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5
Vibracdes Estocasticas em Sistemas com Mais de Um Grau
Liberdade

5.1
Introducao

Neste capitulo da dissertacao sao tratados sistemas mecanicos mais
complexos do que os analizados no capitulo anterior. Sao sistemas em que dois
ou mais graus de liberdade sao necessarios para descrever seu comportamento e,
que estao submetidos a um ou mais for¢camentos caracterizados como processos
estocasticos.

Para poder analisar esses sistemas, na primeira secao é feita uma introdu-
¢ao a vibragao de sistemas com n graus de liberdade sujeitos a carregamentos
deterministicos. O objetivo é introduzir os conceitos de modos e frequéncias
de vibracao, modos normais e amortecimento proporcional. Somente nas se-
¢oes seguintes, sao mostrados os sistemas com n graus de liberdade sujeitos a
carregamentos aleatorios.

Serao apresentados dois métodos distintos para estudar vibragoes alea-

torias:

1. Método da Resposta ao Impulso: Permite calcular a média de desloca-
mento, autocorrelacao e densidade espectral para cada grau de liberdade

do sistema.

2. Método dos Modos Normais: Permite calcular as estatisticas da resposta

em deslocamento quando o sistema esta escrito em coordenadas modais.

5.2
Vibracao Deterministica de Sistemas com Mais de Um Grau de Liber-
dade

Considere um sistema com n graus de liberdade, como mostrado na figura

(5.1). A equagao de movimento do sistema é dado por:

(m]{E()} + [ {2(0)} + [F {z()} = {f(®)} (5-1)
onde [m], [¢] e [k] s@o matrizes (n x n), chamadas respectivamente de matriz

de massa, matriz de amortecimento e matriz de rigidez. Cada componente dos

vetores {x} e {f} (n x 1) representam o deslocamento e a for¢a aplicada em
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Figura 5.1: Sistema com n graus de liberdade.

cada grau de liberdade. Utilizando as definicoes da Transformada de Fourier

do capitulo anterior e, aplicando-a a equagao de movimento (5-1) obtém-se:

(—w?[m] +iw [d] + [k]) {x(w)} = {f(w)} (5-2)

onde {x} e {f} sdo as transformadas de Fourier de {z} e {f} respectivamente.

A matriz (—w?[m] + iw [c] + [k]) ¢ chamada de [z(w)], de forma que:

{x(@)} = ls@)] " {f (W)} (5-3)
e que [z(w)]”! seja idéntica a matriz [A(w)):
{x(w)} = [Aw)]{f(w)}. (5-4)

As fungoes de transferéncia para um sistema n-dimensional sao definidas

por (5-5), e as fun¢oes de resposta ao impulso por (5-6):

onde:

(@) ) ) ]

= | (55)
| () frnl) |
[ gn(t) gi(t) o gu(t) |

o) = | 0 | (5-6)
e gult) |

— ¢;;(t) representa a funcdo de resposta ao impulso para a coordenada i

devido a forca em j;

hi;(w) representa a funcao de transferéncia para a coordenada i devido a

forca em j; e
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— hij(w) e g;j(t) formam um par de transformadas de Fourier definidos por
(4-71) e (4-72).

Tendo definido a matriz [g], a resposta de cada grau de liberdade z;

devido a forga f; é obtida por uma generalizacao da equagao (4-1):

/ [t —0)gi;(0)do (5-7)

e a resposta total de cada grau de liberdade z; é igual a soma da resposta para

cada uma das forcas f;:

/ f] gw( )do. (5-8)

5.2.1
Calculo de Modos e Frequéncias Naturais do Sistema

Os modos e frequéncias naturais estao associados ao sistema conservativo
(sem dissipacao de energia). Sao caracteristicas intrinsecas do sistema. Assim,

para calculé-los, considera-se o sistema sem amortecimento e sem forcamento:

[m] {E(0)} + [k {z(t)} = 0 (5-9)

