5 Resultados

No presente capitulo são apresentados os resultados obtidos com os programas de simulação. O capítulo é basicamente composto por descrição do teste de malha e da validação com dados experimentais e de fabricantes e aplicação do modelo.

5.1. Teste de malha

A discretização do método de solução, ou seja, o número de volumes de controle especificado ao longo do comprimento do trocador de calor influencia a precisão dos resultados globais, devido ao fato de existir um erro numérico acumulativo proveniente da aproximação numérica das equações. Testes de sensibilidade relativos à influência da discretização para cada caso dos trocadores de calor foram realizados, tomando-se como referência a taxa de transferência de calor.

Na Figura 18 pode-se mostrar o teste de sensibilidade para o condensador de placas. Observa-se que para um número maior que 450 divisões encontraram-se espalhamentos menores que 0,07% para a taxa de transferência de calor.

Resultado muito semelhante foi encontrado no caso do evaporador. Com um número de divisões superiores a 450, o espalhamento encontrado foi menor que 0,03%, como se pode observar na Figura 19.

Igualmente para o trocador intermediário (condensador em cascata), com um número de divisões superiores a 450, o espalhamento encontrado foi menor que 0,07% para a taxa de transferência de calor, Figura 20.

Figura 18 Teste de malha para o condensador de placas

(R22, $P_{ref_{in}} = 1431,44 \ kPa$, $h_{ref_{in}} = 446,08 \ kJ \ / \ kg$, $T_{flu_{in}} = 302,56 \ K$, $m_{ref} = 0,052 \ kg \ / \ s$, $m_{flu} = 0,45 \ kg \ / \ s$)

Figura 19 Teste de malha para o evaporador de placas

 $(\mathsf{R22}, \mathsf{P}_{\mathsf{r}ef_in} = 572, 12 \ kPa, \ h_{ref_in} = 236, 5 \ kJ \ / \ kg, \ T_{flu_in} = 287, 85 \ K,$ $\dot{m}_{ref} = 0, 052 \ kg \ / \ s, \ m_{flu} = 0, 043 \ kg \ / \ s)$

Figura 20 Teste de malha para o trocador intermediário de placas

$$(NH_3, P_{ref1_in} = 190,08 \ kPa, h_{ref1_in} = 517,53 \ kJ / kg, m_{ref1} = 0,01614 \ kg / s$$

$$CO_2$$
, P_{ref2} in = 2648,67 K, h_{ref2} in = 476,88 kJ / kg, m_{ref2} = 0,05328kg / s)

5.2. Validação dos modelos

Validaram-se modelos para o condensador e evaporador com dados fornecidos pelo NIST (National Institute of Standars and Technology, Estados Unidos) (NIST, 1999), descritos na Tabela 4.

Tabela 4 Dados gerais do trocador de calor de placas soldadas utilizado parao condensador e evaporador (NIST, 1999)

Especificações do trocador de Calor de Placas Soldadas					
Modelo SWEP B25-30					
Material	ANSI 316				
Área de transferência de calor	1.53 m ²				
Número de placas	30				
Número de placas térmicas	28				

Número de passes por fluido	1

Quanto ao condensador em cascata, validou-se seu modelo comparando os resultados por ele previstos com aqueles obtidos pelo software SSP G7, desenvolvido pela SWEP, Suécia fabricante de trocadores de calor de placas.

5.3. Dados experimentais

5.3.1. Dados experimentais para o R22 e R290 no condensador

As Tabelas 5 e 6 mostram as condições de operação dos testes experimentais para o modelo do condensador com o refrigerante R22, assim como as condições para o fluido de transferência de calor, neste caso, água e etileno glicol (30% de concentração). Estas condições de operação serviram de dados de entrada para o presente modelo do condensador.

Tabela 5 Condições de operação do refrigerante R22 no condensador

Refrigerante R22							
Tosta	• M _{ref}	$P_{ref,in}$	$h_{ref,in}$	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA	
	(kg/s)	(kPa)	(kJ/kg)	(kW)	(K)	(kW/K)	
C01	0,052	1431,44	446,09	11,33	303,14	3,30	
C02	0,053	1413,55	448,48	11,60	303,22	3,04	
C03	0,053	1413,55	448,29	11,58	303,21	3,05	
C04	0,053	1413,16	448,07	11,58	303,15	3,02	
C05	0,026	1354,98	441,64	5,34	305,34		
C06	0,052	1399,51	449,76	11,53	298,26	1,40	
C07	0,052	1263,10	443,37	11,13	301,13	2,92	
C08	0,053	1263,46	440,97	11,14	301,07	2,87	
C09	0,023	1220,07	437,97	4,90	298,34	2,35	
C10	0,023	1205,91	437,02	4,79	301,29	3,43	
C11	0,053	1263,64	441,30	11,17	301,16	2,92	
C12	0,027	1228,69	435,58	5,50	299,54	2,87	
C13	0,026	1213,94	434,07	5,36	300,72	3,97	
C14	0,026	1211,49	434,22	5,35	300,51	4,06	
C15	0,063	1314,46	438,69	13,07	301,41	2,71	
C16	0,052	1271,22	441,10	11,12	301,25	2,70	

(NIST, 1999)

C17	0,043	1259,68	436,91	8,86	300,90	2,38
C18	0,050	1281,75	434,95	10,36	300,57	2,27

Tabela 6 Condições de operação do fluido de resfriamento no condensador

(NIST, 1999)

Fluido de Resfriamento (Água - etileno glicol 30%)					
Teste	• <i>m</i> _{flu}	$T_{flu,in}$	$T_{flu,out}$		
	(kg / s)	(K)	(K)		
C01	0,45	302,57	309,23		
C02	0,60	302,57	308,17		
C03	0,60	302,58	308,17		
C04	0,60	302,53	308,13		
C05	0,27	302,75	308,35		
C06	0,59	298,09	303,70		
C07	0,58	298,18	303,69		
C08	0,58	298,14	303,64		
C09	0,26	298,16	303,62		
C10	0,26	436,68	303,48		
C11	0,58	298,18	303,69		
C12	0,27	298,26	304,02		
C13	0,28	298,17	303,77		
C14	0,28	298,10	303,69		
C15	0,59	298,24	304,66		
C16	0,58	298,15	303,68		
C17	0,46	298,14	303,68		
C18	0,54	298,12	303,61		

Nas Tabelas 7 e 8 são apresentadas as condições de entrada disponibilizadas para o refrigerante R290, assim como para o correspondente fluido de resfriamento no condensador.

