Vetores elétrico e magnético de	
Hertz [9].	125
A.1 Potencial Vetor de Hertz do Tipo Elétrico	125
A.2 Potencial Vetor de Hertz do Tipo Magnético	126
A.3 Solução Geral com os Potenciais Vetores de Hertz dos Tipos	
Elétrico e Magnético	128
APÊNDICE B Determinação dos Campos Elétrico e Magnético a partir dos	
Potenciais Vetores de Hertz	129
APENDICE C Obtenção da Admitancia de Superficie em $r = r_0$ no Lado da	125
Conugação.	135
APENDICE D Obtenção dos Coeficientes A. B. C. D. F. F.	138
	100
APÊNDICE E Desenvolvimento de Integrais de Campos usadas [10,14]	147
E.1 Cos(nø)sen(ø-ø')	147
E.2 Cos(nφ)cos(φ-φ')	148
E.3 Sen(nφ')sen(φ-φ')	149
E.4 Sen(nø)cos(ø-ø')	151
E.5 Obtenção das Integrais para o Caso Especial em que n = 1	152
E.6 Desenvolvimento para os Casos Apresentados	154

Lista de figuras

Figura 1.1 - Cornetas mono-modo [4].	19
Figura 1.2 - Cornetas Multímodo.	20
Figura 1.3 – Tipos de alimentadores corrugados [5]: a) guia cilíndrico	
corrugado, b) corneta corrugada com ângulo <i>flare</i> estreito, c) corneta	
corrugada <i>profile</i> .	20
Figura 1.4 - Corneta cônica com carregamento dielétrico [4].	21
Figura 2.1 - Vista do guia cilíndrico corrugado com núcleo dielétrico.	25
Figura 2.2 - Relação entre áreas transversais do furo e do bastão dielétrico.	26
Figura 2.3 - Polarização Cruzada Máxima como função da	
freqüência normalizada,onde f0 é a freqüência para mínima polarização	
cruzada. Parâmetro: diâmetro de abertura normalizado [5].	34
Figura 2.4 - Curvas características do guia cilíndrico corrugado oco	
para os modos com n = 0,1 e 2 e m = 1,2, com r_0 = 63,17 mm,	
r ₂ = 71,17 mm, d=14 mm.	39
Figura 2. 5 - Curvas de Dispersão Simuladas para uma configuração	
conhecida com resultados já apresentados na literatura [4], onde	
$r_1 = 50,54 \text{ mm}, r_0 = 63,17 \text{ mm}$ e profundidade de corrugação	
d = 14 mm. Núcleo dielétrico isotrópico com ε_r = 1,05.	40
Figura 2.6 - Curvas de dispersão dos n modos para o guia cilíndrico de	
parede lisa com bastão dielétrico isotrópico, conforme Figura 2.1,	
sem as corrugações, ε_r = 1,15, r_0 = 63,17 mm, r_1 = 0,8 r_0 .	42
Figura 2.7 - Curvas de Dispersão Simuladas para uma configuração de	
guia cilíndrico corrugado com núcleo dielétrico isotrópico com ϵ_r = 3,745,	
$r_1 = 50,54 \text{ mm}, r_0 = 63,17 \text{ mm}$ e profundidade de corrugação d = 8 mm.	45
Figura 2.8 - Curvas de Dispersão Simuladas para uma configuração de	
guia cilíndrico corrugado com núcleo dielétrico isotrópico para dois casos,	
um com ϵ_r = 1,05 e outro com ϵ_r = 3,745; parâmetros r ₁ = 50,54 mm,	
$r_0 = 63,17$ mm e profundidade de corrugação d = 8 mm.	46
Figura 2.9 - Curvas de dispersão para os dois primeiros modos	
para a configuração do guia cilíndrico corrugado com dielétrico	
anisotrópico apresentada na Figura 2.1, para os casos onde ϵ_t =1,5	
e ϵ_z =1,3 e para ϵ_r =1,5. Parâmetros: r ₀ = 63,17 mm, r ₁ = 50,54 mm,	
