Caracterização de Canal

Um grande problema que restringe a expansão das redes móveis é o desvanecimento, que afeta o desempenho das mesmas. O uso de mobilidade no acesso a internet banda larga como propõe WiMAX, impõe a necessidade de se estudar com mais profundidade os parâmetros que caracterizam um canal radio móvel.

Um grande problema é que, devido à mobilidade, os espalhadores estão mudando de posição e o sinal recebido é o que foi transmitido mais os seus ecos conforme mostra a figura 2.1. verifica-se que os ecos se sobrepõem e a detecção dos bits transmitidos é comprometida e, por isto a taxa de erro de bits (BER) aumenta. Escolher um tempo de separação adequado entre o pulso e seus ecos pode ser uma maneira de diminuir esta interferência intersimbólica (ISI) e, para isso, será definido um parâmetro importante em caracterização de canal: o espalhamento de retardo.

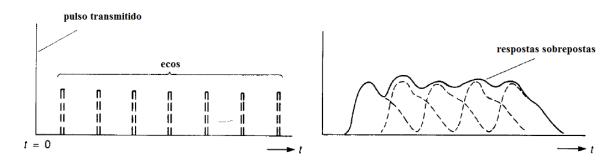


Figura 2.1 – A resposta do receptor permite que os ecos do pulso transmitido possam ser sobrepostos produzindo a interferência intersimbólica (ISI). Fonte: [2]

Caracterizar um canal de comunicações com mobilidade impõe trabalhar com modelos estocásticos e, consequentemente, trabalhar com uma fundamentação estatística. Se um canal invariante no tempo é caracterizado bem simples pelo cálculo de sua resposta ao impulso, nos canais variantes no tempo é necessário trabalhar com variáveis aleatórias e processos estocásticos, pois é praticamente impossível haver uma variação temporal determinística do canal. Em processos estocásticos é possível caracterizar os canais como estacionários tanto

no sentido estrito como no sentido amplo (ESA). Um processo estocástico no sentido amplo é mais fácil de ser comprovado, pois, basta calcular sua média e sua função de autocorrelação. Se estas funções não dependerem do tempo, então o processo será ESA cuja caracterização é muito mais simples. Num canal radio móvel as funções são variantes no tempo e, portanto o canal não é estacionário. Entretanto, é possível considerar que num pequeno intervalo de tempo, usado geralmente para sondar o canal, o mesmo é estacionário conforme Parsons [2], ou seja, mesmo num canal variante no tempo durante a medida, seu valor médio e sua função de autocorrelação invariantes no tempo. O canal de comunicação não é apenas dito estacionário no intervalo de medidas, ele também tem que ter seus espalhadores descorrelatados para que se possa trabalhar com funções de autocorrelação mais simplificadas.

2.1

Canal de Comunicação

Os canais invariantes no tempo podem ser caracterizados pela sua resposta ao impulso h(t). Porém, em um canal variante no tempo é preciso trabalhar com duas variáveis de tempo para a função de resposta ao impulso. Agora, tem-se a função resposta no tempo t a um impulso aplicado em t - τ $h(t;\tau)$ e, consequentemente, também haverá na saída uma relação de convolução entre a entrada e a resposta ao impulso do canal. Daí ,

$$z(t) = h(t;\tau) * y(t) = \int_{-\infty}^{+\infty} h(t;\tau) y(t-\tau) d\tau$$
 (2.1)

onde o sinal de entrada é de fato:

$$x(t) = \Re e \left[y(t)e^{j\omega_c t} \right] \tag{2.2}$$

onde y(t) de envoltória complexa do sinal de entrada

Um sinal transmitido sobre um canal variante no tempo vai ser afetado por cada espalhador conforme a equação 2.1, assim no sinal o efeito de um canal que muda

constantemente, e alterando assim a saída. Pode-se representar isto pelo filtro transversal da Figura 2.2.