A equagao (5-9) admite solugao do tipo:

{a(t)} = {v} e (5-10)

onde cada elemento v; é um escalar e denota a magnitude da resposta.
Substituindo em (5-9):

(—w?[m] + [k]) {v} =0 (5-11)

e considerando uma solucao nao trivial:

det(—w?[m] + [k]) = 0. (5-12)

Assim, o céalculo das frequéncias equivale a um problema de autovalor.
Cada valor de w? que faz o determinante igual a zero é uma frequéncia natural
do sistema e, para cada um desses valores existe um vetor {v} nao nulo

correspondente que satisfaz (5-12), chamado de autovetor.

= (5-13)
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5.2.2
Ortogonalidade dos Modos

Os autovetores podem ser normalizados com respeito a matriz de massa

[m]. Para tal, toma-se o i-ésimo e o j-ésimo par de autovalor e autovetor:

—wiml{v}; + [K{v}; = {0}

(5-14)
~Wml{el; + B}, = {0}

Feito i ltinl; . ~ T d
eito isso, multiplica-se a primeira equacao por {v}j e a segunda por

{v}] obtendo-se:

—w{v} ml{v}; + {o};[K]

T T o ! (5-15)
—2{o} ml{v}; + {o}[kl{e}; = o

Tomando-se a transposta da segunda equagao e lembrando que [m] e [k]

sao matrizes simétricas:

—wHo}] [ml{o}, + {v}] [K{v}, = 0. (5-16)
A subtracao de (5-16) da primeira equagao de (5-15) resulta em:

(wF = wi{v}; [m{v}, = 0. (5-17)

Assim, tem-se que:

5-18
0 L ] ( )

T
{v}; [ml{v}; = {
Para determinar uma propriedade analoga para a matriz de rigidez,

Reescreve-se a equagao (5-16) para i = j:

{v}] [K[{v}; = w’ (5-19)

de forma que:

2 -
Wi =]

0 i # 5. (5-20)

{v}; [k){v}, = {

Construindo uma matriz composta por vetores colunas com os modos de

vibracao:
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| | |
[v] = {U}1 {U}z T {U}n (5-21)
| | |

as matrizes de massa [m] e rigidez [k] podem ser diagonalizadas ([mg] e [kq4])

fazendo-se:
_ - .
md = o ) = | 0T (5-22)
L 0 Mdy, _
o -
k) = R R0) = | P (5-23)
I 0 - v wy? |
Observe que [mg] = [v]"[m][v] e [ka = [v]"[k][v] representam uma

mudanca de base. Indicam que as matrizes [m] e [k] estdao escritas em uma
base ortogonal formada pelos autovetores do sistema.
Para normalizar a matriz [m,], constroi-se uma matriz [v™] cujas colunas

sejam:

(oh” = o), (521

0

posteriormente, faz-se a operacao:

m) = ™7 fm] ™) = 1] (5-25)

onde [/] representa a matriz identidade.

5.2.3
Amortecimento Proporcional

A inclusao de termos dissipativos na modelagem de sistemas dinamicos
nao é uma tarefa simples |9] |21]. Por isso, muitas vezes considera-se a matriz
de amortecimento [c¢] como uma combinagao linear das matrizes de massa e

rigidez (amortecimento de Rayleigh). Assim, sendo « e  duas constantes:

[c] = a[m] + BK]. (5-26)
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Devido a essa combinagao linear entre [m| e [k], a matriz resultante [c]

também pode ser diagonalizada através da matriz modal [v].

[ca] =[] [el[v] = [o]" (afm] + BIK))[v] = afma] + Blkd). (5-27)

5.2.4
Modos Normais

Através das matrizes diagonais definidas anteriormente [my], [cq] e [ka], €
possivel transformar a equac¢ao de movimento do sistema (5-1) em um sistema
de n equagoes diferencias desacopladas.

