6 Resultados

Neste capitulo são apresentados os resultados obtidos nos estudos de uniformidade e estabilidade de temperatura em três câmaras térmicas usadas na conservação produtos hemoterápicos, utilizando o sistema multicanal desenvolvido para medição de temperatura.

6.1. Sistema multicanal para medição de temperatura

Objetivando a realização de medições simultâneas em diferentes posições ao longo do volume interno das câmaras térmicas utilizadas na preservação de produtos hemoterápicos, desenvolveu-se um sistema multicanal o qual possibilitou a otimização das medições e aquisição de dados em tempo real, possibilitando assim uma imediata comparação entre as temperaturas do sistema multicanal com a temperatura mostrada no display do equipamento em estudo.

O armazenamento desses dados possibilitou gerar planilhas com os valores de medição de temperatura para estudo detalhado dos equipamentos e analise dos dados para cálculos de uniformidade e estabilidade da temperatura. Com o documento de calibração, observou-se que as medições da grandeza temperatura apresentavam baixa incerteza, valores abaixo da resolução do sistema.

6.2.

Avaliação da uniformidade e estabilidade da temperatura em freezers utilizados na biopreservação de produtos hemoterápicos

A avaliação da uniformidade e estabilidade de temperatura dos equipamentos da cadeia de frio do sangue, deu-se em 3 etapas:

- Medição de temperatura no volume interno;
- Medição de temperatura por compartimento;
- Medição de temperatura em pontos críticos;

Além dos valores de uniformidade e estabilidade de temperatura, foi realizada uma análise da resposta a perturbações na estabilidade térmica também foi realizada.

6.2.1. Etapa 1 da medição da uniformidade e estabilidade da temperatura

Com o sistema de medição desenvolvido possibilitando uma aquisição de dados simultâneos, foi realizada a etapa 1 de medição da uniformidade e estabilidade de temperatura. Com os transdutores S_1 a S_8 posicionados em todo o volume interno do *freezer*, e armazenados e depois de corrigido os erros sistemáticos, plotou-se os dados armazenados para cada *freezer* em função do tempo. As Figuras 32 a 34 apresentam os resultados obtidos para os *freezers* 1 a 3, respectivamente,os transdutores S_1 a S_8 estão distribuídos conforme apresentado nas Figuras 20, 21 e 22.

As temperaturas medidas no F_1 apresentaram-se com maior estabilidade temporal comparadas aos resultados de F_2 e F_3 . No *freezer* 2, porém, os compartimentos inferiores, nos quais as temperaturas são mais elevadas, apresentam maior estabilidade temporal que os compartimentos superiores. Para o *freezer* 3, observa-se que as temperaturas mais elevadas apresentam-se nos compartimentos superiores, contrariando os F_1 e F_2 .

Figura 32: Temperaturas medidas ao longo do volume do *freezer* 1 em função do tempo.

Figura 33: Temperaturas medidas ao longo do volume do *freezer* 2 em função do tempo.

Figura 34: Temperaturas medidas ao longo do volume do *freezer* 3 em função do tempo.

Os gradientes de temperatura dos equipamentos variam em todo o volume interno. As Figuras 35 a 37 apresentam a não uniformidade (temperaturas acima do valor limite de funcionamento do equipamento) de temperatura ao longo do volume interno dos *freezers* 1, 2 e 3; respectivamente e a variação de temperatura nos pontos onde estavam posicionados os transdutores S_1 a S_8 . Nas Figuras 35 a 37 os valores de temperaturas dos equipamentos deveriam apresentar-se abaixo da linha traçada, a qual sinaliza o limite da temperatura de funcionamento para uso, e pontos apresentados acima dela são pontos de não conformidade.

Figura 35: Variação da uniformidade de temperatura no volume interno do F_1 e nos transdutores S_1 a S_8 e S_f . A linha horizontal representa o limite máximo da temperatura de funcionamento do *freezer*.

Figura 36: Variação da uniformidade de temperatura no volume interno do F_2 e nos transdutores S_1 a S_8 e S_f . A linha horizontal representa o limite máximo da temperatura de funcionamento do *freezer*.

Figura 37: Variação da uniformidade de temperatura no volume interno do F_3 e nos transdutores S_1 a S_8 e S_f . A linha horizontal representa o limite máximo da temperatura de funcionamento do freezer.

6.2.2. Etapas 2 e 3 da medição da uniformidade e estabilidade de temperatura

A etapa 2 consiste em distribuir os transdutores S_t a S_8 por compartimento em cada um dos 3 *freezers* analisados. A posição dos transdutores por compartimento era baseada na localização do transdutor do *freezer* (S_f), sempre posicionando um dos transdutores do sistema multicanal o mais próximo possível deste.

A etapa 3 com base nos resultados das etapas 1 e 2, posicionou-se os transdutores S_1 a S_8 onde apresentava pontos extremos de temperatura. Sendo os resultados da etapa 2 e 3 apresentados nas Figuras 37 a 39 para os *freezers* 1 a 3, respectivamente.