Tabela 7 Condições de operação do refrigerante R290 no condensador

(NIST, 1999)

Refrigerante R290						
Teste	• M _{ref}	P _{ref,in}	$h_{ref,in}$	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA
Teste	(kg / s)	(kPa)	(kJ/kg)	(kW)	(K)	(kW/K)
C01	0,028	1164,23	636,96	10,20	300,10	2,07
C02	0,028	1157,84	637,41	10,26	299,80	2,05
C03	0,022	1147,48	626,34	7,69	300,83	1,84
C04	0,011	1064,02	637,11	4,26	296,27	1,42
C05	0,012	1118,44	634,15	4,26	298,48	1,50
C06	0,014	1125,72	633,87	4,91	298,43	1,52
C07	0,014	1117,83	625,07	4,71	300,63	1,69
C08	0,026	1160,80	630,48	9,25	299,72	1,95
C09	0,033	1183,68	633,99	11,86	299,49	2,10
C10	0,027	1157,85	631,08	9,54	299,90	2,07
C11	0,032	1171,26	637,47	11,55	300,93	2,24
C12	0,021	1133,20	633,99	7,77	300,46	2,17
C13	0,021	1135,19	632,28	7,77	300,48	2,18
C14	0,026	1146,40	630,37	9,21	300,67	2,21
C15	0,014	1110,59	629,06	4,93	301,38	2,00
C16	0,031	1159,71	641,55	11,48	300,36	2,41
C17	0,012	1103,07	631,93	4,35	300,67	2,10
C18	0,013	1107,42	631,86	4,99	300,16	2,12
C19	0,021	1134,42	635,74	7,84	300,54	2,18
C20	0,028	1151,81	637,25	10,27	300,77	2,38
C21	0,031	1160,96	637,83	11,37	301,08	2,40
C22	0,031	1152,58	639,04	11,39	300,68	2,59
C23	0,028	1150,57	636,40	10,18	301,03	2,36
C24	0,025	1149,48	633,27	9,22	301,01	2,46
C25	0,021	1134,11	633,45	7,76	301,42	2,21
C26	0,016	1115,72	627,93	5,85	300,41	2,20
C27	0,027	1148,25	636,32	10,15	300,35	2,35
C28	0,032	1171,89	643,26	12,20	299,87	2,39
C29	0,014	1110,59	627,90	5,18	299,96	2,11
C30	0,016	1111,19	626,66	5,61	301,12	2,41
C31	0,026	1142,55	630,77	9,34	300,76	2,35
C32	0,034	1169,54	634,50	12,37	300,76	2,51

Tabela 8 Condições de operação do fluido de resfriamento no condensador

1					
Fluido de Resfriamento (Água - etileno glicol 30%)					
Teste	• M _{flu}	$T_{flu,in}$	$T_{flu,out}$		
Teste	(kg/s)	(<i>K</i>)	(<i>K</i>)		
C01	0,54	298,09	303,57		
C02	0,59	298,07	303,13		
C03	0,40	298,13	303,65		
C04	0,22	296,04	301,53		
C05	0,22	298,21	303,67		
C06	0,26	298,18	303,64		
C07	0,25	298,17	303,69		
C08	0,49	298,13	303,63		
C09	0,62	298,11	303,62		
C10	0,50	298,16	303,64		
C11	0,60	298,12	303,63		
C12	0,41	298,14	303,63		
C13	0,40	298,20	303,73		
C14	0,49	298,14	303,61		
C15	0,26	298,17	303,65		
C16	0,60	298,06	303,57		
C17	0,23	298,14	303,61		
C18	0,26	298,14	303,60		
C19	0,41	298,16	303,67		
C20	0,54	298,17	303,68		
C21	0,60	298,15	303,63		
C22	0,60	298,14	303,64		
C23	0,53	298,12	303,64		
C24	0,48	298,23	303,75		
C25	0,41	298,24	303,72		
C26	0,31	298,23	303,71		
C27	0,46	298,08	303,55		
C28	0,64	298,21	303,68		
C29	0,28	298,17	303,66		
C30	0,29	298,23	303,77		
C31	0,49	298,17	303,64		
C32	0,63	298,18	303,81		

(NIST, 1999)

5.3.2. Dados experimentais para o R22 e R290 no evaporador

Nas Tabelas 9 e 10 são apresentadas as condições de operação dos testes experimentais para o refrigerante R22 e para o fluido secundário (solução água etileno-glicol, com 30% de concentração).

Tabela 9 Condições de operação do refrigerante R22 no evaporador

Refrigerante R22							
Tasta	• M _{ref}	$P_{ref,in}$	$h_{ref,in}$	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA	ΔT
Teste	(kg / s)	(kPa)	(kJ/kg)	(kW)	(K)	(kW/K)	(K)
C01	0,052	572,12	236,50	9,35	285,51	1,31	8,04
C02	0,053	530,63	236,63	9,61	282,42	1,24	7,32
C03	0,053	529,97	236,66	9,60	282,32	1,24	7,27
C04	0,053	531,58	236,65	9,60	282,03	1,24	6,88
C05	0,026	526,68	239,21	4,67	281,85	0,92	6,99
C06	0,052	535,85	230,47	9,65	285,58	1,33	10,18
C07	0,052	562,69	234,15	9,46	284,60	1,44	7,66
C08	0,053	567,94	233,96	9,45	282,46	1,50	5,22
C09	0,023	542,73	230,64	4,32	282,22	1,06	6,42
C10	0,023	544,75	234,09	4,23	281,65	1,04	5,73
C11	0,053	566,85	234,09	9,49	282,47	2,92	5,28
C12	0,027	613,37	232,15	4,93	286,51	2,87	6,78
C13	0,026	601,55	233,55	4,76	283,48	1,17	4,39
C14	0,026	601,24	233,31	4,76	283,50	1,17	4,42
C15	0,063	664,36	234,54	11,24	286,77	1,59	4,44
C16	0,052	566,05	234,22	9,45	282,16	1,44	5,01
C17	0,043	606,13	233,73	7,77	283,93	1,32	4,59
C18	0,050	700,86	233,47	9,15	288,92	1,54	4,81

