4 Teoria de Opções

4.1. Conceito

Derivativos são contratos que utilizam como referência um ativo objeto (Hull, 2005). São freqüentemente utilizados no mercado financeiro em operações de *hedge*, que consiste em mitigar os riscos envolvidos relativos à variação dos preços de mercado, podendo fornecer tanto ao vendedor quanto ao comprador uma garantia do preço futuro.

Dentre os derivativos mais populares encontram-se as opções. Uma opção é o direito de comprar ou vender uma quantidade específica de um bem ou ativo por um preço fixo em uma determinada data prefixada ou até esta data. O fato de ser um direito e não uma obrigação gera uma assimetria benéfica ao proprietário da opção, já que o exercício somente será feito no caso da oscilação no preço do ativo objeto ser favorável ao seu detentor.

4.2. Derivativos no Mercado de Energia

A falta de transparência encontrada no mercado atacadista brasileiro se deve, principalmente, a própria estrutura desse mercado que não se comporta como um verdadeiro mercado de curto-prazo. No Brasil, diferentemente de países como os Estados Unidos e os países europeus, as distribuidoras são obrigadas a comprar a totalidade de suas demandas em leilões promovidos pelo governo e com contratos de longo prazo e as diferenças liquidadas e compradas no PLD. Além disso, o preço não é ditado pelo equilíbrio de oferta e demanda, onde reina a transparência de preços, e sim por um modelo computacional.

A utilização de derivativos no mercado de energia elétrica no Brasil ainda é pequena devido à dificuldade de uma sinalização adequada dos preços futuros, fato associado à volatilidade dos preços que modelo calcula baseado que indica os custos marginais do sistema, e a ausência de sinalização de preços praticados nos contratos bilaterais. De qualquer forma, o presente trabalho abordará alguns aspectos interessantes dos contratos derivativos, objetivando com isto incentivar o uso desta importante ferramenta de gestão.

4.2.1. Opções

O contrato de opção é um contrato que confere o direito de comprar ou vender um bem por um valor declarado em uma data especificada, cuja contrapartida consiste no pagamento à vista de um prêmio.

No mercado de energia elétrica brasileiro, dada a complexidade do modelo de sinalização de preços e a imprevisibilidade das variáveis de entrada deste modelo, tais como as vazões afluentes e configuração futura do parque gerador, as opções não são comumente utilizadas em horizontes de tempo superiores há um ano.

Existem dois tipos principais de opções, a saber:

- Opção de Venda. Dá o direito a seu comprador de vender ou não ao lançador da opção, em até uma data acordada, por um preço prédeterminado, um montante pré-estabelecido de energia elétrica. Este tipo de opção somente é executada quando o preço a vista está menor que o preço acordado no contrato de opção de venda. (Ross, 2002)
- Exemplo: Utilizando-se da opção de venda, o comprador da opção poderá vender sua energia ao lançador da opção a um preço de R\$ 35 / MWh caso o preço de mercado esteja abaixo deste valor. (Ross, 2002; Oliveira, 2009)
- Opção de Compra. Dá o direito ao comprador de comprar ou não do lançador da opção, em uma data acordada, por um preço prédeterminado, um montante pré-estabelecido de energia elétrica. Este tipo de opção somente é executado quando o preço a vista está maior que o preço acordado no contrato de opção de venda. (Ross, 2002; Oliveira, 2009)

Exemplo: Utilizando-se da opção de compra, o comprador da opção poderá comprar energia do lançador da opção a um preço de R\$ 35,00 / MWh caso o preço de mercado esteja acima deste valor.

As opções podem ser americanas ou européias a diferença está que as primeiras podem ser exercidas em qualquer instante ao longo do tempo de contrato e as européias somente na data da sua expiração.

Atualmente no mercado de energia a modalidade mais praticada é a venda de flexibilidades contratuais que são percentuais dos volumes adquiridos em contratos firmes que são vendidos como opção, ou seja, o cliente compra um determinado volume de energia, sendo que mensalmente 5% deste volume pode ser adquirido ou vendido no mercado *spot*. O exercício da opção dependerá, por parte do comprador, do valor do PLD.