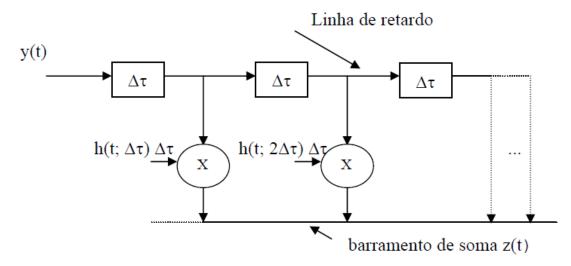


Figura 2.2- Modelo de Canal no Domínio do Tempo. Fonte:[2]

Até o momento foi citada a resposta ao impulso do canal, mas a aplicação da transformada de Fourier permite que se vá para o domínio da freqüência e, conforme Bello [1], tem-se:

$$Z(f) = \int_{-\infty}^{+\infty} Y(f - v)H(f - v; v)dv$$
 (2.3)

que pode ser representado conforme a figura 2.3

barramento de distribuição

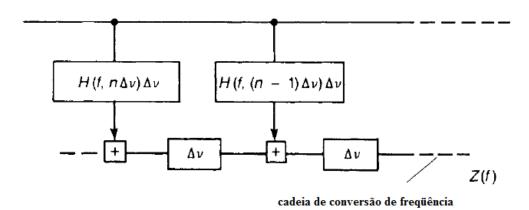


Figura 2.3 – Modelo de Canal no Domínio da Freqüência. Fonte:[2]

O canal, por ser variante no tempo, tem uma resposta ao impulso como função do tempo t e do retardo τ , ou seja, $h(t;\tau)$, e H(f;v) é o seu dual no domínio freqüência/ deslocamento Doppler. Entretanto, pode ser interessante saber a resposta do canal identificado por um espalhador com retardo τ e desvio Doppler v ou a função de transferência variante no tempo, ou seja, as funções: $S(\tau;v)$ e T(f;t). Portanto, existe uma relação entre todas estas funções que caracterizam um canal deterministicamente variante no tempo mostradas na Figura 2.4 e as equações 2.4 até 2.7, dadas a seguir:

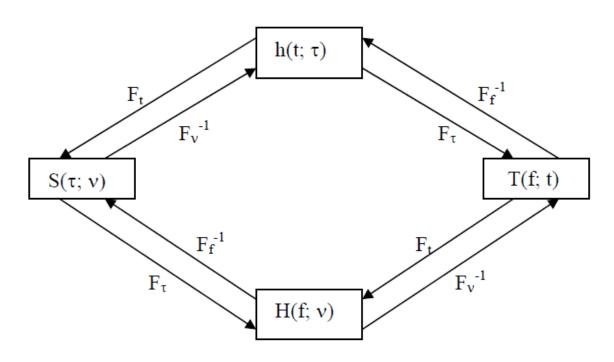


Figura 2.4 – Relação entre as funções que caracterizam o canal. Fonte:[2]

$$S(\tau; v) = \int_{-\infty}^{+\infty} h(t; \tau) e^{-j2\pi vt} dt$$
 (2.4)

$$T(f;t) = \int_{-\infty}^{+\infty} h(t;\tau) e^{-j2\pi f\tau} d\tau \tag{2.5}$$

$$H(f;v) = \int_{-\infty}^{+\infty} S(\tau;v) e^{-j2\pi f\tau} d\tau$$
 (2.6)

$$H(f;v) = \int_{-\infty}^{+\infty} T(f;t)e^{-j2\pi vt}dt$$
 (2.7)

A caracterização do canal de comunicação é feita por um modelo no qual dada uma entrada, obtém-se uma saída. Portanto, conhecendo-se a entrada e desejando-se obter o sinal recebido, pode-se usar, por exemplo, a equação (2.8)

$$z(t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y(t-\tau)S(\tau;v)e^{j2\pi vt} dv d\tau$$
 (2.8)