$r_2 = r_0 + d$, com d = 14 mm.	48

Figura 3.1 - Vista lateral de uma corneta cônica corrugada, onde r $_{0}$ varia	
com o ângulo de abertura, θ e R = r_0 /senθ.	68
Figura 3.2 - Curvas de dispersão simuladas. Guia cilíndrico corrugado	
com dielétrico isotrópico perfurado para simular anisotropia: ϵ_r = 10,3	
(alumina ceramica), com $r_1 = 50,54$ mm, $r_0 = 63,17$ mm e profundidade	
de corrugação d = 8 mm. Anisotropia criada inserindo 450 furos axiais,	
com diametro ϕ = 4 mm, no dielétrico, resultando em ϵ_t = 2,745	
e ε_z = 3,745. Dielétrico isotrópico ε_r = 3,745.	70
Figura 3.3 - Padrões de radiação para o guia cilíndrico corrugado com	
dielétrico isotrópico e com dielétrico anisotrópico, com $r_1 = 50,54$ mm,	
r_0 = 63,17 mm e profundidade de corrugação d = 8 mm. Anisotropia	
criada inserindo 450 furos axiais, com diametro ϕ = 4 mm, no dielétrico	
isotrópico com permissividade ϵ_r = 10,3, resultando em anisotropia com	
ε_t = 2,745 e ε_z = 3,745. Dielétrico isotrópico ε_r = 3,745.	71
Figura 4.1 - Campo Vetorial na abertura circular do modo TE11 no plano	
terra, para guia cilíndrico oco, a = r_0 = 63,17 mm.	73
Figura 4.2 - Guia cilíndrico corrugado com raio interno r_0 = 63,17 mm	
e profundidade de corrugação d = 14 mm, com $r_2 = r_0 + d$.	74
Figura 4.3 - Campo Vetorial na abertura circular do guia corrugado do	
modo EH11, com $r_0 = 63,17$ mm, d = 14 mm, $r_2 = 77,17$ mm, $k_0 = 48,05$,	
$\beta/k_0 = 0,941.$	74
Figura 4.4 - Campo Vetorial na abertura circular do guia corrugado para o	
modo HE11, parâmetros $r_0 = 63,17$ mm, d = 14 mm, $r_2 = 77,17$ mm	
$k_0 = 112,28, \ \beta/k_0 = 0,941.$	75
Figura 4.5 - Campo Vetorial na abertura circular do guia cilíndrico metálico	
com dielétrico de ϵ_r = 1,15, do modo EH11, r_0 = 63,17 mm, r1 = 50,54 mm,	
$k_0 = 200, \ \beta/k_0 = 1,4.$	76
Figura 4.6 - Campo Vetorial na abertura circular para o guia cilíndrico	
metálico com dielétrico de ϵ_r = 1,15 do modo HE11, raio r ₀ = 63,17 mm,	
r1 = 50,54 mm, $k_0 = 200$, $\beta/k_0 = 0,9756$.	77
Figura 4.7 - Campo Elétrico na Abertura do guia cilíndrico corrugado com	
bastão dielétrico, EH11, $\epsilon_z = \epsilon_t = 1,15$, $r_0 = 63,17$ mm, $r_1 = 50,54$ mm,	
r_2 =77,17 mm, k_0 = 51,25, β/k_0 = 1,0544.	78
Figura 4.8 - Campo Elétrico na Abertura do guia cilíndrico corrugado com	
bastão dielétrico isotrópico, modo HE11, $\varepsilon_z = \varepsilon_t = 1,15$, $r_0 = 63,17$ mm,	
r_1 =50,54 mm, r_2 =77,17 mm, k_0 = 200, β/k_0 = 1,0544.	79

Figura 4.9 - Campo elétrico para modo HE11 de um guia cilíndrico	
corrugado com dielétrico isotrópico com permissividade relativa igual a 1,5.	
a) $k_0 = 65$, $\beta/k_0 = 1,0177$; b) $k0 = 85$, $\beta/k_0 = 1,1233$; c) $k_0 = 105$, $\beta/k_0 = 1,1607$;	
d) $k_0 = 150$, $\beta/k_0 = 1,1927$.	81
Figura 4.10 - Campo elétrico para modo HE11 de um guia cilíndrico	
corrugado com dielétrico anisotrópico com permissividade ε_z = 1,5, ε_t = 1,1.	