O derivativo opção é muito eficiente para mitigação de riscos relativos a custos de insumos, ao mesmo tempo oferece oportunidade para se aproveitar de cenários adversos, caracterizando-se assim, como um bom instrumento para estruturação de operação de *hedge*.

O agente comercializador de energia pode trabalhar a partir das flexibilizações de seus contratos de compra para o lançamento de opções de compra. Isto se deve à semelhança entre flexibilização de montantes contratuais e opções de compra. Pode-se afirmar que uma flexibilidade contratual que permite ao comprador solicitar mais 10% de energia em qualquer mês de vigência do contrato é equivalente a uma série de opções de compra nas quais o prêmio está embutido no preço do contrato de compra do agente comercializador. Assim, diferentemente do que se acredita, não corresponde, ou não deveria corresponder, a uma opção sem custo.

4.2.2. Swaps

Segundo Hull (Hull, 2005) no mercado financeiro o contrato de Swap representa a troca de fluxos financeiros com o objetivo de se proteger de variações indesejáveis. Para efeito de exemplificação pode-se citar um produtor que exporte toda sua produção; em virtude da instabilidade do mercado internacional, este ficaria exposto ao risco cambial, fator este que pode ser mitigado fazendo um *swap* que transforme suas receitas (ou parte) em dólares (US\$) para reais (R\$).

No mercado de energia elétrica a aplicação do swap pode ser utilizada nas operações de mitigação de risco de submercado, o qual tem por origem as diferenças entre custos marginais entre submercados e responde significativamente pelos impedimentos para a efetivação de negócios entre submercados (Ross, 2002; Oliveira, 2009).

O Preço de Liquidação de diversas atualmente é calculado para 4 submercados: Sul, Sudeste/ Centro-Oeste, Nordeste e Norte que são definidos segundo as restrições de transmissão entre estas regiões. Quando existe defasagem de preço entre estes submercado o vendedor que esta num submercado e

vendendo a um comprador para outro submercado deve arcar com a diferença de preços (seja ela positiva ou negativa). Conforme exemplo abaixo:

Dados:

Comprador: Localizado no Nordeste

• Vendedor: Localizado no Sudeste/Centro-Oeste

Preço de Venda: 50 R\$/MWh

PLD no Sudeste/Centro-Oeste: 20 R\$/MWh

• PLD no Nordeste: 100 R\$/MWh

Despesas Comprador:

• Pagará ao vendedor: 50 R\$/MWh

Receita Vendedor:

Receberá 50 R\$/MWh do comprador

Como está no Sudeste deve vender a sua energia a 20 R\$/MWh (PLD SE/CO)

Deve recomprar no submercado do comprador a 100 R\$/MWh (PLD Nordeste).

• Receita Total: +50 + 20 - 100 = -30 R/MWh

Neste caso o vendedor teve um prejuízo devido a diferença de preço entre os submercados.

Também são negociados os *swaps* entre fontes de energia denominadas fontes convencionais e as fontes incentivadas⁷ as quais conferem ao comprador de uso final um desconto na tarifa de uso do sistema de distribuição (TUSD) que é paga pelos consumidores (clientes livres) as distribuidoras locais.

⁷ Fontes de energia de baixo impacto ambiental tais como Pequenas Centrais Hidréetricas, Termoelétricas com combustível de biomassa de cana-de-acucar, cavaco de madeira, usinas solares, eólicas, dentre outras. Esta fontes conferem ao comprador um desconto na tarifa de uso do sistema de distribuição cobrada pelas concessionarias de distribuição.