Essa transformacao representa em uma enorme reducao no esforco com-
putacional exigido para o calculo da resposta de cada um dos graus de liber-
dade ao longo do tempo. Por isso, quando trabalha-se com sistemas com muitos
graus de liberdade, é usual utilizar-se desse artificio.

Para tal é necessario fazer uma mudanca de coordenadas. Sao utilizadas

as coordenadas modais {y}:

{z(®)} = [l {y(®)} . (5-28)

Substituindo (5-28) na equacao de movimento (5-1):

(m]lw] {7} + [cllol {9} + [K[v]{y} = {F (D)} (5-29)

e multiplicando-se por [v]:

o] [m][0] {31} + [o] [[o] {g} + [o] [F][v] {u} = [o]" {£ (1)} (5-30)
a equacao de movimento do sistema se torna:

(mal {G} + [eal {9} + [kal {v} = {¢} (5-31)

onde {¢} representa o vetor de forcas escrito nas coordenadas modais:

{a®)} =)' {f(1)}. (5-32)

5.3
Método da Resposta ao Impulso

Nesta secao é apresentado o método da resposta ao impulso. Ele permite
calcular a média de deslocamento, autocorrelagao e densidade espectral de um
sistema n-dimensional submetido a forcamentos caracterizados como processos

estocasticos.
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Na notacao utilizada, o deslocamento e forca sao representados pelos
vetores { X (t)} e {F(t)} (n x 1). Cada componente esta associada a um grau
de liberdade, e representa um processo estocastico de parametro ¢ associado

ao tempo.

{(X()} = : {FOt=| (5-33)

Para cada realizacao de {F(t)}, ou seja {f}, a resposta de um determi-
nado grau de liberdade ¢ é igual a somatoério do deslocamento de ¢ causado por

cada componente f; da forca, ou seja:

0= o) =3 /fj g (7)dr (5-34)

Supoe-se que todas as componentes de {F(t)} sao processos estocésticos
estacionarios, ou seja, tem média constante pp e funcao de correlagao cruzada
Rp,r; dependente apenas da diferenga entre dois valores do parametro ¢, ou
seja T =ty — 1.

Para calcular-se a média do processo estocéastico de cada grau de liber-
dade X;(t), parte-se da equagao (5-34) com um procedimento semelhante ao

mostrado no capitulo anterior:

EIX.(4) = Z [ iR = oty

(5-35)
px,(t) = ZMF / 9i5(T)dT.
Tomando-se o limite quando t — oc:
hm px; ( Z fr i (0 (5-36)

onde a integral / gi;(T)dr foi calculada a partir de (4-71). Em forma

—00
matricial, a média de {X(¢)} é expressa por:

I {px (1)} = [A0)] {pr} - (5-37)

com:
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le(t) 223
{nx(@)} = : {pr®)} =1 1+ |- (5-38)

#Xn(t) NF”

A seguir é mostrado as expressoes da funcao de correlacao e densidade
espectral.

Para calcular-se a correlacao cruzada entre os dois processos estocésticos
que caracterizam o deslocamento dos graus de liberdade ¢ e j, ou seja X; e X},

faz-se:

RXZ'XJ' (7’) = E[Xl<t)Xk(t + 7')]

n

B[ X0, Y Xt 4 )

a=1

= E Z; /O; Gia (@) F,(t — a)dav. Z /Z gi(B)Fy(t + 1 — B)dp (5-39)

n n

=22 /Oo /Oo gia(@)gjp(B)E[Fu(t — ) — Fb)(t + 7 — B)|dadp
a=1 p=1 Y —00 / —o0

- 2:} : e ia(@) g (B) R, r, (T — B+ a)dadp.
a=1 b=1 /_OO /_Oog ‘

onde Rp,p, representa correlagao cruzada entre os dois processos estocasticos
do forcamento nos graus de liberdade a e b, ou seja, F,(t) e Fy(t).