(NIST,	1999)
()	

Tabela 10 Condições de operação do fluido secundário no evaporador

Fluido Secundário (Agua etileno glicol)					
Teste	• m _{flu}	$T_{flu,in}$	$T_{flu,out}$		
	(kg/s)	(K)	(K)		
C01	0,43	287,86	282,15		
C02	0,49	286,10	280,38		
C03	0,49	286,04	280,33		
C04	0,49	286,12	280,41		
C05	0,24	283,25	277,71		
C06	0,49	285,92	280,16		
C07	0,49	286,74	281,12		
C08	0,50	286,71	281,22		
C09	0,23	283,23	277,74		
C10	0,23	283,28	277,88		
C11	0,50	286,76	281,22		
C12	0,29	287,24	282,22		
C13	0,29	285,99	281,24		
C14	0,29	285,97	281,21		
C15	0,49	293,24	286,62		
C16	0,50	286,79	281,37		
C17	0,40	288,46	282,86		
C18	0,48	293,22	287,71		

(NIST, 1999)

De igual forma, dados para as condições de entrada no evaporador do refrigerante R290 e do fluido secundário (30% de concentração de etileno glicol em solução aquosa) são apresentados nas Tabelas 11 e 12.

Tabela 11 Condições de operação do refrigerante R290 no evaporador

(NIST, 1999)

Refrigerante R290							
Teste	• <i>m</i> _{ref}	$P_{ref,in}$	$h_{ref,in}$	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA	ΔT
10570	(kg/s)	(kPa)	(kJ/kg)	(kW)	(K)	(kW/K)	<i>(K)</i>
C01	0,028	553,38	270,99	8,77	283,46	1,65	1,65
C02	0,028	555,91	270,29	8,86	284,08	1,71	1,71
C03	0,022	578,80	274,26	6,78	283,01	1,33	1,33
C04	0,011	519,42	261,49	3,87	283,37	0,84	0,84
C05	0,012	533,34	266,83	3,81	281,73	0,99	0,99
C06	0,014	523,48	266,70	4,31	280,86	1,19	1,19
C07	0,013	600,47	273,31	4,19	283,75	1,35	1,35
C08	0,026	670,31	270,10	8,31	289,94	1,57	1,57
C09	0,032	635,93	269,75	10,35	287,49	1,85	1,85
C10	0,026	575,82	270,55	8,28	283,42	1,53	1,53
C11	0,032	555,54	274,11	9,81	283,88	1,73	1,73
C12	0,021	567,50	271,97	6,84	284,19	1,17	1,17
C13	0,021	570,63	272,25	6,83	283,72	1,18	1,18
C14	0,026	566,21	272,62	7,97	282,71	2,21	2,21
C15	0,014	528,00	275,76	4,27	279,79	1,13	1,13
C16	0,031	550,76	271,66	9,81	284,09	1,60	1,60
C17	0,012	539,51	272,57	3,79	284,17	1,16	1,16
C18	0,013	527,65	271,18	4,25	280,34	1,18	1,18
C19	0,021	570,17	272,29	6,90	284,95	1,16	1,16
C20	0,028	555,45	272,85	8,82	283,50	1,46	1,46
C21	0,031	554,73	273,03	9,67	283,24	1,64	1,64
C22	0,031	551,12	272,78	9,69	283,33	1,59	1,59
C23	0,028	553,10	273,58	8,74	283,21	1,43	1,43
C24	0,025	564,10	273,41	7,95	283,09	1,37	1,37
C25	0,021	570,72	274,52	6,79	283,98	1,17	1,17
C26	0,016	609,34	271,82	5,10	285,56	1,30	1,30
C27	0,027	562,09	271,80	8,73	283,80	1,50	1,50
C28	0,032	546,01	270,39	10,31	283,61	1,67	1,67
C29	0,014	622,63	270,61	4,52	286,53	1,24	1,24
C30	0,016	683,30	274,12	5,01	289,71	1,40	1,40
C31	0,026	674,38	272,92	8,33	290,03	1,45	1,45
C32	0,034	662,13	273,09	10,81	289,56	1,82	1,82

Tabela 12 Condições de operação do fluido secundário no evaporador

Fluido Secundário (Agua etileno glicol)						
Teste	• M _{flu}	$T_{flu,in}$	$T_{flu,out}$			
Teste	(kg / s)	(K)	(K)			
C01	0,46	286,78	281,32			
C02	0,49	286,67	281,46			
C03	0,35	288,18	282,65			
C04	0,20	284,06	278,51			
C05	0,20	284,26	278,77			
C06	0,23	283,42	277,96			
C07	0,22	287,73	282,22			
C08	0,44	293,47	287,98			
C09	0,45	292,01	286,32			
C10	0,43	288,27	282,74			
C11	0,51	287,32	281,74			
C12	0,36	288,19	282,66			
C13	0,35	288,34	282,79			
C14	0,42	287,91	282,43			
C15	0,23	283,86	278,37			
C16	0,51	287,41	281,89			
C17	0,20	284,23	278,66			
C18	0,22	283,73	278,18			
C19	0,36	288,39	282,91			
C20	0,46	287,65	282,11			
C21	0,51	287,41	281,96			
C22	0,51	287,37	281,90			
C23	0,46	287,57	282,03			
C24	0,42	287,91	282,40			
C25	0,36	288,32	282,82			
C26	0,27	288,91	283,40			
C27	0,46	287,81	282,32			
C28	0,54	287,17	281,67			
C29	0,24	289,45	283,89			
C30	0,26	292,68	287,16			
C31	0,44	294,14	288,64			
C32	0.54	293.81	288.06			

(NIST, 1999)

5.4. Comparação com dados experimentais

Para iniciar a simulação numérica dos trocadores de calor (condensador e evaporador) precisou-se da geometria do trocador de calor e da placa, das condições de operação de entrada do refrigerante e do fluido de transferência de calor, assim como a opção da correlação para os coeficientes e transferência de calor e de fator de atrito. Como resultado da simulação são previstos as condições de saída do refrigerante e do fluido, assim como a taxa de transferência de calor em cada um dos trocadores.