As temperaturas medidas nos compartimentos mostram que as gavetas localizadas próximas ao compressor apresentam menores temperaturas,

comparadas com as gavetas distantes, apresentado assim uma não uniformidade de temperatura. Os resultados da 2^a etapa indicam maior homogeneidade na distribuição espacial da temperatura nos compartimentos onde se localiza o sensor de indicação do *freezer* (S_f), sendo que no caso de F_2 (Figura 39), a homogeneidade espacial foi observada também em outros compartimentos (gavetas B, C e E). No F_1 (Figura 38) a melhor homogeneidade espacial foi observada no compartimento onde se localizava o S_f e no compartimento acima (gaveta B). Para o F_3 onde o S_f está localizado entre dois compartimentos, a menor homogeneidade espacial foi observada no compartimento C (Figura 40).

Nos três equipamentos avaliados, os transdutores posicionados na parte anterior acima, apresentam temperaturas mais elevadas que os transdutores posicionados na parte posterior abaixo.

Figura 38: Temperatura média dos sensores S1 a S8 e Sf para 2ª etapa de medição realizada em cada compartimento do freezer 1 (gavetas A a D). A temperatura média das medições de alta resolução da 3ª etapa de medição também é apresentada (AR). Sua temperatura limite de funcionamento é -65°C, indicada pela linha horizontal.

Figura 39: Temperatura média dos sensores $S_1 a S_8 e S_f$ para 2^a etapa de medição realizada em cada compartimento do *freezer* 2 (gavetas A a D). A temperatura média das medições de alta resolução da 3^a etapa de medição também é apresentada (AR). Sua temperatura limite de funcionamento é -65°C, indicada pela linha horizontal.

Figura 40: Temperatura média dos sensores $S_1 a S_8 e S_f$ para 2^a etapa de medição realizada em cada compartimento do *freezer* 3 (gavetas A a D). A temperatura média das medições de alta resolução da 3^a etapa de medição também é apresentada (AR). Sua temperatura limite de funcionamento é -20°C, indicada pela linha horizontal.

Resultados

Para uma melhor análise da etapa 3, as Figuras 41 a 43 apresentam os resultados desta medidas em F_1 , F_2 e F_3 . Como nas figuras anteriores a temperatura limite de funcionamento dos *freezers* é indicada por uma linha. Nas etapas anteriores de medição da uniformidade e estabilidade de temperatura, não apresentaram pontos de não conformidade, mas nas Figuras 41 a 43 observa-se que existem pontos de não conformidade para todos os *freezers*.

Nas medições de temperatura com alta resolução espacial (terceira etapa de medição de temperatura), os gradientes máximos foram observados para F_1 de 9,7 °C, nas medições do compartimento D, entre os S_8 e S_7 (Figura 41); para F_2 de 3 °C, nas medições do compartimento A, entre os S_2 e S_3 (Figura 42); e para F_3 de 5,6 °C, nas medições do compartimento A, entre os S_3 e S_4 e (Figura 43).

Figura 41: Terceira etapa de medição de temperatura para o *freezer* 1 com os transdutores posicionados nos compartimentos A e D e linha horizontal posicionada na temperatura limite de funcionamento.

Figura 42: Terceira etapa de medição de temperatura para o *freezer* 2 com os transdutores posicionados nos compartimentos A e E e linha horizontal posicionada na temperatura limite de funcionamento.

Figura 43: Terceira etapa de medição de temperatura para o *freezer* 3 com os transdutores posicionados nos compartimentos A e E e linha horizontal posicionada na temperatura limite de funcionamento.

As medições de temperatura foram realizadas durante 90 minutos, tempo superior ao recomendado por documentos normativos e os resultados demonstraram que tempos superiores não acarretam diferenças significativas nos resultados. Como exemplo são apresentados os resultados do compartimento B do *freezer* 2, para medições de temperatura durante 30 min (Figura 44), 60 min (Figura 45) e 90 min (Figura 46).

Figura 44: Medição de temperatura durante 30 min para o compartimento B do *freezer* 2.

Freezer 2 - compartimento B - 30 min

Figura 45: Medição de temperatura durante 60 min para o compartimento B do *freezer* 2.

Figura 46: Medição de temperatura durante 90 min para o compartimento B do *freezer* 2.

6.3. Análise de resposta a perturbações na estabilidade térmica

O tempo de recuperação dos equipamentos estudados observa-se nas Figuras 47 a 49. Para o *freezer* 1 com os transdutores de temperatura localizados no compartimento B, ao sofrer o distúrbio, todos ultrapassaram a temperatura limite de funcionamento, que para essa câmara térmica é de -65°C. Depois de atingir um pico de temperatura, a medição para o decréscimo de 1°C, ocorreu por aproximadamente por 1h (Figura 47).

Figura 47: Tempo de recuperação para F_1 com os transdutores de temperatura localizados no compartimento B. Medição de temperatura ocorreu aproximadamente por 1h

Para o *freezer* 2 o tempo de medição de temperatura do valor antes do distúrbio até o pico e decréscimo de 1°C (Figura 48), foi menor que para o *freezer* 1. Esta câmara térmica, não apresentou temperatura positiva durante o tempo de recuperação.

