

Deibi Eric García Campos

Formação de emulsões em uma junção de micro canais em T

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC - Rio.

Orientador: Prof. Márcio da Silveira Carvalho

Rio de Janeiro Agosto de 2011

Deibi Eric García Campos

Formação de emulsões em uma junção de micro canais em T

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Márcio da Silveira Carvalho Orientador Departamento de Engenharia Mecânica - PUC-Rio

> Prof. Paulo Roberto de Souza Mendes Departamento de Engenharia Mecânica - PUC-Rio

Prof. Roney Leon Thompson Departamento de Engenharia Mecânica - UFF

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 05 de Agosto de 2011.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Deibi Eric García Campos

Graduou-se em Engenharia Mecânica na Universidad Nacional de Trujillo - UNT (Trujillo, Perú) em 2003.

Ficha Catalográfica

García Campos, Deibi Eric.

Formação de emulsões em uma junção de micro canais em T / Deibi Eric García Campos; orientador: Márcio da Silveira Carvalho. – 2011.

123 f. : il. (color.) ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011.

Incluí bibliografia.

 Engenharia mecânica – Teses. 2. Emulsões. 3. Hidrodinâmica capilar. 4. Junção micro-fluídica T. 5. Formação de gotas. I. Carvalho, Márcio da Silveira. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Dedico este trabalho aos meus pais e irmãos.

Agradecimentos

Ao professor Márcio da Silveira Carvalho, pela orientação, estímulo e confiança depositada em mim, durante nosso percurso investigativo, que permitiram a conclusão deste trabalho.

Ao Departamento de Engenharia Mecânica da Pontifícia Universidade Católica de Rio de Janeiro PUC-Rio, seus professores e funcionários, pela acolhida durante o mestrado.

À CAPES e à PUC-Rio, pelo auxílio financeiro concedido durante o curso.

Aos membros da banca examinadora, que aceitaram revisar o trabalho e contribuíram com valiosas sugestões e observações.

Aos amigos e colegas do grupo de trabalho do professor Márcio Carvalho e do Laboratório de Micro-hidrodinâmica e Escoamento em Meios Porosos LMMP pela sua ajuda direta ou indireta na realização deste trabalho.

Resumo

García Campos, Deibi Eric; Carvalho, Márcio da Silveira. **Formação de emulsões em uma junção de micro canais em T.** Rio de Janeiro, 2011. 123p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Na produção de petróleo, durante a recuperação secundária, a injeção de água no reservatório de petróleo com o objetivo de deslocar o óleo até o poço produtor pode levar a um regime de escoamento bifásico onde ocorre a formação de emulsões. As emulsões são um problema para a indústria do petróleo porque produzem perda de carga nas linhas de produção e tornam difíceis os processos de separação óleo-água, gerando altos custos. Este fenômeno ainda não é bem entendido e não é exclusivo do que ocorre no meio poroso porque também está presente nas diferentes etapas da produção de petróleo. Este trabalho foi focado na formação de emulsões no meio poroso de um reservatório, considerando especialmente o escoamento bifásico na escala de poros. Assim foi utilizada uma junção de micro canais em T para descrever o que poderia acontecer na união de duas gargantas de poros em um reservatório de petróleo. Neste caso utilizamos a técnica de formação de gotas por fluxo cruzado estudada e desenvolvida, nas últimas décadas, na área de micro-fluídica. Através da injeção de dois líquidos imiscíveis nos canais que formam a junção, foi estabelecido um regime estável de formação de gotas. Para estudar a influência das diferentes variáveis do processo na formação de gotas, foram variadas as vazões dos líquidos injetados e suas propriedades, como viscosidades e tensão interfacial. Os resultados mostram que os diferentes regimes de escoamento e formação de gotas observados não são só uma função do número de capilaridade da fase contínua, como sugere a literatura para junções micro-fluídicas T de seção retangular. Nos experimentos desenvolvidos neste trabalho, nos quais a seção reta dos canais é oval e a fase contínua é a fase aquosa, as características da fase dispersa, como vazão e viscosidade, tiveram uma grande influência no processo de formação de gotas.

Palavras-chave

Emulsão; Hidrodinâmica Capilar, Micro-hidrodinâmica; Quebra de Gotas.