Utilizaram-se dois critérios para comparar os resultados experimentais com os numericamente obtidos:

- Erro relativo porcentual (%), expresso através da seguinte equação:

$$Erro(\%) = \left(\frac{X_{\exp} - X_{num}}{X_{\exp}}\right) \cdot 100$$
(5.1)

- Erro absoluto, expresso através da seguinte equação:

$$Erro = X_{exp} - X_{num}$$
(5.2)

onde:

 X_{exp} é variável experimental e

 X_{num} é variável de saída da simulação numérica.

Para um melhor entendimento de comparação com dados experimentais, foram montados gráficos dos erros relativos e absolutos das variáveis simuladas versus algumas variáveis conhecidas, como por exemplo, vazões mássicas do refrigerante e do fluido térmico. Esta última abordagem proporciona entendimento da magnitude do erro obtido no processo de simulação dos trocadores de calor de placas.

Para o condensador, na primeira avaliação, consideraram-se três correlações para o coeficiente de transferência de calor e uma para o fator de atrito, ambas no lado do refrigerante O resumo é apresentado na Tabela 13.

Combinações de correlações testadas					
Número	Transferência de Calor	Queda de Pressão	Combinação		
1	Han et al. (2003)	Han et al. (2003)	Han - Han		
2	Yan e Lin (1999)	Han et al. (2003)	Yan - Han		
3	Kuo et al. (2005)	Han et al. (2003)	Kuo - Han		

Tabela 13 Combinações das correlações de transferência de calor e queda depressão na região bifásica para o condensador

De forma semelhante, para a primeira avaliação do evaporador, trabalhouse com quatro correlações para o coeficiente de troca de calor e uma para o fator de atrito, para escoamento do refrigerante com ebulição, conforme apresentado na Tabela 14.

Tabela 14 Combinações das correlações de transferência de calor e queda depressão para o evaporador

Combinações de correlações testadas				
Número	Transferência de Calor	Queda de Pressão	Combinação	
1	Han et al. (2003)	Han et al. (2003)	Han - Han	
2	Hsieh e Lin (2003)	Han et al. (2003)	Hsieh - Han	
3	Hsieh e Han (2005)	Han et al. (2003)	Hsieh - Han	
4	Kim e Park (2003)	Han et al. (2003)	Kim - Han	

5.4.1. Simulação numérica do condensador

Os dados de entrada para o condensador são apresentados na Tabela 15.

Geometria Geral do trocador de calor				
Comprimento do trocador	0,467	[m]		
Largura do trocador	0,117	[m]		
Número de placas	30	[-]		
Número de divisões	450	[-]		
Número de canais do lado do refrigerante	14	[-]		
Número de canais do lado do fluido	15	[-]		
Geometria da placa				
Ângulo de corrugação	45	[°]		
Fator de ampliação	1	[-]		
Espaço médio do canal	0,002	[m]		
Passo da corrugação	0,0052	[m]		
Espessura da placa	0,0004	[m]		
Condutividade térmica da placa	0,01304	[kW/m-K]		
Seleção das correlações				
Correlação de troca de calor - refrigerante		1, 2, 3		
Correlação de fator de atrito - refrigerante	1			
Correlação de troca de calor - fluido de resfriamento	1			

Tabela 15 Dados de entrada no condensador de placas

As condições de entrada para os refrigerantes, tais como \dot{m}_{ref} , $P_{ref,in}$, $h_{ref,in}$ e para os fluidos de resfriamento: \dot{m}_{flu} , $T_{flu,in}$, foram obtidas das Tabela e Tabela para o R22 e das Tabela e Tabela para o R290 respectivamente, para o modelo do condensador.

Na simulação do condensador com os refrigerantes R22 e R290, os únicos parâmetros que variam são: o fluido refrigerante e as condições de entrada de operação do refrigerante e do fluido, como se descrito anteriormente. Mantiveram-se constantes, obviamente, a geometria do trocador e da placa.

5.4.1.1. Resultados da simulação do condensador com o refrigerante R22

Na Figura 21 pode-se observar que os valores numéricos obtidos para a taxa de transferência de calor total com os experimentais apresentam uma boa concordância, observando-se que a combinação de Kuo – Han possui a melhor tendência.

Figura 21 Comparação de dados da taxa total de transferência de calor numérica com a experimental

Na Figura 22 observa-se que a faixa de erro da taxa de transferência de calor vai de um máximo de 23,36 % para a combinação Yan – Han, ao mínimo de 1,72 % correspondente à combinação de Kuo – Han. Observando-se que o erro aumenta para vazões mássicas maiores. Porém, a combinação Kuo – Han proporciona uma melhor aproximação por possuir uma faixa de menor erro.

Figura 22 Erro relativo da taxa total de transferência de calor versus a vazão mássica do refrigerante no condensador.

Na Figura 23 pode-se observar o erro da temperatura de saída do refrigerante é maior para as combinações Kuo – Han e Yan – Han. Tendo-se obtido uma faixa de erro mínimo de 4,84 K para a combinação de Kuo – Han e um máximo de 4,98 K para a combinação de Yan – Han. Da mesma forma, pode-se diferenciar, que para menores vazões mássicas, o erro é ligeiramente menor.

Na Figura 24 observa-se o erro da temperatura de saída do fluido de resfriamento, tendo como valor máximo 2,70 K correspondente às combinações de Han – Han e Yan – Han e um mínimo de 0.39 K para a combinação Kuo – Han. Aqui se observa uma tendência contrária. Para baixas vazões mássicas do fluido tem-se ligeiramente maior erro.