A partir, de Rx,x;, a densidade espectral cruzada de X;(t) e X;(t) ¢
definida por:

1 o0
Sxx,; (W) = %/ Rx,x,;(T) exp —iwrdr (5-40)

Tendo as expressoes (5-39) e (5-40), pode-se definir as matrizes de

correlacdo e densidade espectral para o deslocamento {X(t)}:

Rx,x, (1) -+ Rx,x,(7)
[Rxx(7)] = : - : (5-41)
Rx,x, (1) -+ Rx,x,(7)
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Sxix,(w) -+ Rxyx,(w)
[Sxx(w)] = T (5—42)
Sx,x (W) -+ Rx,x,(w)

De forma analoga, as matrizes de correlacao e densidade espectral para

o forcamento {F(t)} sao:

Rep (1) -+ Rpp,(7)
[Rrr(T)] = : - : (5-43)
| Rp.p(7) -+ Rep(7) |
Spp (W) - Spr, (W)
[Srr(w)] = : - : (5-44)
I Sp, (W) -+ Sgr, (W) |

No caso do sistema com n graus de liberdade, é possivel definir uma
relagao entre a matriz de densidade espectral de {X(¢)} e {F(t)} semelhante
com definida no capitulo anterior (4-93). Para encontra-la substitui-se (5-39)

m (5-40). Apos feitas algumas manipulagoes algébricas, obtém-se o seguinte

resultado:

SX X Z Z ﬁw SFan< ) (5_45)

a=1 b=1
onde f;, representa o complexo conjugado de fi,. Em forma matricial, (5-45)

é expressa por:

Sx,x; (W) = {hi} [Ser(w){#}". (5-46)

Nessa notagao, o termo {ﬁl} ¢ um vetor linha de dimensao (1 x n):

{hi} = (A hin) (5-47)

e o termo {f;}" ¢ um vetor coluna de dimensao (n x 1):

hj (w)
Yy = + |. (5-48)
Ajn(w)

Dessa forma, a equacao (5-46) pode ser generalizada por:
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[Sxx(w)] = [A(W)][Srr)][AW)]". (5-49)
Exemplo 5.3.1 (Método da resposta ao impulso). Suponha que deseja-se
determinar a matriz de densidade espectral [Sx x| da resposta em deslocamento
de um sistema de dois graus de liberdade como mostra a figura (5.2). A forca

que atua em m; é caracterizada como um ruido branco com densidade espectral

So-

Fi(1)
> _X1 (f‘) ){Q (IDJ
C, G
i ]
—\/\‘J&J\v"&_ _\A\ V"‘v'flk_
kA 2
T
1]
€3 77@7777‘977

Figura 5.2: Sistema massa-mola-amortecedor com 2 graus de liberdade.

A equacao de movimento deterministica do sistema é dada por:

(m] {2(0)} + [ {z(0)} + K {z(0)} = {f(0)} (5-50)

onde:

mq 0 o Cc1 + C —C
hﬂ=[0 mJ R (551

| kit ke —ke | A
=] @] {ﬂM—[ O] (552

A matriz com as func¢oes de transferéncias [#(w)] é determinada através
do inverso da matriz [Z(w)] (5-3):

[2(w)] = —w?[m] +iwlc] + [K] (5-53)
9 (w)] = [2(w)] ™ =
1 —mow? + iw(co + c3) + ko wey + ko
 det[Z] iwey + ko —myw? +iw(cy + ¢o) + (k1 + ko)
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det[z] = w*(my my) — iw®(macy + macy + mycy +mycs) +
— w?(moky 4+ maky + cacy + c3¢1 + ¢3¢0 + kamy) + (5-54)

+ iW(Cgkl + Cgl{?l + Cgkg + /{7201) + kzkl

Como no sistema s6 ha for¢a atuando em m; (um ruido branco), a matriz

de densidade espectral de F' vale:

Spr(w)] = [ - ] | (5.55)

