Metodologia de Captura e Análise de Dados

Após a definição do setup de medidas e planejamento o funcionamento da mesma para aquisição dos dados, é necessário definir a captura dos dados. Portanto, como o receptor da Anritsu, o Signature MS278XB, tem interface para Matlab é possível processar os dados recebidos neste software. A captura dos dados foi feita com o tempo de captura 200µs a uma taxa de 50MHz, com relógio sincronizado com GPS, gerando assim 2 medidas uma de GPS e outra de dados recebidos.

5.1

Captura de Dados

As captura de dados é a mesma tanto na sondagem com seqüência PN quanto na OFDM, já que o uso do transmissor MG 3700A da Anritsu s permitiu gerar o sinais via software e posteriormente convertê-los em sinais elétricos para transmissão.

Os dados de configuração são: 50 MHz de taxa de amostragem, 200 µs de tempo de captura, e programa de aquisição de dados desenvolvido em Matlab. A Figura 5.1 dá uma idéia do sistema montado para recepção, e a figura 5.2, a sua parte externa.

Figura 5.1 - Sistema receptor usado nas medições

Figura 5.2 – Unidade Móvel usada nas medidas

A taxa de amostragem tem que ser pelo menos a taxa de Nyquist, entretanto como forma de combater o aliasing, a taxa será de 5 (cinco) vezes, no caso 50MHz, uma vez que Jeruchim [7] afirma que 4 (quatro) vezes já oferece o valor ótimo de taxa de amostragem. A figuras 5.3, 5.4 e 5.5 ilustram um teste no laboratório em que temos o espectro de sinal quando transmitimos seqüência PN com uso de Filtragem, sem uso de Filtragem e a OFDM, respectivamente. A geração das Figuras 5.3, 5.4 e 5.5 foi feita usando o software proprietário da Anritsu o IQproducer for MG 3700.

A figura 5.3 mostra claramente que há problemas de faixa dinâmica quando se usa seqüência PN, o que limita a sonda na determinação dos multipercursos. A solução adotada foi fazer uma filtragem na seqüência PN via software antes de transmiti-la usamos o filtro de Remez, conforme proposto por Matos [8], com isso consegue-se uma melhor resolução na sonda, conforme as figuras 5.3 e 5.4.

Figura 5.3 - Recepção de Seqüencia PN usando filtro

A figura 5.5 mostra um primeiro indicativo do porque deste estudo comparando a seqüência PN com OFDM, é possível verificar que há uma vantagem significativa no quesito faixa dinâmica, e um desempenho muito superior, mesmo quando comparada a seqüência PN Filtrada (Figura 5.3)

Figura 5.5 – Recepção de Sinal OFDM

As figuras 5.6 e 5.7 mostram os sinais recebidos quando são enviados a seqüência PN e o sinal OFDM, respectivamente. Entretanto, ao se analisar a figura 5.7, observa-se que o sinal OFDM apresenta um *gap*, o qual foi inserido para facilitar a sincronização quando se usa a sonda OFDM.

Figura 5.6 – Sinal recebido quando se envia uma seqüência pseudoaleatória.

Figura 5.7 - Sinal recebido quando se envia um sinal OFDM

5.2 Análise de Resultados

A análise de resultados foi dividida em dois subitens: um referente à análise dos perfis de retardo e outro referente à análise da cobertura para cada uma das rotas.

5.2.1 Análise de Perfis

A análise em pequena é para pequena distâncias. Os perfis foram obtidos de duas maneiras distintas de acordo com a sondagem escolhida. No caso da sonda STDCC, obtém-se a correlação entre seqüência PN recebida e a transmitida. Entretanto, quando se usa OFDM transmite-se um sinal aleatório usando um tempo de guardo e a técnica de prefixo cíclico. Ao se trabalhar com o perfis medidos para determinação dos parâmetros de dispersão do canal, temos que garantir a estacionariedade pelo menos em pequenos trechos.