Figura 24 Erro da temperatura de saída do fluido de resfriamento versus a vazão mássica do fluido de resfriamento no condensador

Na Figura 25 observa-se o erro para a condutância média calculada, UA, em uma faixa de 2,77 kW/K como valor máximo para a combinação de Yan – Han e de 0,46 kW/K como valor mínimo para a combinação de Kuo – Han. Os valores mostram uma melhor tendência para maiores vazões do refrigerante.

A Tabela 16 apresenta os resultados do erro médio da simulação para o condensador de placas. Pode-se observar que a combinação de Kuo – Han propicia uma melhor aproximação dos resultados.

Tabela 16 Erro médio das combinações na simulação do condensadorde placas para o refrigerante R22

Erro Médio	Relativo [%]	Absoluto [Δ]		
	Refrigerante			Fluido
Combinação	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA	$T_{flu,out}$
	(kW)	(K)	(kW/K)	(K)
Han - Han	6,3565	2,0751	0,6401	1,1143
Yan - Han	14,7026	2,1693	1,7786	1,2689
Kuo - Han	1,5162	1,2179	1,2755	0,5400

5.4.1.2. Resultados da simulação do condensador com o refrigerante R290

Na Figura 26 observa-se uma boa concordância entre os valores da taxa total de transferência de calor numérica e experimental. Pode-se observar um ligeiro espalhamento na combinação Yan – Han. A Figura 27 mostra a variação do erro com a vazão mássica do refrigerante, o que permite uma melhor visualização do erro. Observa-se que o erro aumenta ligeiramente para capacidades maiores.

Figura 26 Comparação de dados da taxa de transferência de calor numérica com a experimental

Os resultados da temperatura de saída do refrigerante são apresentados na Figura 28. Observa-se que os menores erros da simulação são estimados pela combinação de Han – Han e Yan – Han, com um erro mínimo de 4,94 K. Por outro lado, a combinação de Kuo – Han estima um erro máximo de 5,65 K.

Figura 28 Erro da temperatura de saída do refrigerante versus a vazão mássica do refrigerante no condensador.

Resultados

Na Figura 29 pode-se observar que o erro da temperatura de saída do fluido de resfriamento, para vazões mássicas menores que 0,4 kg/s, tende a aumentar ligeiramente para as combinações de Han – Han e Yan – Han. No entanto, a combinação de Kuo – Han mostra melhor comportamento, com um erro mínimo de 1,55 K e máximo de 2,64 K.

Figura 29 Erro da temperatura de saída do fluido de resfriamento versus a vazão mássica para o condensador

Na Figura 30 mostra-se que o espalhamento do erro da condutância média, UA, é ligeiramente maior para vazões mássicas menores que 0,02 kg/s para as combinações de Han – Han e Yan – Han. Observa-se que o erro tem como valor mínimo 0,6 kW/K e máximo,1,15 kW/K.

A Tabela 17 resume os resultados do erro médio da simulação para o refrigerante R290, considerando-se que a combinação de Kuo – Han apresenta os melhores resultados.

Tabela 17 Erro médio das combinações das correlações na simulação do
condensador para o refrigerante R290

Erro Médio	Relativo [%]	Absoluto [∆]		
	Refrigerante			Fluido
Combinação	$\dot{\mathcal{U}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA	$T_{flu,out}$
	(kW)	(K)	(kW/K)	(K)
Han - Han	0,3382	1,6603	0,6711	0,3786
Yan - Han	3,2701	1,8974	0,3883	0,5151
Kuo - Han	0,2714	0,6557	1,4468	0,1644

5.4.2. Simulação numérica do evaporador

Os dados de entrada para o evaporador de placas são descritos na Tabela 18, abaixo.

Geometria Geral do trocador de calor				
Comprimento do trocador	0,467	[m]		
Largura do trocador	0,117	[m]		
Número de placas	30	[-]		
Número de divisões	450	[-]		
Número de canais do lado do refrigerante	14	[-]		
Número de canais do lado do fluido	15	[-]		
Geometria da placa				
Ângulo de corrugação	45			
Fator de ampliação	1	[-]		
Espaço médio do canal	0,002	[m]		
Passo da corrugação	0,0052	[m]		
Espessura da placa	0,0004	[m]		
Condutividade térmica da placa	0,01304	[kW/m-K]		
Seleção das correlações				
Correlação de troca de calor - refrigerante	1, 2, 3, 4			
Correlação de queda de pressão - refrigerante	1			
Correlação de troca de calor - fluido secundário	1			

Tabela 18 Dados de entrada do evaporador de placas.

As condições de entrada, m_{ref} , $P_{ref,in}$, $h_{ref,in}$ para o refrigerante R22 e . m_{flu} , $T_{flu,in}$, para o fluido secundário foram obtidas da Tabela 9 e Tabela 10 respectivamente. Para o refrigerante R290 e o fluido de transferência de calor as condições de entrada são mostradas nas Tabela e Tabela .

5.4.2.1. Resultados da simulação do evaporador com o refrigerante R22

A Figura 31 apresenta a comparação entre os dados numéricos e experimentais. Pode-se observar que de um modo geral, uma boa concordância foi obtida. Para uma melhor visualização pode-se observar que, na Figura 32, o erro aumenta para capacidades menores, ou seja, para baixas vazões mássicas. Na comparação entre as combinações de correlações, as que, aparentemente, oferecem menor erro, são as de Han – Han e Hsieh – Han (b).

Figura 31 Comparação de dados da taxa de transferência de calor numéricos com os experimentais.

Figura 32 Erro relativo da taxa de transferência de calor versus a vazão mássica do refrigerante para o evaporador

Resultados

Na Figura 33 observa-se o erro na temperatura de saída do refrigerante, tendo como valor mínimo 5,44 K para a combinação de Park – Han e um máximo de 6,02 K para a combinação de Hsieh - Han (a). Aqui o espalhamento é ligeiramente maior para maiores e menores vazões mássicas.