2.2

Aleatoriedade e Canais Variantes no Tempo

A variação temporal do canal móvel de comunicação é aleatória, sendo a mobilidade a principal variável que caracteriza esta aleatoriedade. A mobilidade acontece tanto no receptor e no transmissor, quanto nos espalhadores e isso praticamente torna impossível o uso de um modelo determinístico. Fazendo uso das funções de densidade de probabilidade conjunta com as variáveis necessárias caracterizamos o canal. Entretanto, para isto é necessário um número extremamente grande de medições. Para contornar tal problema assumi-se a hipótese de estacionariedade, pelos menos durante a sondagem do canal. Além disto, assume-se também a ergodicidade que garante que as estatísticas podem ser obtidas pelas poucas amostras do canal. O estudo pelas funções de autocorrelação do sistema, onde será definido a função de autocorrelação $\mathfrak{R}_h(t,s;\tau,\xi)$, onde τ e ξ são os retardos associados aos tempos t e s, respectivamente, usada para determinarmos a função de autocorrelação do sinal de saída $\mathfrak{R}_z(t,s)$ dada por:

$$\mathfrak{R}_{z}(t,s) = E[z(t)z^{*}(s)]$$
(2.9)

A função de autocorrelação que caracteriza o canal é:

$$\mathfrak{R}_h(t,s;\tau,\xi) = \mathbb{E}[h(t,\tau).h^*(s,\xi)] \tag{2.10}$$

A equação 2.1, relaciona os sinais z(t) e y(t), logo:

$$\Re_{z}(t,s) = E \left[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y(t-\tau) y^{*}(s-\xi) h(t;\tau) h^{*}(s;\xi) d\tau d\xi \right]$$
(2.11)

$$\Re_{z}(t,s) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y(t-\tau)y^{*}(s-\xi)d\tau d\xi \Re_{h}(t,s;\tau,\xi)$$
(2.12)

De forma análoga, defini-se as outras funções de autocorrelação que caracterizam o canal aleatoriamente variante no tempo:

$$E[S(\tau; v).S^*(\xi; \mu)] = \Re_s(\tau, \xi; v, \mu)$$
(2.13)

$$E[H(v;f).H^*(\mu;l)] = \Re_H(v,\mu;f,l)$$
(2.14)

$$E[T(f;t)T^*(l;s)] = \Re_T(f,l;t,s)$$
(2.15)

onde v e μ são os deslocamentos Doppler associados às frequências f e l, respectivamente.

As equações de 2.12 até 2.14 são representadas na Figura 2.5.

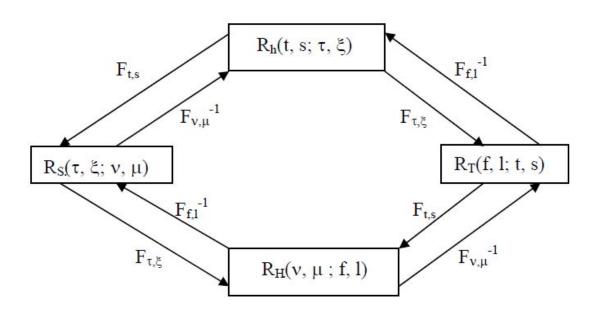


Figura 2.5 – As funções de Autocorrelação do Canal

Conforme a figura 2.5, tem-se:

$$\Re_{s}(\tau,\xi;\nu,\mu) = F_{t,s}\left\{R_{h}(t,s;\tau,\xi)\right\} \tag{2.16}$$

$$\mathfrak{R}_{T}(f,l;t,s) = F_{\tau,\xi} \left\{ R_{h}(t,s;\tau,\xi) \right\}$$
 (2.17)

$$\mathfrak{R}_{H}(v,\mu;f,l) = F_{\tau,\xi}\left\{R_{s}\left(\tau,\xi;v,\mu\right)\right\} \tag{2.17}$$

$$\Re_{H}(v,\mu;f,l) = F_{t,s} \{ R_{T}(f,l;t,s) \}$$
 (2.18)

Conforme se observa pelas equações 2.10 até 2.18, ainda temos uma complexidade de ordem prática, ou seja, como realizar medições para obter as características do canal. Sendo assim, o canal além de estacionário no sentido amplo (*ESA*), o canal deve ser também considerado como espalhadores descorrelatados (*ED*), ou seja, considera-se o canal estacionário em curtos intervalos de tempo ou pequenas distâncias. Assim, tem-se um canal estacionário no sentido amplo com espalhadores descorrelatados (*ESAED*).