Os perfis são obtidos após uso de uma técnica de limpeza de perfis, que permitam distinguir componentes de multipercurso de componentes de ruído. A técnica utilizada neste trabalho é o método CFAR (*Constante False Alarm*) [18]. A técnica é determinar o ruído pela mediana e o desvio padrão do perfil de potência de retardos. O piso de ruído é determinado pela diferença entre o pico máximo e a mediana mais o desvio padrão. Após determinar o piso de ruído temos que avaliar: se um dado retardo excede o piso de ruído, se os retardos anterior e posterior também excedem o mesmo. Entretanto, para que o perfil de potência seja válido ao menos um dos vizinhos devem satisfazer a condição anterior.

As figuras 5.8 a 5.17 exemplifica diversos perfis para a rota 1, uma rota tipicamente em visibilidade em ambiente urbano, e a tabela 5.1 os valores de retardo médio e espalhamento Doppler, valores compatíveis com obtidos por RON [6] e MATOS [8].

Figura 5.8a – Perfil de retardos STDCC rota 1 (d=1,13km), em azul marcado os multipercursos detectados

Figura 5.8b – Perfil de retardos OFDM rota 1 (d=1,13km), em azul marcado os multipercursos detectados

Figura 5.9a - Perfil de retardos STDCC com multipercursos válidos rota 1 (d=1,13km)

Figura 5.9b – Perfil de retardos OFDM rota 1 com multipercursos válidos (d=1,13km)

Figura 5.10 – Perfil de retardos STDCC rota 1 (d=1,13km), em azul marcado os multipercursos detectados

Figura 5.11 - Perfil de retardos STDCC com multipercursos válidos rota 1 (d=1,13km)

Figura 5.12 – Perfil de retardos STDCC rota 1 (d=1,12km), em azul marcado os multipercursos detectados

Figura 5.13 - Perfil de retardos STDCC com multipercursos válidos (d=1,12km) rota 1

Figura 5.14 – Perfil de retardos STDCC rota 1 (d=1,09km) , em azul marcado os multipercursos detectados

Figura 5.15 – Perfil de retardos STDCC com multipercursos válidos (d=1,09km) rota 1

Figura 5.16 – Perfil de retardos STDCC rota 1 (d=1,03km) , em azul marcado os multipercursos detectados

Figura 5.17 - Perfil de retardos STDCC com multipercursos válidos (d=1,03km) rota 1

	STDCC		OFDM				PN	OFDM
Rotas	Retardo	Espalhamento	Retardo	Espalhamento		Distância	Nível de	Nível de
	médio	de retardo	médio	de retardo		Tx e Rx	potência	potência
1	0,1028µs	0,1778μs	0,149µs	0,086µs	NLOS	1,13km	-55,65dBm	-53,18dBm
	-	•						
1	0,0448µs	0,1120µs	XXXXXXXXX	XXXXXXXXX	NLOS	1,13km	-55,68dBm	-51,51dBm
1	0μs	0μs	XXXXXXXXX	XXXXXXXXX	NLOS	1,2km	-55,20dBm	-50,29dBm
1	0,0886µs	0,1559µs	0,2607µs	0,0488µs	NLOS	1,09km	-57,76dBm	-56,37dBm
1	0µs	0μs	0µs	0μs	LOS	1,03km	-52,69dBm	-53,02dBm

Tabela 5.1 – Parâmetros de dispersão do canal para a Rota 1

A rota 2 é sem visada, porque a medida começou a ser realizada na linha amarela em sentido barra a partir da saída 4. Os perfis estão ilustrados nas Figuras 5.18 à 5.29, sendo mostrado na tabela 5.2 temos valores de espalhamento de retardo e retardo médio.