Assim, pela expressao (5-49) cada elemento da matriz de densidade

espectral da resposta do sistema X é:

Sx,x,(w) = Hii(w) So Hii(w)
Sx,x,(w) = gll(w) So Har(w) (5-56)
Sx,x; (W) = Har(w) So Hir(w)
Sxox (W) = Har(w) So Hor(w)

A figura (5.3) mostra os gréficos tracados em MATLAB através da rotina
DENESPEC RESPOSTAIMPULSO para Sy, x, € Sx,x, em fun¢ao da frequéncia.
Foram utilizados os seguintes valores de constantes: m; = 0.99 [Kg|, ms = 1.00
[Kgl, k1 = 3.00 |[N/m], ks = 5.00 [N/m], ¢; = 0.10 [Kg/s|, co = 1.00 107 [Kg/s]
e cg =0.10 [Kg/s|.

Densidade Espectral Densidade Espectral
T T T T T T T

w (rad/s) w (rad/s)

Figura 5.3: Densidade Espectral de Sy, x, e Sx,x, - Método da Resposta ao
Impulso
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54
Método dos Modos Normais

Nesta secao é apresentado o método dos modos normais. Ele permite
calcular a média de deslocamento, autocorrelacao e densidade espectral de
um sistema com n graus de liberdade submetido a forcamentos caracterizados
como processos estocasticos ergodicos.

Como dito na introducao do capitulo, aplica-se esse método quando
0 sistema estd escrito em coordenadas modais (5-31). Assim, na notagao
utilizada, o deslocamento e for¢a (coordenadas modais) sao representados pelos
vetores {Y (t)} e {Q(t)} (n x 1). Cada componente esté associada a um grau

de liberdade, e representa um processo estocastico.

Y= : {Qt)} = : (5-57)

A cada realizagao de {Q(t)}, a resposta deterministica {y} pode ser
escrita em coordenadas {x} bastando aplicar a relacao de transformagao de
coordenadas (5-28). Assim, para um determinado grau de liberdade i, pode-se
escrever:

n

zi(t) =Y iy yi(t). (5-58)
j=1
Substituindo (5-58) na expressao da correlagao:

RXin (T) = E[Xz(t)Xk(t + 7')]

non (5-59)
= F Z Z ViqUjpYa ()Y (t +7)
a=1 b=1

No Método da Resposta ao Impulso apresentado na secao anterior, para

calcular-se a correlagao entre dois graus de liberdade i e j foi utilizada a

expressao (5-34) e, posteriormente utilizados os termos da matriz [g] de fungoes
de resposta ao impulso (5-6).

Nesta secao, um procedimento muito semelhante é feito. Porém, como

utiliza-se as coordenadas modais, um importante detalhe deve ser ressaltado:

a matriz de funcoes de resposta ao impulso escrita em coordenadas modais,

[g*], é diferente de [g].
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Lembrando que a equacao de movimento foi transformada em um sistema
de n equacgoes desacopladas (5-31), [¢*] é uma matriz diagonal. Cada termo
diferente de zero equivale a resposta ao impulso de um sistema de 1 grau de

liberdade e, portanto:

fiw) 0 g 0
F@l=| 5o ewl=| | G60)

onde:
1
R (w) = .
! ( ) —mdiuﬂ — icdiw + kdi
Conhecendo-se os termos da matriz [¢*], para cada realizagao do forga-

(5-61)

mento {Q(t)}, a resposta de cada coordenada modal y; é expressa por:

¢
Y = / ¢(7)gr (t — 1)dr. (5-62)

0
Substituindo (5-62) em (5-59) e fazendo a Transformada de Fourier de

Rx,x,, chega-se ao seguinte resultando apos algumas manipulagoes algébricas:

Sxix, (W) = Y ) viaVnhis (W) (@) S0.0,- (5-63)
a=1 b=1
Em notacao matricial:

[Sxx(@)] = [][F (@)][Sqa(@)][F(@)][]" (5-64)
onde [Sgg| ¢ a matriz de densidade espectral das for¢as em coordenadas

modais. Ela se relaciona com [Spp] através da seguinte expressao:

[Saa(@)] = [v]"[Srr(w)][v] (5-65)
Exemplo 5.4.1 (Método dos modos normais). Na figura (5.3) do exemplo

anterior 5.3.1 sao mostrados os graficos de Sx,x, e Sx,x, referentes ao sistema
(5.2) calculados pela expressao analitica do Método da Resposta ao Impulso.