Admitindo-se que o canal é estacionário, define-se η=s-t, daí:

$$\mathfrak{R}_h(t,s;\tau,\xi) = \mathfrak{R}_h(\eta;\tau,\xi) \tag{2.19}$$

$$\mathfrak{R}_{T}(f,l;t,s) = \mathfrak{R}_{h}(f,l;\eta) \tag{2.20}$$

Para as demais funções de autocorrelação, pode-se obtê-las através da transformada de Fourier, ou seja:

$$\Re_{s}(\tau,\xi;\nu,\mu) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Re_{h}(t,s;\tau,\xi) e^{j2\pi(t\nu-s\mu)} dt ds$$
 (2.21)

$$\mathfrak{R}_{H}(v,\mu;f,l) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathfrak{R}_{T}(f,l;t,s)e^{j2\pi(tv-s\mu)}dtds$$
 (2.22)

Como s = η +t, tem-se:

$$\Re_{s}(\tau,\xi;\nu,\mu) = \delta(\nu-\mu) \int_{-\infty}^{+\infty} \Re_{h}(\eta;\tau,\xi) e^{-j2\pi\eta\mu} d\eta$$
 (2.23)

$$\mathfrak{R}_{H}(v,\mu;f,l) = \delta(v-\mu) \int_{-\infty}^{+\infty} \mathfrak{R}_{T}(f,l;\eta) e^{-j2\pi\eta\mu} d\eta$$
 (2.24)

As equações 2.23 e 2.24 mostram claramente que as variáveis de deslocamento Doppler, v e µ, estão descorrelatadas. Observa-se também que temse uma transformada de Fourier de função de autocorrelação, definida como uma função densidade espectral de potência. Logo:

$$P_{S}(\mu;\tau,\xi) = \int_{-\infty}^{+\infty} \mathfrak{R}_{h}(\eta;\tau,\xi) e^{-j2\pi\eta\mu} d\eta$$
 (2.25)

$$P_{H}(f,l;\mu) = \int_{-\infty}^{+\infty} \Re_{T}(f,l;\eta) e^{-j2\pi\eta\mu} d\eta$$
 (2.26)

As equações 2.25 e 2.26 nos mostram que canais *ESA* no domínio do tempo equivalem a canais com deslocamento Doppler descorrelatados. Portanto, temos as funções de autocorrelação definidas por:

$$\Re_{s}(\tau,\xi;\nu,\mu) = \delta(\nu-\mu)P_{s}(\mu;\tau,\xi) \tag{2.27}$$

$$\mathfrak{R}_{H}(v,\mu;f,l) = \delta(v-\mu)P_{H}(f,l;\mu) \tag{2.28}$$

De maneira análoga, pode-se mostrar que ecos descorrelatados τ e ξ implicam em canais *ESA* no domínio da frequência , ou seja:

$$\Re_{s}(\tau,\xi;\nu,\mu) = \delta(\tau-\xi)P_{s}(\xi;\nu,\mu) \tag{2.29}$$

$$\mathfrak{R}_{h}(t,s;\tau,\xi) = \delta(\tau-\xi)P_{H}(\eta;\xi) \tag{2.30}$$

$$\mathfrak{R}_{T}(f,l;t,s) = \mathfrak{R}_{T}(t,s;\Omega) \tag{2.31}$$

$$\mathfrak{R}_{H}(f,l;\nu,\mu) = \mathfrak{R}_{H}(\Omega;\nu,\mu) \tag{2.32}$$

onde Ω =f-l indica a estacionariedade no domínio da freqüência

De maneira similar tem-se também funções densidades de potência, como:

$$P_{S}(\mu;\xi) = \int_{-\infty}^{+\infty} P_{h}(\eta;\xi)e^{-j2\pi\eta\mu}d\eta \tag{2.33}$$

$$P_h(t,s;\xi) = \int_{-\infty}^{+\infty} \Re_T(\Omega;t,s) e^{j2\pi\Omega\xi} d\Omega$$
 (2.34)