Figura 48: Tempo de recuperação para F₂ com os transdutores de temperatura localizados no compartimento A. Medição de temperatura ocorreu aproximadamente por 40 min.

Resultados

Para o *freezer* 3 o tempo de recuperação é menor comparado com os demais *freezers* (Figura 49). Com os transdutores S_1 a S_8 posicionados no compartimento B, o tempo de medição de temperatura foi de aproximadamente 25 minutos, apresentando pontos de temperatura positiva.

Figura 49: Tempo de recuperação para F_3 com os transdutores de temperatura localizados no compartimento B. Medição de temperatura ocorreu aproximadamente por 25 min.

Para os cálculos de incerteza de medição para os 3 *freezers* são apresentados nas Tabelas 9 a 11. O \mathbf{F}_1 é a câmara térmica que apresenta maior desvio padrão (σ) espacial no volume (Tabela 9), enquanto o F2 apresentou os maiores valores de diferença entre a temperatura média pelos transdutores S_1 a S_8 (T_m) e o valor que apresentava o S_f (Tabela 10). Para o *freezer* 3 apresenta os maiores valores de desvio padrão (σ) para estabilidade (Tabela 11). Tabela 9: Para cada medição das diferentes etapas de avaliação realizadas no F_1 , são apresentados os valores de temperatura média obtidos nos transdutores S_1 a S_8 (T_m), temperatura média no transdutor de monitoramento do *freezer* (S_f), a diferença entre valor T_m e Sf, valores do gradiente espacial e temporal máximos de temperatura (com indicação do transdutor no qual foi observado em cada medição) no volume e incerteza de medição para 95,45%.

Freezer 1							
	S _f (°C)	T _m (°C)	S _f - T _m (°C)	σ temporal máximo	σ espacial máximo	Incerteza de medição (95,45%)	
Volume interno total	-73	-76,2	3,2	0,2 (S ₁)	7,1	0,7	
gA	-78	-80,2	2,2	0,2 (S 1)	1,5	0,7	
gb	-73	-79,3	6,3	0,3 (S ₈)	0,9	0,7	
gC	-75	-74,6	-0,4	0,15 (S 1)	1,5	0,9	
gD	-74	-68,9	-5,1	0,2 (S 1)	2,7	0,7	
gA	-74	-82,2	8,2	0,2 (S ₃)	2,7	0,7	
AR	-67	-71,1	4,1	0,2 (S ₅)	4,8	0,7	

Tabela 10: Para cada medição das diferentes etapas de avaliação realizadas no F_2 , são apresentados os valores de Temperatura Média obtidos nos Transdutores S_1 a S_8 (T_m), temperatura Média no transdutor de monitoramento do *freezer* (S_f), a diferença entre valor T_m e Sf, valores do gradiente espacial e temporal máximos de temperatura (com indicação do transdutor no qual foi observado em cada medição) no volume e incerteza de medição para 95,45%.

Freezer 2							
	S _f (°C)	T _m (°C)	S _f - T _m (°C)	σ temporal máximo	σ espacial máximo	Incerteza de medição (95,45%)	
Volume interno total	-78,9	-73,8	-5,1	0,9 (S 1)	4,5	0,7	
gA	-78,9	-74,7	-4,7	1,5 (S ₆)	2,0	0,9	
Gb	-79	-76,1	-2,8	0,8 (S ₃)	1,1	0,8	
gC	-78,9	-75,6	-3,3	0,6 (S ₃)	1,0	0,7	
gD	-79	-70,3	-8,8	0,2 (S ₆)	2,2	0,7	
gE	-79	-61,6	-17,5	0,1 (S ₆)	1,5	0,7	
gA	-78,9	-77,4	-1,5	1,5 (S ₆)	1,8	0,9	
AR	-78,9	-69,1	-9,8	1,5 (S ₃)	2,0	0,8	

Tabela 11: Para cada medição das diferentes etapas de avaliação realizadas no F_3 , são apresentados os valores de temperatura média obtidos nos transdutores S_1 a S_8 (T_m), temperatura média no transdutor de monitoramento do *freezer* (S_f), a diferença entre valor T_m e Sf, valores do gradiente espacial e temporal máximos de temperatura (com indicação do transdutor no qual foi observado em cada medição) no volume e incerteza de medição para 95,45%.

Freezer 3							
	S _f (°C)	T _m (°C)	S _f - T _m (°C)	σ temporal máximo	σ espacial máximo	Incerteza de medição (95,45%)	
Volume interno total	-22	-18	-4,3	2,1 (S ₁)	3,4	0,8	
gA	-23	-13,9	-9,1	2,7 (S ₁)	2,5	0,9	
gB	-23	-17,2	-5,4	2,3 (S ₆)	1,4	1,1	
gC	-22	-19,2	-3,3	1,8 (S 1)	1,2	1,0	
gD	-23	-20,9	-1,7	2,0 (S ₁)	1,7	1,0	
gE	-23	-22,0	-1,3	1,6 (S₁)	1,4	0,9	
gA	-22	-13,0	-9,4	2,8 (S 1)	1,9	0,9	
AR	-23	-19,0	-3,9	3,0 (S ₃)	3,6	0,9	