Figura 5.18a – Perfil de retardos STDCC rota 2 (d=2,69km) , em azul marcado os multipercursos detectados

Figura 5.18b - Perfil de retardos OFDM rota 2 (d=2,69km)

Figura 5.19 - Perfil de retardos STDCC com multipercursos válidos (d=2,69km) rota 2

Figura 5.20 – Perfil de retardos STDCC rota 2 (d=2,69km) , em azul marcado os multipercursos detectados

Figura 5.21 - Perfil de retardos STDCC com multipercursos válidos (d=2,69km) rota 2

Figura 5.22 – Perfil de retardos STDCC rota 2 (d=2,69km) , em azul marcado os multipercursos detectados

Figura 5.23 - Perfil de retardos STDCC com multipercursos válidos (d=2,69km) rota 2

Figura 5.24 – Perfil de retardos STDCC rota 2 (d=2,69km) , em azul marcado os multipercursos detectados

Figura 5.25 - Perfil de retardos STDCC com multipercursos válidos (d=2,69km) rota 2

Figura 5.26 – Perfil de retardos STDCC rota 2(d=2,66km) , em azul marcado os multipercursos detectados

Figura 5.27 - Perfil de retardos STDCC com multipercursos válidos rota 2 (d=2,66km)

Figura 5.28 – Perfil de retardos STDCC rota 2 (d=2,65km), em azul marcado os multipercursos detectados

Figura 5.29 - Perfil de retardos STDCC (d=2,65km) rota 2

Tabela 5.2 - Parâmetros de dispersão do canal para a Rota 2

	STDCC		OFDM				PN	OFDM
Rotas	Retardo	Espalhamento	Retardo	Espalhamento		Distância	Nível de	Nível de
	médio	de retardo	médio	de retardo		Tx e Rx	Potência	Potência
2	0,1570µs	0,1809µs	XXXXXXXX	*****	NLOS	2,69km	-66,72dBm	-66,82dBm
2	0,0962µs	0,1156µs	XXXXXXXX	XXXXXXXXXXXXX	NLOS	2,69km	-66,77dBm	-66,83dBm
2	0,0984µs	0,1241µs	XXXXXXXX	XXXXXXXXXXXXX	NLOS	2,69km	-66,76dBm	-66,83dBm
2	0,1778μs	0,2268µs	XXXXXXXX	XXXXXXXXXXXX	NLOS	2,69km	-66,63dBm	-66,88dBm
2	0,0914µs	0,1252µs	XXXXXXXX	XXXXXXXXXXXX	NLOS	2,66km	-66,74dBm	-66,77dBm
2	0μs	Oμs	XXXXXXXX	XXXXXXXXXXXXX	NLOS	2,65km	-66,72dBm	-66,80dBm

A rota 3 começa sem visibilidade na Avenida Amaro Cavalcanti passando por baixo da linha amarela e entrando em visibilidade com o transmissor na Rua Manoel Vitorino. As figuras 3.30 à 3.37 apresentam os perfis de retardo, com seus respectivos valores de retardo médio e espalhamento de retardo apresentados pela tabela 5.3

Figura 5.30 – Perfil de retardos STDCC rota 3(d=1,26km), em azul marcado os multipercursos detectados

Figura 5.31 - Perfil de retardos STDCC com multipercursos válidos (d=1,26km) rota 3

Figura 5.32a – Perfil de retardos STDCC rota 3(d=1,25km) , em azul marcado os multipercursos detectados

Figura 5.32b – Perfil de retardos OFDM rota 3(d=1,25km) , em azul marcado os multipercursos detectados

Figura 5.33a - Perfil de retardos STDCC com multipercursos válidos (d=1,25km) rota 3

Figura 5.33b - Perfil de retardos OFDM com multipercursos válidos (d=1,25km) rota 3

PUC-Rio - Certificação Digital Nº 0510516/CA

Figura 5.34 – Perfil de retardos STDCC rota 3 (d=1,23km), em azul marcado os multipercursos detectados

Figura 5.35 – Perfil de retardos STDCC com multipercursos válidos (d=1,23km) rota 3