a) $k_0 = 65$, $\beta/k_0 = 1,013$; b) $k_0 = 85$, $\beta/k_0 = 1,1273$; c) $k_0 = 105$, $\beta/k_0 = 1,1636$;	
d) $k_0 = 150$, $\beta/k_0 = 1,1940$.	82
Figura 4.11 - Campo elétrico para modo HE11 de um guia cilíndrico	
corrugado com dielétrico anisotrópico com ε_z = 1,1 e ε_t = 1,5. a) k ₀ = 65,	
$\beta/k_0 = 0,81092$; b) $k_0 = 85$, $\beta/k_0 = 0,9322$; c) $k_0 = 105$, $\beta/k_0 = 0,97726$;	
d) $k_0 = 150$, $\beta/k_0 = 1,0152$.	83
Figura 5.1 - Curvas de dispersão do modo EH11, para o guia cilíndrico	
corrugado com dielétrico anisotrópico definido no Capítulo 2,	
mantendo ϵ_t constante e igual a 1,5 e variando ϵ_z ($r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 ,	
$r_2 = r_0 + d, d = 14 \text{ mm}$).	87
Figura 5.2 - Curvas de dispersão do modo HE11 para o guia cilíndrico	
corrugado com dielétrico anisotrópico definido no Capítulo 2, mantendo	
ϵ_t constante e igual a 1,5 e variando ϵ_z ($r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$,	
d = 14 mm).	87
Figura 5.3 - Curvas de dispersão do modo EH11 para o guia cilíndrico	
corrugado com dielétrico anisotrópico definido no Capítulo 2, mantendo	
ϵ_z =1,5 constante e variando ϵ_t (r ₀ = 63,17 mm, r ₁ = 0,8 r ₀ , r ₂ = r ₀ + d,	
d = 14 mm).	88
Figura 5.4 - Curvas de dispersão do modo HE11 para o guia cilíndrico	
corrugado com dielétrico anisotrópico definido no Capítulo 2, mantendo	
ϵ_z = 1,5 constante e variando ϵ_t (r ₀ = 63,17 mm, r ₁ = 0,8 r ₀ , r ₂ = r ₀ + d,	
d = 14 mm).	89
Figura 5.5 - Curvas demonstrando o comportamento da freqüência	
de corte inferior em relação à anisotropia para o guia cilíndrico corrugado	
com núcleo dielétrico anisotrópico em estudo definido no Capítulo 2	
$(r_0 = 63,17 \text{ mm}, r_1 = 0,8 r_0, r_2 = r_0 + d, d = 14 \text{ mm}).$	90
Figura 5.6 - Diagramas de radiação do modo HE11, das polarizações	
principal e cruzada, no plano φ=45º, para o guia cilíndrico corrugado	
com dielétrico anisotrópico, de um caso degenerado com $\epsilon_r = \epsilon_z = \epsilon_t = 1,05$	
e para vários casos anisotrópicos mantendo ϵ_t = 1,5 e variando ϵ_z .	

Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm, $f = 5,36$ GHz.	92
Figura 5.7 - Distribuição da intensidade do campo elétrico transversal	
na abertura do guia cilíndrico corrugado com dielétrico anisotrópico do	
modo HE11, de vários casos anisotrópicos mantendo $\epsilon_z = 1,5$ e	
variando ϵ_t . Cortes nos planos YZ e XZ. Parâmetros: r ₀ = 63,17 mm,	
$r_1 = 0.8 r_0, r_2 = r_0 + d, d = 14 mm, f = 5.36 GHz.$	93
Figura 5.8 – Comparação entre distribuição da intensidade do campo	
elétrico transversal normalizado na abertura do guia cilíndrico corrugado	
com dielétrico anisotrópico do modo HE11, dos casos anisotrópicos	
ϵ_t =1.5 e ϵ_z =1,1; ϵ_t =1,5 e ϵ_z =1,9. Cortes nos planos YZ e XZ.	
Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm, $f = 5,36$ GHz.	94
Figura 5.9 - Diagramas de radiação do modo HE11, para as	
polarizações principal e cruzada, no plano φ=45º, para o guia	
cilíndrico corrugado com dielétrico anisotrópico, de um caso degenerado	
com $\varepsilon_r = \varepsilon_z = \varepsilon_t = 1,05$ (corrugado oco), e de vários casos	
anisotrópicos mantendo ε_z = 1,5 e variando ε_t . Parâmetros: r ₀ = 63,17 mm,	
$r_1 = 0.8 r_0, r_2 = r_0 + d, d = 14 mm, f = 5.36 GHz.$	95
Figura 5.10 - Distribuição da intensidade do campo elétrico transversal	
na abertura do guia cilíndrico corrugado com dielétrico anisotrópico do	
modo HE11, de vários casos anisotrópicos mantendo ϵ_t = 1,5 e	
variando ϵ_z . Cortes nos planos YZ e XZ. Parâmetros: r ₀ = 63,17 mm,	
$r_1 = 0.8 r_0, r_2 = r_0 + d, d = 14 mm, f = 5.36 GHz.$	96
Figura 5.11 – Comparação entre distribuição da intensidade do campo	
elétrico transversal normalizado na abertura do guia cilíndrico corrugado	
com dielétrico anisotrópico do modo HE11, dos casos anisotrópicos	
ϵ_z =1,5 e ϵ_t =1.1; ϵ_z =1,5 e ϵ_t =1,9. Cortes nos planos YZ e XZ.	
Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm, $f = 5,36$ GHz.	97
Figura 5.12 - Largura de Feixe de Meia Potência (-3 dB) em função	
da permissividade para o guia cilíndrico corrugado com dielétrico	
anisotrópico mantendo ϵ_t = 1,5 e variando ϵ_z e, mantendo ϵ_z = 1,5 e	
variando ϵ_t . Parâmetros: $r_0 = 63,17 \text{ mm}$, $r_1 = 0,8 r_0$, $r_2 = r_0 + d$, $d = 14 \text{ mm}$,	
f = 5,36 GHz.	98
Figura 5.13 - Nível de Polarização Cruzada Máxima em	
função da permissividade para o guia cilíndrico corrugado com	
dielétrico anisotrópico em estudo, mantendo ϵ_t = 1,5 e variando ϵ_z e,	
mantendo ε_z = 1,5 e variando ε_t . Parâmetros: r ₀ = 63,17 mm, r ₁ = 0,8 r ₀ ,	

$r_2 = r_0 + d$, $d = 14$ mm, $f = 5,36$ GHz.	99
Figura 5.14 – Gráfico do Nível da Largura de Feixe de -3 dB em função	
da freqüência para o guia cilíndrico corrugado com dielétrico anisotrópico	
em estudo, mantendo ϵ_t = 1,5 constante e variando ϵ_z . Parâmetros:	
$r_0 = 63,17 \text{ mm}, r_1 = 0,8 r_0, r_2 = r_0 + d, d = 14 \text{ mm}.$	100
Figura 5.15 - Gráfico do Nível da Largura de Feixe de -3 dB em função	
da freqüência para o guia cilíndrico corrugado com dielétrico anisotrópico	
em estudo, mantendo ϵ_z = 1,5 constante e variando ϵ_t . Parâmetros:	
$r_0 = 63,17 \text{ mm}, r_1 = 0,8 r_0, r_2 = r_0 + d, d = 14 \text{ mm}.$	101
Figura 5.16 - Nível de Máxima Polarização Cruzada em função	
da freqüência de operação para o guia cilíndrico corrugado oco,	
guia cilíndrico metálico	
com bastão dielétrico (sem corrugação) com ϵ_r = 1,5 e guia cilíndrico	
corrugado com bastão dielétrico isotrópico com ϵ_r = 1,5. Parâmetros:	
$r_0 = 63,17 \text{ mm}, r_1 = 0,8 r_0, r_2 = r_0 + d, d = 14 \text{ mm}.$	102
Figura 5.17 – Gráfico do Nível da Polarização Cruzada Máxima em função	
da freqüência de operação para o guia cilíndrico corrugado com	
dielétrico anisotrópico, de um caso degenerado com $\varepsilon_r = \varepsilon_z = \varepsilon_t = 1$ e de	
vários casos anisotrópicos mantendo ϵ_z = 1,5 e variando ϵ_t . Parâmetros:	
$r_0 = 63,17 \text{ mm}, r_1 = 0,8 r_0, r_2 = r_0 + d, d = 14 \text{ mm}.$	103
Figura 5.18 – Gráfico do Nível de Polarização Cruzada Máxima em função	
da freqüência de operação para o guia cilíndrico corrugado com	
dielétrico anisotrópico mantendo ϵ_t = 1,5 e variando ϵ_z (ϵ_t = 1,5, ϵ_z variando	
de 1,1 a 1,9). Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm.	104
Figura 5.19 – Gráfico do Nível de Polarização Cruzada Máxima em função	
da freqüência de operação para o guia cilíndrico corrugado oco ($\epsilon_r = 1,05$),	
guia cilíndrico metálico dielétrico (ϵ_r = 1,5 sem corrugações), guia	
cilíndrico corrugado com dielétrico: isotrópico com ϵ_r = 1,5, anisotrópico	
com ε_z = 1,5 e ε_t = 1,3 e anisotrópico com ε_z = 1,9 e ε_t = 1,5.	
Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm.	105
Figura 5.20 - Diagramas de radiação para corneta cônica corrugada	
com dielétrico anisotrópico, para freqüência de 5,36 GHz, ângulo flare	
de 12°. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm.	107
Figura 5.21 - Diagramas de radiação para casos degenerados de guia	
cilíndrico corrugado com dielétrico anisotrópico e para corneta cônica	
corrugada com dielétrico anisotrópico, para freqüência de 5,36 GHz, ângulo	

<i>flare</i> de 12°. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm.	108
Figura 5.22 - Diagramas de radiação para casos degenerados de guia	
cilíndrico corrugado com dielétrico anisotrópico e para corneta cônica	
corrugada com dielétrico anisotrópico, para freqüência de 5,36 GHz,	
ângulo <i>flare</i> de 12°. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$,	
d = 14 mm.	109
Figura 5.23 - Diagramas de radiação em função da freqüência para	
corneta cônica corrugada com núcleo dielétrico isotrópico com dimensões:	
$r_0 = 63,17$ mm, $r_1=0,8$ r_0 , $r_2 = r_0 + d$, $d= 14$ mm, ângulo <i>flare</i> =12 ^o . Casos:	
a) $\varepsilon_r = 1,05$; b) $\varepsilon_r = 1,5$.	110
Figura 5.24 - Diagramas de radiação em função da freqüência para	
corneta cônica corrugada com núcleo dielétrico anisotrópico com dimensões:	
$r_0 = 63,17$ mm, $r_1=0,8$ r_0 , $r_2 = r_0 + d$, $d= 14$ mm, ângulo <i>flare</i> =12 ^o . Casos:	
a) $\varepsilon_z = 1,5 \ e \ \varepsilon_t = 1,1$, b) $\varepsilon_z = 1,5 \ e \ \varepsilon_t = 1,3$, c) $\varepsilon_z = 1,5 \ e \ \varepsilon_t = 1,7$, d) $\varepsilon_z = 1,5$	
$e \epsilon_t = 1,9.$	111
Figura 5.25 - Nível de Largura de Feixe de -3 dB para guia cilíndrico	
corrugado com dielétrico anisotrópico e para corneta cônica corrugada	
com dielétrico anisotrópico e ângulo "flare" de 12º em função da	
permissividade, mantendo ϵ_z = 1,5 e variando ϵ_t , para a freqüência	
de 5,36 GHz. Parâmetros: $r_0 = 63,17$ mm, $r_1 = 0,8$ r_0 , $r_2 = r_0 + d$, $d = 14$ mm.	112
Figura 5.26 - Máxima polarização cruzada em função da freqüência para	
corneta cônica corrugada com núcleo dielétrico anisotrópico, ângulo	
"flare" de 12º e guia cilíndrico corrugado com dielétrico anisotrópico	
mantendo ϵ_z = 1,5 e variando ϵ_t e para os casos isotrópico com	
ϵ_r = 1,5 e degenerado para ϵ_r = 1,05. Parâmetros: r ₀ = 63,17 mm, r ₁ = 0,8 r ₀ ,	
$r_2 = r_0 + d, d = 14 mm.$	113