Suponha agora que se deseja:

1. comparar esses resultados com Sx,x, e Sx,x, calculados pelo Método

dos Modos Normais;

2. fazer uma estimacao de Sx, x, e Sx,x, pelo método de Monte Carlo, com
10 realizagoes do deslocamento de {X (¢)}.

[gualmente ao exemplo da se¢ao anterior, considera-se a forca atuante

em m; um ruido branco Sp. Assim, as expressoes analiticas utilizadas para
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calcular a matriz de densidade espectral estao definidas nas equagoes (5-64) e
(5-65), onde cada coluna da matriz [v] ¢ um modo de vibracao do sistema, e
[Spr| € dada por (5-55). Dessa forma:

[Sxx(w)] = [)[E (@)[e]" [Ser(@)][][A*(@)][0]" (5-66)

As matrizes de massa [m/, rigidez [k] e amortecimento [¢] sdo obtidas por
(5-51) (5-52) considerando-se os mesmos valores de my, mo, k1, ko, ¢1, ¢ € c3 do
exemplo da se¢do anterior. Esses valores permitem considerar [c] proporcional
as matrizes de massa e rigidez (no caso com a =0.10 e 8 =2.00 x 10°).

A equacao de movimento deterministica do sistema escrito em coordena-
das modais é mostrada em (5-67), onde as matrizes diagonais [mg], [ka]. e [cd]

sao calculadas respectivamente por (5-22) (5-23) e (5-26).

[mal {5(6)} + [cal {9 (0) } + [Ral {y()} = {a(1)} . (5-67)

Em coordenadas modais, cada realizacao da forca {f} é expressa por:

{a()} = ]" {f(1)} (5-68)

o deslocamento y; por (5-69), e o deslocamento z; por (5-70):

u(t) = / Gi()g: (t — 7)dr

(5-69)

1
grt) = ——e “rtsinwgt
Mg, Wq

zi(t) = Z vij Y (). (5-70)

Vale observar que a utilizacao de coordenadas modais simplifica muito
o calculo de cada realizagdo de {X(¢)}. Pois, caso essa transformacdo nao
seja feita, as expressoes de (5-69) nao podem ser utilizadas e o deslocamento
deve ser calculado através de (5-34) (onde cada fungao g¢;; é obtida pela
Transformada de Fourier dos termos de [£]).

As estimativas de Sx,x, e Sx,x,, obtidas a partir de realizacoes do
deslocamento {X (t)}, sao feitas através da equagao (4-61).

A rotina DENEsPEC MODOSNORMAIS implementada em MATLAB
faz o calculo dessas estimativas de Sx,x, e Sx,x,.- No codigo desenvolvido,
para cada simulacao do sistema mecanico, uma realizacao do forcamento

{f} & obtida através da rotina GERADOR _RUIDOBRANCO e, o deslocamento
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correspondente, {x(t)}, é calculado por (5-60).
A figura (5.4) mostra os graficos de Sy, x, e Sx,x, obtidos. Como
esperado, o resultado da expressao analitica coincide com o estimado através

das realizagoes de {X (¢)}.

Densidade Espectral

Densidade Espectral

----- Sx, x, estimado || ----- Sy, x, estimado ||

— Sx, x, analitico — Sx, x, analitico
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Figura 5.4: Densidade Espectral de Sx, x, e Sx,x, - Método dos Modos Normais
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