Figura 5.36 – Perfil de retardos STDCC rota 3 (d=1,21km), em azul marcado os multipercursos detectados

Figura 5.37 - Perfil de retardos STDCC com multipercursos válidos (d=1,21km) rota 3

	STDCC		OFDM				PN	OFDM
Rotas	Retardo	Espalhamento	Retardo médio	Espalhamento		Distância		
	medio	ue relatuo		ue relatuo		1761/7		
3	0,0608µs	0,1156 μs	Хххххххх	*****	NLOS	1,26km	-65,46dBm	-64,65dBm
3	1,1053µs	0,8028µs	0,2476µs	0,0499µs	NLOS	1,25km	-66,14dBm	-65,36dBm
3	0,8294µs	0,7171µs	Xxxxxxx	XXXXXXXXXXXXXX	NLOS	1,23km	-65, 69dBm	-64,99dBm
3	0,1654µs	0,2246µs	0,3657µs	0,1524µs	NLOS	1,21km	-64,93dBm	-63,82dBm

Tabela 5.3 – Parâmetros de dispersão do canal para a Rota 3

A rota 4 começa na esquina da rua Goiás em visada e vai até o estádio João Havelange. As figuras 5.38 até 5.45 ilustram os diversos perfis ao longo da rota, e a tabela 5.4 os valores de retardo médio e espalhamento de retardo para a data rota nos diversos pontos.

Figura 5.38 – Perfil de retardos STDCC rota 4 (d=0,14km) , em azul marcado os multipercursos detectados

Figura 5.39 - Perfil de retardos STDCC com multipercursos válidos (d=0,14km) rota 4

Figura 5.40 – Perfil de retardos STDCC rota 4(d=0,14km), em azul marcado os multipercursos detectados

Figura 5.41 - Perfil de retardos STDCC com multipercursos válidos (d=0,14km) rota 4

Figura 5.42 – Perfil de retardos STDCC rota 4 (d=0,16km), em azul marcado os multipercursos detectados

Figura 5.43 - Perfil de retardos STDCC com multipercursos válidos (d=0,16km) rota 4

Figura 5.44 – Perfil de retardos STDCC (d=1,35km) rota 4, em azul marcado os multipercursos detectados

Figura 5.45 - Perfil de retardos STDCC com multipercursos válidos (d=1,35km) rota 4

	STDCC		OFDM				PN	OFDM
Rotas	Retardo	Espalhamento de	Retardo	Espalhamento	Situação	Distância		
	médio	retardo	médio	de retardo		IX e RX		
4	0,0625µs	0,1545µs	XXXXXXX	XXXXXXXXXXXXXX	LOS	0,14km	-53,95dBm	-62,36dBm
4	0,0458µs	0,1234µs	XXXXXXX	xxxxxxxxxxxx	LOS	0,14km	-53,44dBm	-59,92dBm
4	0,0462µs	0,1057 μs	XXXXXXX	*****	LOS	0,16km	-58,99dBm	-58,37dBm
4	0,0577µs	0,1438µs	0,3442µs	0,1287µs	NLOS	1,35km	-53,87dBm	-56,93dBm

Tabela 5.4 - Parâmetros de dispersão do canal para a Rota 4

As figuras 5.8 até 5.45 ilustram diversos perfil com mobilidade e as tabelas 5.1 à 5.4, com os parâmetros do canal: retardo médio e espalhamento de retardo. Entretanto, foram feitas medidas fixas, ao lado da linha férrea para vermos se a composição do trem em movimento tem algum efeito. As figuras 5.46 e 5.47 ilustram as medidas fixas, ao lado da linha férrea com trem passando pela mesma. A tabela 5.5 ilustra os parâmetros de dispersão, retardo médio e espalhamento de retardo para cada sonda, com uma medida fixa na rua Goiás, ao lado da Universidade Gama Filho.