Figura 33 Erro da temperatura de saída do refrigerante versus a vazão mássica do refrigerante no evaporador.

Na Figura 34 observa-se o erro para a temperatura de saída do fluido secundário, com uma melhor tendência, à exceção da combinação de Hsieh – Han (b). O valor minimo 0,02 K para a combinação de Hsieh - Han (a) e o máximo 1,31 K para combinação de Hsieh – Han (b).

Na Figura 35 mostram-se o erro para o valor da condutância media, UA, observando-se, aparentemente, uma tendência de menor erro para vazões mássicas de refrigerante maiores.

Figura 35 Erro de UA versus a vazão mássica do refrigerante para o evaporador.

Na Tabela 19 apresenta-se um resumo dos erros médios da simulação para o evaporador de placas. Pode-se observar que as simulações que usam a combinação de Hsieh –Han , (a) e (b), apresentam, aparentemente, um erro médio menor, em comparação com as outras combinações. Entretanto, pode-se ressaltar que todas as combinações estão na faixa permissível de erros.

Tabela 19 Erro médio	das combinações da	s correlações na	simulação do
evaporad	lor de placas para o	refrigerante R22	2

Erro Médio	Relativo [%]		Absoluto [Δ]	
	Refrigerante			Fluido
Combinação	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA	$T_{flu,out}$
	(<i>kW</i>)	(K)	(kW/K)	(K)
Han - Han	2,2268	0,2629	-0,6531	-0,5255
Hsieh - Han (a)	1,5573	0,1637	-2,3553	-0,4095
Hsieh - Han (b)	1,8385	0,2619	-2,0060	-1,0070
Kim - Han	2,9624	0,2593	-0,1735	-0,4928

5.4.2.2. Resultados da simulação do evaporador com o refrigerante R290

A análise desenvolvida para a simulação do evaporador segue o mesmo padrão utilizado no caso para o refrigerante R22. Apresentam-se os gráficos de erros da simulação versus variáveis a serem analisadas. As combinações das correlações de troca de calor e fator de atrito são extraídas da Tabela.

Os valores numéricos e experimentais estão apresentados na Figura 36. Pode-se observar uma boa concordância. A Figura 37 mostra o erro relativo da taxa de transferência de calor com a vazão mássica do refrigerante para as quatro combinações. O erro oscila entre 3,42% como valor mínimo, e 5,0 % como valor máximo.

Figura 36 Comparação entre dados numéricos e experimentais da taxa de transferência de calor

Figura 371 Erro relativo da taxa de transferência de calor versus a vazão mássica do refrigerante no evaporador.

A análise dos resultados da simulação da temperatura de saída do refrigerante para o evaporador manifesta uma tendência no incremento do erro

para maiores vazões mássicas de refrigerante. Isto pode ser observado na Figura 38 com 5,81 K como valor máximo e 5,55 K como valor mínimo.

Figura 38 Erro da temperatura de saída do refrigerante versus vazão mássica do refrigerante no evaporador.

Na Figura 39 mostra-se o erro para a temperatura de saída do fluido secundário. Pode-se observar que o erro é, em média, maior para vazões mássicas menores do fluido.

Por outro lado, na Figura 40 observa-se o erro para o valor médio de UA. Este, aparentemente, tem um bom comportamento para as quatro combinações com valores de 0,82 kW/K (máximo) e 0,15 kW/K (mínimo).

Figura 39 Erro da temperatura de saída do fluido secundário versus a vazão mássica do fluido secundário no evaporador.

Figura 40 Erro de UA versus a vazão mássica do refrigerante no evaporador.

Resultados

Na Tabela 20 apresenta-se o resumo dos erros médios da simulação do trocador de calor usando R290. Pode-se observar que as combinações, de forma geral, apresentam erros menores, com uma melhor tendência comparada com o R22. Entretanto, pode-se dizer que, aparentemente, as combinações de Hsieh – Han, (a) e (b), apresentam uma melhor tendência devido apresentar menores erros.

Tabela 20 Erro médio das correlações na simulação do evaporador de placaspara o refrigerante R290

Erro Médio	Relativo [%]	Absoluto [Δ]		
	Refrigerante			Fluido
Combinação	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	$T_{ref,out}$	UA	$T_{flu,out}$
	(kW)	(K)	(kW/K)	(K)
Han - Han	0,9780	0,1519	1,1262	0,6057
Hsieh - Han (a)	2,0134	0,0109	2,9619	0,3611
Hsieh - Han (b)	2,0134	0,0109	2,9619	0,3611
Kim - Han	0,4617	0,1171	0,2636	0,4624

5.5. Comparação com dados do fabricante

Devido à falta de dados experimentais para o condensador em cascata, foi feita a simulação para um caso ($NH_3 - CO_2$) e esta comparada com o Software SSP G7, fornecido pela SWEP, fabricante de trocadores de calor de placas.

O software apresenta uma interface onde são ingressadas as condições de operação que se descrevem a seguir:

- Seleção dos fluidos refrigerantes
- Seleção dos possíveis trocadores de calor (tipo B e V)
- Entrada dos títulos termodinâmicos de entra e de saída dos fluidos refrigerantes
- Entrada da temperatura de entrada do refrigerante do circuito de baixa temperatura.
- Entrada das temperaturas de saturação da evaporação e condensação e os graus de superaquecimento e de subresfriamento.
- Entrada da vazão mássica do refrigerante do circuito de alta temperatura.
- Entrada dos valores da queda de pressão máxima.

Na Tabela 21 mostram-se as condições de operação para os refrigerantes que são necessárias para o software.

NH₃					
$X_{ref1,in}$	$X_{ref1,out}$	T_{EV}	• <i>m</i> _{ref 1}	$\Delta T_{ m sup}$	
-	-	(K)	(kg/s)	(K)	
0,2	1.05	253,15	0,01662	517,53	
CO ₂					
$X_{\rm ref2,in}$	$X_{ref 2,out}$	$T_{ref 2,in}$	T_{CD}	$\Delta T_{\mathrm sub}$	
-	-	(K)	(K)	(K)	
1,08	-0,05	298,15	263,15	5	

Tabela 21 Condições de operação para o software SSP G7

E, para ambos fluidos, considerou-se uma queda de pressão de 50 kPa.