4.2.3. Collars

O *collar* é um instrumento semelhante a um Contrato de Compra e Venda de Energia (CCVE), diferindo-se apenas na forma de estabelecer o preço de venda. O preço em R\$/MWh do *collar* é definido em função do PLD, tendo limites de preço chamados *cap* (preço máximo) e *floor* (preço mínimo). Assim, o preço é igual a:

$$P = \min(cap; Max(PLD*(1+x); floor))$$
(1)

onde,

x : margem percentual (ágio) aplicada sobre o PLD

cap: preço máximo

floor: o preço mínimo

Da mesma forma que no contrato de opção, o agente comercializador de energia pode trabalhar a partir de flexibilizações dos contratos de compra para garantir a entrega da energia associada ao *collar*, caso o PLD seja muito elevado (acima do cap) (Ross, 2002; Oliveira, 2009).

Como se pode observar, é notória a influência da flexibilidade no custo final da energia em ocasiões nas quais os preços de mercado de curto prazo atingem extremos ao se operar com CCVEs com cláusulas de flexibilidade.

4.3. Preço das Opções

O problema geral de investimento sob incerteza pode ser visto como um problema de maximização de riqueza sujeito a uma ou mais incertezas (processos estocásticos, vide capítulo 6) (Lazo, 2004). Deste modo, é necessário um método de otimização sob incerteza. Os dois métodos mais usados são os métodos dos ativos contingentes, *Contigent Claims* (Pindyck&Rubinfeld, 1991), e o da programação dinâmica.

Do mesmo modo que uma opção financeira, uma opção real pode ser avaliada usando técnicas de análise de ativos contingentes. Se o mercado for considerado neutro ao risco, então o valor da opção pode ser obtido montando-se uma carteira dinâmica, neutra ao risco, que replica o valor do ativo real. Utilizando ferramentas de cálculo estocástico, obtém-se uma equação diferencial

parcial que pode ser resolvida analiticamente ou através de métodos numéricos. Este método, entretanto, é muito limitado, pois à medida que as incertezas sobre as variáveis subjacentes tornam-se mais complexas, o processo de avaliação pode tornar-se oneroso computacionalmente ou intratável algebricamente.

Técnicas de simulação, como Monte Carlo e Programação Dinâmica Estocástica (Pindyck&Rubinfeld, 1991), podem ser utilizadas para a avaliação de opções. Simulação Monte Carlo inicialmente foi utilizada para avaliação de opções européias, devido a ter uma regra clara e simples de exercício ótimo. Já a Programação Dinâmica Estocástica é utilizada para avaliar opções americanas, uma vez que as mesmas devem ser avaliadas com um algoritmo *backward*. A combinação da simulação Monte Carlo e a Programação Dinâmica Estocástica permite desenvolver métodos para avaliação de opções americanas.

Em todos estes casos usualmente são obtidas equações diferenciais, com a condição de ótimo colocada nas condições de contorno dessas equações. Também nas condições de contorno se colocam as condições de decisão gerencial racional e os limites do modelo.

A condição suficiente de contorno para o ótimo, na maioria dos problemas de investimentos, se dá com a condição de suavidade ou de contato suave (*smooth pasting condition*). Pela condição de suavidade, no ponto ótimo, a primeira derivada da função valor da opção deve ter o mesmo valor, antes e depois que a opção for exercida. Alternativamente, no ótimo, a utilidade marginal deve ser igual, antes e depois da ação de investimento, conforme equação (2)

$$\frac{\partial (F(P^*))}{\partial P} = \frac{\partial (V(P^*) - I)}{\partial P} \tag{2}$$

onde F é a função valor da opção, V é a função retorno do investimento, I é o investimento e P* é o valor ótimo do preço para o exercício da opção.

A condição de fronteira necessária, mas não suficiente, nos problemas de maximização de riqueza é a condição de mesmo valor de contato ou *value matching condition*. Por não ser uma condição suficiente, esta não é considerada uma condição de ótimo. A condição de mesmo valor de contato diz que no ponto ótimo é indiferente o exercício ou não da opção, conforme descrito na equação (3) e (4).

$$F(P^*) = V(P^*) - I \tag{1}$$

Valor da espera = Valor do Exercício Imediato (2)

Vale a pena ressaltar que a condição de suavidade é suficiente para o ótimo na imensa maioria dos problemas de investimento em projetos, os quais podem usar a analogia com o problema de ótimo exercício de uma opção americana que será descrita no capitulo 6.