1 Introdução

A demanda contínua e crescente de energia e a disponibilidade de recursos de hidrocarbonetos coloca o petróleo como uma importante fonte não renovável da matriz energética mundial para as próximas décadas do século XXI.

Atualmente, a maior parte das reservas de petróleo e gás descobertas concentra-se em águas profundas e ultraprofundas. Para viabilizar a exploração do petróleo nestes ambientes, pesquisas e estudos, principalmente no campo da pesquisa operacional, foram e são desenvolvidos com o intuito de servir como ferramenta de apoio nos processos de tomada de decisão.

Alguns dos problemas observados na indústria de petróleo estão relacionados com a estabilidade de poços que podem conduzir a gastos excessivos nas etapas de perfuração, completação e produção. Mais especificamente na etapa de produção, problemas como a produção de sólidos em arenitos pouco consolidados são observados e vários métodos têm sido propostos a fim de prevenir estragos com equipamentos e aumentar a produção do reservatório.

Dentre os diversos sistemas para exclusão de sólidos os mais utilizados em poços horizontais são: o *open hole gravel packing*, a instalação de telas *stand alone*, expansíveis ou *slotted liners* e o *frac packing*.

Neste trabalho serão abordados somente os dois primeiros tipos supracitados (*open hole gravel packing* e *stand alone*). Esta dissertação é sequência do estudo numérico realizado por Rapello (2007). Além disso, o trabalho experimental realizado por Villarroel (2009), que foi estendido por Chavez (2011), será comparado com os resultados obtidos numericamente no presente estudo.

Introdução 24

1.1. Objetivo

Esta pesquisa tem como objetivo avaliar as tensões atuantes no sistema de contenção de sólidos (*gravel packing* e *stand alone*) instalados em uma formação com potencial de produção de sólidos. Com essa finalidade, foi utilizado o software comercial de elementos finitos Abaqus CAE (*Computer Aided Engineering*) para simulação de um modelo elastoplástico 2D. O critério de ruptura utilizado foi o de Mohr Coulomb devido a sua simplicitade.

Esta pesquisa será comparada junto aos resultados obtidos experimentalmente por Chavez (2011).

1.2. Relevância do Trabalho

Hoje em dia, problemas com a estabilidade de poços podem ocasionar gastos excessivos nas etapas de perfuração e até mesmo redução de produtividade devido à produção de sólidos. Assim, o risco de rompimento do conjunto de telas é um evento economicamente catastrófico que acarreta o fechamento do poço.

Devido a esse problema, a carência por estudos numéricos nesta área é de grande importância. A grande dificuldade das soluções numéricas, apesar de conseguirem agregar vários eventos que podem intervir na produção de sólidos, é dar proximidade a este tipo solução com a realidade, pois estas dependem de modelos que consigam representar com mais fidelidade um dado fenômeno.

O tema proposto para este trabalho foi escolhido devido a grande demanda da indústria de petróleo ao dimensionamento do sistema de contenção de sólidos quanto aos carregamentos impostos pela formação e a redistribuição de suas tensões pela parede do poço.

Introdução 25

1.3. Organização do Trabalho

Este trabalho está dividido em 7 capítulos. O primeiro capítulo aborda de maneira introdutória o tema da dissertação, além de descrever os objetivos e a relevância do trabalho em questão.

No capítulo 2, é realizada uma revisão bibliográfica sobre o tema de produção de sólidos. Nele, foram abordadas de maneira sucinta as etapas de construção de um poço de petróleo *offshore* com um enfoque maior nas técnicas de contenção de sólidos utilizadas pela indústria de petróleo.

São apresentados no capítulo 3 fundamentos teóricos sobre elastoplasticidade, ferramentas necessárias para o entendimento do trabalho.

Já no capítulo 4 é apresentado a explicação do funcionamento do programa a ser utilizado (Abaqus) para solução de problemas não lineares com a utilização do solver implícito e explicito, problemas de grandes deformações e contato. Ainda neste é apresentado todo o modelo experimental realizado por Chavez (2011) e a descrição do modelo numérico com suas etapas e as hipóteses adotadas. Além disso, foi realizada neste capítulo a validação do programa para uma solução analítica linear elástica e elastoplástica.

No capítulo 5 são apresentados os resultados obtidos pela simulação bem como sua comparação com o modelo experimental obtido por Chavez (2011).

Por fim, os capítulos 6 e 7 apresentam, respectivamente, as conclusões do trabalho e as referências do mesmo.