Para estas condições obteve-se os seguintes parâmetros resumidos na Tabela 22.

Tabela 22 Parâmetros obtidos do software SSP G7

Parâmetro	• Mref	$T_{ref,out}$	$\dot{\mathcal{Q}}$
Fluido	(kg/s)	(K)	(kW)
NH₃	0,01662	258,15	18.00
CO2	0,06056	258,15	10,90

E o trocador selecionado é um B25T x 26. A Tabela 23 apresenta as especificações do trocador utilizado no condensador em cascata

Tabela 23 Dados gerais do trocador de calor de placas utilizado como

condensador em cascata.

Especificações do trocador de Calor de Placas Soldadas					
Modelo	SWEP B25T-26				
Material	ANSI 316				
Área de transferência de calor	1.30m ²				
Número de placas	26				
Número de placas térmicas	24				
Número de passes por fluido	1				

5.5.1. Simulação numérica do condensador cascata

Para a simulação numérica são necessários de alguns dados já fornecidos pelo software, como a geometria do trocador e o número de canais para cada refrigerante. A Tabela 24 mostra os dados gerais e geométricos para o trocador de calor. Aqui alguns dados (β , ϕ , b_{plate} , p_{co} , t_{plate} , k_{plate}) são supostos, devido ao fato de programa dispensa essa informação.

Enquanto, os dados de entrada dos refrigerantes, para o condensador em cascata a Tabela 25 apresenta as condições de entrada para cada um de eles. Esta simulação foi feita sem considerar a queda de pressão nos dois lados do trocador de calor.

Geometria Geral do trocador de calor						
Comprimento do trocador	0,455	[m]				
Largura do trocador	0,119	[m]				
Número de placas	26	[-]				
Número de divisões	450	[-]				
Número de canais do lado do refrigerante	12	[-]				
Número de canais do lado do fluido	13	[-]				
Geometria da placa						
Ângulo de corrugação	45	o				
Fator de ampliação	1,17	[-]				
Espaço médio do canal	0,002	[m]				
Passo da corrugação	0,0052	[m]				
Espessura da placa	0,0004	[m]				
Condutividade térmica da placa	0,01304	[kW/m-K]				
Seleção das correlações						
Correlação de troca de calor – refrigerante1	Han et al.					
Correlação de troca de calor – refrigerante2	Han et al.					

Tabela 25 Condições de entrada para os refrigerantes

Fluido	NH₃			CO ₂		
Condições de	• <i>m</i> _{ref1}	$P_{ref1,in}$	$h_{ref1,in}$	• M _{ref 2}	$T_{ref 2,in}$	$\Delta T_{ m sup}$
entrada	(kg/s)	(kPa)	(kJ/kg)	(kg/s)	(K)	(K)
	0,01662	190,08	517,53	0,06056	298,15	35

5.5.2. Comparação com o software SSP G7

Nesta seção procede-se à comparação entre os resultados obtidos pela simulação com os do software SSP G7. A Tabela 26 mostra um resumo dos dados obtidos.

Fluido	N	H ₃	CO ₂		
Simulação	Programa	Programa Software		Software	
$T_{ref,out}$ (K)	283,144	258,15	258,150	258,15	
$X_{ref,out}$	1,053	1,05	-0,00012	-0,05	
$\dot{\mathcal{Q}}$ (kW)	18,83	18,90	18,83	18,90	

Tabela 26 Comparação de dados obtidos das simulações

Nos dados pode-se observar a diferença da temperatura de saída para a amônia e o titulo de saída para o CO₂, Esta discrepância, pode ser devido à simulação não ter considerada queda de pressão.

5.5.3. Resultados da simulação do condensador em cascata

Nesta seção apresentam-se os gráficos a variação de parâmetros como a temperatura de saída, o coeficiente de transferência de calor local e o título de vapor em função do da posição do elemento no trocador de calor.

Na Figura 41 observam-se os perfis das temperaturas dos refrigerantes ao longo do trocador. Pode-se observar claramente a variação da temperatura local no trocador intermediário.

Figura 41 Perfis das temperaturas dos refrigerantes em função da posição do elemento no trocador de calor intermediário.

Na Figura 42 observa-se a variação do coeficiente local de transferência de calor. Pode-se observar que, para a amônia, o valor do coeficiente local atingem até 9,16 kW/m² K, enquanto que, para o CO₂, é de 3,94 kW/m² K. Observa-se que grande parcela da área é ocupada pela troca de calor entre vapores superaquecidos.

Figura 42 Variação dos coeficientes de transferência ao longo do trocador de calor intermediário

Na Figura 43 pode-se observar a variação do titulo do vapor de ambos os refrigerantes, ao longo do trocador de calor.

Figura 43 Variação do titulo de vapor ao longo do trocador de calor intermediário.

5.6. Análise de sensibilidade

Uma vez validados, os modelos foram aplicados para um típico sistema comercial em cascata. Foram simuladas distintas condições de operação para o R22 e para novos fluidos refrigerantes (R1234yf e R1234ze). Nesta seção apresentam-se os resultados de análise de sensibilidade para o evaporador, os quais permitiram determinar como a variação de determinado parâmetro de operação afeta o desempenho do trocador de calor de placas.

Para a análise supôs-se o evaporador operando em um ciclo de compressão de vapor sob as seguintes condições de operação: uma temperatura de evaporação de 2°C, um titulo de vapor de 20% na entrada, um grau de superaquecimento de 5°C na saída, e uma carga aproximada de 10 Ton de refrigeração (35,186 kW). A temperatura de evaporação fornece a pressão de entrada para cada refrigerante. A condição de operação para o fluido de transferência de calor para o evaporador é a mesma para os três casos, isto é, temperatura de entrada e a porcentagem da concentração. Da mesma forma, eram prescritas as vazões mássicas de refrigerante e do fluido secundário.