Considerando as duas aproximações, isto é, canais ESAED, teremos:

$$\mathfrak{R}_{h}(t,s;\tau,\xi) = \delta(\tau-\xi)P_{h}(\eta;\xi) \tag{2.35}$$

$$\Re_{s}(\tau,\xi;\nu,\mu) = \delta(\tau-\xi)\delta(\nu-\mu)P_{s}(\xi;\mu) \tag{2.36}$$

$$\mathfrak{R}_{\tau}(f,l;t,s) = \mathfrak{R}_{\tau}(\Omega;\eta) \tag{2.37}$$

$$\mathfrak{R}_{H}(v,\mu;f,l) = \delta(v-\mu)P_{H}(\Omega;\mu) \tag{2.38}$$

Substituindo-se a equação 2.37 em 2.26:

$$P_{H}(\Omega;\mu) = \int_{-\infty}^{+\infty} \mathfrak{R}_{T}(\Omega;\eta) e^{-j2\pi\eta\mu} d\eta$$
 (2.39)

que mostra a relação de transformada de Fourier entre a função densidade espectral de potência P_H e a função de autocorrelação \mathfrak{R}_T .

A figura 2.6 mostra as relações entre as diversas funções de autocorrelação. Portanto, tendo $P_h(\xi)$ obtem-se: $P_S(\xi;\mu)$, $\mathfrak{R}_T(\Omega;\eta)$ e $P_H(\Omega;\mu)$.

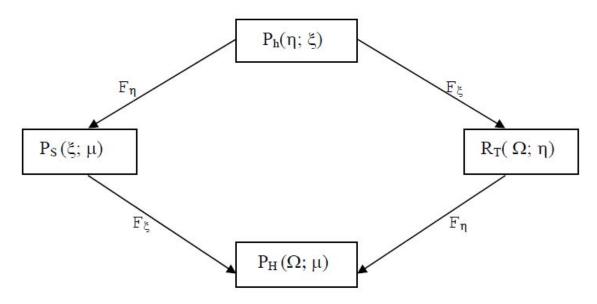


Figura 2.6 - Relações entre as funções de Correlação dos Canais WSSUS

Observando a Figura 2.6 observa-se que obter através de medidas uma das funções que podemos obter as demais através da transformada de Fourier. O ponto central é como obter tal função. Uma função de fácil obtenção é o perfil de retardo, para tanto na equação 2.12 s=\eta+t:

$$\Re_{z}(t,s) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y(t-\tau)y^{*}(\eta+t-\xi)d\tau d\xi \Re_{h}(t,\eta+t;\tau,\xi)$$
 (2.40)

A equação 2.40 pode ser adaptada para a situação prática, ou seja, um instante de observação (η =0) e supondo o sinal y(t) banda larga (t= ξ), tem-se a equação 2.35 reduzindo a

$$\mathfrak{R}_{z}(t;t) = P_{h}(t) \tag{2.41}$$

A equação 2.41, simplesmente afirma claramente que a função de autocorrelação é o próprio perfil de retardo, e como este é definido em função do primeiro multipercurso recebido em t=to, tem-se então $P_h(t-t_o)$, que pode ser escrito em função do retardo ξ , ou seja, $P_h(\xi)$. Esta função, $P_h(\xi)$, é a função medida com a sonda que usa uma seqüência pseudo-aleatória, e que mais adiante será descrita em detalhes.

A obtenção do deslocamento Doppler e do espalhamento Doppler é feita de maneira análoga ao perfil de retardos, somente que em freqüência, ou de maneira mais direta por:

$$\mathfrak{R}_{z}(f;f) = P_{h}(\mu) \tag{2.42}$$

A equação 2.42 representa o perfil da distribuição de potência na freqüência e representa a dispersão em freqüência que o canal introduz. A dispersão do canal móvel ocorre tanto em tempo como em freqüência e se oriunda do multipercurso do sinal transmitido. O sinal transmitido sofre múltiplas reflexões devidas em espalhadores que também podem estar em movimento, sendo assim replicas do sinal transmitido chegam ao receptor, que também pode estar em movimento, o que ocasiona a dispersão no tempo. Para se caracterizar a dispersão, podemos determinar o retardo médio, o espalhamento de retardo e a banda de coerência do canal.