Figura 5.46 - Perfil de retardos STDCC para rota fixa, em azul marcado os multipercursos detectados

Figura 5.47 - Perfil de retardos STDCC com multipercursos válidos rota fixa

	S	STDCC		OFDM		
Rotas	Retardo	Espalhamento	Retardo	Espalhamento	Situação	Distância Tx e
	médio	de retardo	médio	de retardo		
Fixo	0,0501µs	0,1300µs	Ххххххх	*****	LOS	140m

Tabela 5.5 – Parâmetros de dispersão do canal para a Rota fixa

As medidas foram feitas ao longo de 4 rotas, além de uma medida fixa ao lado da linha férrea próximo a Universidade Gama Filho. As figuras mostram claramente que o espalhamento de retardo é maior em regiões NLOS, e que a mesma aumenta à medida que se distancia do transmissor onde predomina o multipercurso em detrimento do raio direto.

5.2.2 Análise de Variabilidade

As medidas incluem quatro rotas, e com esta análise conseguimos ver as possíveis distribuições que caracterizam cada rota. Entretanto, é relevante citar que essa faixa de freqüência, no inicio da faixa de SHF, a propagação por difração torna-se muito difícil e o mecanismo dominante de propagação é o de visibilidade.

A rota 1, conforme foi informado no capítulo 4, é a rota com início na saída 2 da linha amarela indo até a saída 5 no sentido Avenida Brasil, retornando, passando em frente ao Shopping Nova América, e parando logo, poucos metros após a saída 5. O trecho entre as saídas 2 e 4 são o de interesse, da figura 5.54 ilustra-se um comportamento onde se predomina o comportamento sem visibilidade, sendo melhor caracterizada por uma distribuição Rayleigh conforme figura 5.48

Figura 5.48 – Função densidade de probabilidade rota 1 (Rayleigh)

A rota 2, conforme foi informado no capítulo 4, é a rota com início na saída 4 da linha amarela indo até a saída 2 no sentido Barra, retornando, e parando logo, poucos metros após a saída 5. O trecho de interesse se situa entre a saída 4 e 2, onde também predomina o trecho sem visibilidade. Entretanto, foi melhor caracterizada por uma distribuição gaussiana como na Figura 5.49, devido ao nível de sinal estar muito próximo ao piso de ruído.

Figura 5.49 – Função densidade de probabilidade rota 2 (Gaussiana)

A rota 3, conforme foi informado no capítulo 4, é a rota com início na Avenida Amaro Cavalcanti próximo ao viaduto da Linha Amarela, indo pela Rua Manoel, passando em frente a Universidade Gama Filho. O trecho de interesse se situa antes da linha amarela, vindo pela Avenida Amaro Cavalcanti e portanto tendo como obstrução o próprio viaduto da linha amarela até chegar ao inicio da Rua Manuel Vitorino um típico trecho sem visada, como na Figura 5.50 caracterizado por uma distribuição Rayleigh.

Figura 5.50 - Função densidade de probabilidade rota 3 (Rayleigh)

A rota 4, conforme foi informado no capítulo 4, é a rota com início na Rua Goiás próximo a Universidade Gama Filho, indo até o Estádio João Havelange e contornando-o, dando uma volta completa. O trecho de interesse foi em visada direta ao lado da linha férrea. A figura 5.51 mostra a distribuição Gaussiana a qual caracteriza o trecho em visada.

Figura 5.51 – Função densidade de probabilidade rota 4 (Gaussiana)

Enlaces fixos, ponto-a-ponto não tem um nível perfeito de recepção e estão sujeitos a desvanecimento. A caracterização para tais tipos de enlaces é do tipo Rayleigh. Entretanto, a figura 5.52 é a distribuição estatística da medida fixa que como se vê é gaussiana o que ocorre devido a predominância do raio direto devido a proximidade e a visada direta entre transmissor e receptor conforme figura 4.10.

Figura 5.52 - Função densidade de probabilidade rota FIXA (Gaussiana)