Conforme mencionado anteriormente, para uma carga aproximada de 10 Ton de refrigeração, calculou-se a vazão mássica de refrigerante R22 a partir da

carga Q e do efeito refrigerante Δh , resultante das condições estabelecidas para o evaporador.

Na Tabela 27 mostram-se os estados termodinâmicos prescritos para o evaporador com o R22.

Estado inicial				Estado final				
X_{ref}	T_{EV}	$P_{ref,in}$	$h_{ref,in}$	$\Delta T_{\rm sup}$	$T_{ref,out}$	$P_{ref,out}$	$h_{ref,out}$	S _{ref,out}
-	(<i>K</i>)	(kPa)	(kJ/kg)	(K)	(K)	(kPa)	(kJ/kg)	(kJ/kgK)
0,2	275,15	531,20	243,04	5	280,15	531,20	409,50	1,7612

Tabela 27 Estados termodinâmicos para o R22 no evaporador

Dos dados acima a vazão mássica é, então, calculada por:

 $\dot{m}_{ref} = \frac{Q}{\Delta h} = \frac{35.168 \ [kW]}{409.5 - 243.04 \ [kJ / kg]}$ $\dot{m}_{ref} = 0.21127 \ [kg / s]$

Para o fluido secundário água - etileno glicol (30% concentração), sua vazão mássica foi prescrita em 1,797 kg/s e a temperatura de entrada de 287,85 K (14,70 °C). Os dados gerais do trocador de placas, utilizado como chiller, são apresentados na Tabela 28.

Tabela 28 Dados gerais do trocador de calor de placas soladas para o evaporador

Especificações do trocador de Calor de Placas Soldadas							
Modelo	SWEP B80-50						
Material	ANSI 316						
Área de transferência de calor	2.36 m ²						
	2,00						
Número de placas	50						
	50						
Número de placas térmicas	48						
itumero de placas termicas	10						
Número de nasses nor fluido	1						
Numero de passes por huido	I						

Da mesma forma, foram calculados, para os dois novos fluidos refrigerantes, uma vazão mássica e as condições de entrada segundo o estado

termodinâmico inicial. A Tabela 29 mostra as condições de operação para os três fluidos no evaporador.

Refrigerante	• M _{ref}	$P_{ref,in}$	$h_{ref,in}$	• M _{flu}	$T_{flu,in}$
	(kg / s)	(kPa)	(kJ/kg)	(kg / s)	(<i>K</i>)
R22	0,21127	531,20	243,04	1,797	287,85
R1234yf	0,26191	337,80	71,56	1,797	287,85
R1234ze	0,23337	232,89	63,46	1,797	287,85

Tabela 29 Condições iniciais de operação do evaporador

Com os dados de entrada obtidos, procedeu-se à variação de vazão mássica do fluido secundário, para cada fluido refrigerante. A Tabela 30 apresenta os resultados obtidos para o refrigerante R22. Onde é possível analisar a variação das variáveis \dot{Q}_{ref} , $T_{flu,out}$, $UA \in \Delta P_{ref}$ em função da variação da variação da variação da varia o refrigerante R22 e para os novos fluidos, R1234yf e R1234ze.

R22	\dot{m}_{flu}	$P_{ref,out}$	ΔP_{ref}	$T_{ref,out}$	$\dot{\mathcal{Q}}_{\scriptscriptstyle ref}$	UA	$T_{flu,out}$
	(kg / s)	(kPa)	(kPa)	<i>(K)</i>	(kW)	(kW/K)	(<i>K</i>)
-45%	0,99	435,22	95,98	281,69	35,79	4,11	278,04
-35%	1,17	449,70	81,50	286,53	36,47	4,09	279,38
-25%	1,35	459,79	71,41	287,42	36,56	4,06	280,50
-10%	1,62	469,84	61,36	287,70	36,57	4,03	281,72
0%	1,80	474,36	56,84	287,76	36,56	4,02	282,34
10%	1,98	478,05	53,15	287,79	36,55	4,01	282,84
25%	2,25	482,26	48,94	287,82	36,54	4,01	283,44
50%	2,70	486,79	44,41	287,84	36,52	4,02	284,11

Tabela 30 Variação da vazão mássica do fluido secundário

Na Figura 44 pode-se observar que a capacidade térmica aumenta com maiores vazões de fluido térmico, atingindo um máximo e decaindo levemente, para os três fluidos simulados. Observa-se também, que o R1234yf apresenta uma capacidade maior em comparação com o R1234ze e o R22.

Figura 44 Taxa de transferência de calor versus vazão mássica do fluido secundário

Quanto à temperatura de saída do refrigerante, na Figura 45 observa-se que vai aumentando até manter-se constante para porcentagens maiores da vazão mássica.

Figura 45 Temperatura de saída do refrigerante versus a vazão mássica do fluido secundário

Resultados

A Figura 46 mostra o comportamento da condutância para os fluidos testados. Mostra-se um ligeiro aumento da condutância para os novos fluidos, isto para maiores vazões mássicas do fluido secundário.

Figura 46 Condutância versus a vazão mássica do fluido secundário

Pode-se observar na Figura 47, que com o aumento da vazão mássica do fluido secundário diminui a queda de pressão do lado do refrigerante. Observase que o fluido R1234ze possui uma queda de pressão maior que R1234yf e R22.

Figura 47 Queda de pressão versus vazão mássica do fluido secundário.

Finalmente, na Figura 48 mostra-se a variação local do coeficiente de transferência de calor no lado do refrigerante, variando-se com o titulo de vapor. Pode-se observar que, para a zona bifásica os valores oscilam na faixa de 4,10 a 8,27 kW/m² K. Observam-se os valores ligeiramente maiores para os fluidos R1234yf e R1234ze, em comparação com o R22.

Figura 48 Coeficiente de transferência de calor local versus titulo de vapor

Conclui-se que os novos fluidos podem ser utilizados como substitutos do R22, com a vantagem de apresenta sem impacto ambiental direto menor (em função de seu menor GWP).