O retardo médio é obtido como o tempo médio dos sinais de multipercurso que chegam ao receptor. Obtem-se o mesmo a partir do Perfil de Potência de Retardos $(P_h(\xi))$, ou seja:

$$d = \frac{\int_{-\infty}^{+\infty} \xi P_h(\xi) d\xi}{\int_{-\infty}^{+\infty} P_h(\xi) d\xi}$$
 (2.43)

O espalhamento de retardo representa a dispersão no tempo de introduzido pelo multipercurso, esta dispersão é a responsável pela interferência intersimbólica (ISI) introduzido pelo multipercurso. O espalhamento de retardo também pode ser obtido através do Perfil de Potência de Retardos ($P_h(\xi)$), ou seja:

$$\sigma_T = \sqrt{\frac{\int_{-\infty}^{+\infty} (\xi - d)^2 P_h(\xi) d\xi}{\int_{-\infty}^{+\infty} P_h(\xi) d\xi}}$$
(2.44)

O espalhamento de retardo é muito importante e geralmente para não ser necessária equalização deve-se respeitar que a duração temporal de cada símbolo seja muito maior que o espalhamento de retardo.

A caracterização de um canal variante no tempo é feita através de medidas estatísticas, o retardo médio e o espalhamento de retardo, já comentadas. Outra medida importante que define se o canal é banda larga ou não, é a Banda de Coerência. A banda de coerência equivale a banda em que há correlação entre os sinais, ou seja, qualquer sinal transmitido em um canal na sua banda de coerência é afetado da mesma maneira, ou seja nesta faixa o desvanecimento é plano. O valor desta banda de coerência é tipicamente a banda em que ocorrem 90% de correlação. Sabe-se que é o espalhamento temporal do canal que altera as propriedades do canal em uma dada faixa, por isto deve existir uma relação entre a banda de coerência e o espalhamento de retardo. Agora, novamente considerando um instante de observação, ou seja, η=0, a função de correlação é dada por:

$$\mathfrak{R}_{T}(\Omega) = \int_{0}^{\infty} P_{h}(\eta = 0; \xi) e^{-j2\pi\Omega\xi} d\xi \tag{2.45}$$

A banda de coerência (BWc) é a menor banda para o qual o coeficiente de correlação é 90%. Portanto, é possível traçar um gráfico $\mathfrak{R}_T(\Omega)_{normalizado} \times \Omega$. Assim sendo, o espaçamento mínimo entre duas portadoras para que o canal seja não seletivo em freqüência é pelo menos o valor da sua banda de coerência ou de outra maneira temos:

$$\Delta f > BW_c \tag{2.46}$$

Os parâmetros de canal relacionados até este dado instante foram: retardo médio, espalhamento de retardo e banda de coerência. Define-se também o deslocamento Doppler e espalhamento Doppler. O deslocamento Doppler pode ser definido de maneira análoga ao retardo médio $d_{\scriptscriptstyle D}$, somente que em vez de tempo estamos em freqüência e:

$$d_D = \frac{\int_{-\infty}^{+\infty} \mu P_h(\mu) d\mu}{\int_{-\infty}^{+\infty} P_h(\mu) d\mu}$$
 (2.47)

O espalhamento Doppler pode também ser obtido de maneira análoga ao espalhamento de retardo σ_D , mas analisando em relação a banda, e teríamos:

$$\sigma_D = \sqrt{\frac{\int_{-\infty}^{+\infty} (\mu - d_D)^2 P_h(\mu) d\mu}{\int_{-\infty}^{+\infty} P_h(\mu) d\mu}}$$
(2.48)

Assim como falamos em banda de coerência , que é a faixa em ocorre correlação , ou seja em que o sinal é afetado de maneira similar pelo canal, temos o tempo de coerência, intervalo de tempo em que o mesmo ocorre. Assim sendo, separando-se em freqüência (Ω =0), tem-se:

$$\mathfrak{R}_{T}(\eta) = \int_{0}^{\infty} P_{H}(\mu) e^{j2\pi\eta\mu} d\mu \tag{2.49}$$

De maneira similar a banda de coerência pode-se também fazer um gráfico $\Re_T(\eta)_{normalizado} \times \eta$ e determinar o tempo de coerência para o coeficiente de correlação adotado. De maneira similar define-se o tempo mínimo para que as mensagens sejam afetadas de maneira similar pelo canal e este é:

$$\Delta t > T_C \tag{2.50}$$