García Campos, Deibi Eric; Carvalho, Márcio da Silveira (Advisor). **Emulsion Formation in a T-junction microfluidic channel.** Rio de Janeiro, 2011. 123p. MSc. Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

In oil production, during secondary recovery, water injection into the reservoir to displace oil towards the production well generates different phenomena, among which is emulsion formation. Emulsions are a problem for the oil industry, because they change the pressure drop in production lines and hardens the process of separating oil-water, generating high operating costs. Emulsion formation in oil production is not yet well understood and it does not only occur in porous media, emulsion formation also occurs during different stages of oil production. This work was focused on the emulsion formation in porous media specifically considering the pore scale two phase flow. A T-junction microfluidic device was used as a model of the union of two pore throats in a porous media. We studied droplet formation in cross-flowing streams, a technique studied and developed in the past decade in the area of microfluidics technologies. Through the injection of two immiscible liquids in the channels of the device, we established a stable droplet formation regime. To study the influence of different variables that govern drop formation, we varied the flow rates of both immiscible phases and their properties, such as viscosity and interfacial tension. The results show that the different regimes observed are not only a function of capillary number, defined based on the continuous phase, as suggested in the literature for microfluidic T junctions with rectangular cross section. In our experiments the cross section of the channel had an elliptic shape and the continuous phase was aqueous, and the characteristics of the dispersed phase had a great influence in the process of drop formation.

Keywords

Emulsion; Capillary Hidrodynamics; Micro-Hidrodynamics; Drop Breakup.

Sumário

1. Introdução	20
1.1. A produção de petróleo	23
1.1.1. Recuperação primária	24
1.1.2. Recuperação secundária	25
1.1.3. Recuperação terciária (avançada)	26
1.2. Motivação	27
1.3. Objetivos	30
1.4. Escopo	30
2. Conceitos fundamentais	31
2.1. Emulsões	31
2.2. Estabilidade das emulsões	32
2.3. Surfactante	33
2.4. Fenômenos associados à interface de dois fluidos	34
2.4.1. Capilaridade	34
2.4.2. Tensão interfacial, superficial e suas variantes	35
2.4.3. Equação Young-Laplace	36
2.4.4. A molhabilidade e o ângulo de contato	37
2.4.5. Fenômenos capilares em meios porosos	38
2.4.6. O Número de capilaridade	39
2.4.7. Fluxo em micro canais	42
2.5. Formação de emulsões	42
2.5.1. Recentes estudos em micro-hidrodinâmica	43
2.5.2. Formação de gotas	44
2.5.2.1. Formação por fluxo cruzado (junção T e Y)	44
2.5.2.2. Formação por correntes de co-fluxo	45
2.5.2.3. Formação por fluxo focado	46
2.5.3. Transporte de gotas	46
2.5.3.1. Transporte de gotas de diâmetro menor do que	

a largura do canal	46
2.5.3.2. Transporte de gotas que ocupam maior espaço do que	
a largura do canal	47
2.5.4. Coalescência de gotas	47
2.5.4.1. Coalescência passiva	47
2.5.4.2. Coalescência ativa	48
2.6. Formação por fluxo cruzado em uma junção micro-fluídica T	48
2.6.1. Mecanismo de quebra confinado	49
2.6.2. Mecanismo de quebra não confinado	50
2.6.3. Mecanismo de quebra tipo jato	51
2.6.4. Mecanismo de quebra parcialmente confinado	51
2.6.5. Modelos empíricos propostos na literatura	52
3. Dispositivo Experimental e Procedimento	55
3.1. Bancada experimental	55
3.1.1. Equipamentos da bancada	57
3.1.1.1. Junção micro-fluídica T	57
3.1.1.2. Equipamento para a injeção de fluidos	58
3.1.1.3. Equipamento para aquisição de imagens	59
3.2. Fluidos injetados	59
3.2.1. Preparação das fases	61
3.2.2. Caracterização das fases	63
3.3. Método de trabalho	66
3.3.1. Importância da seção na junção micro-fluídica T	67
3.3.2. Curiosidades e limitações observadas no	
desenvolvimento dos experimentos	68
4. Resultados	70
4.1. Análise dos dados obtidos	72
4.1.1. Formação de gotas no mecanismo "squeezing"	73
4.1.2. Influência das variáveis controladas	75
4.1.2.1. Efeito das vazões dos fluidos injetados	75
4.1.2.2. Efeito da viscosidade da fase dispersa	80
4.1.2.3. Efeito da viscosidade da fase contínua	84

4.1.2.4. Efeito da tensão interfacial	89
4.1.2.5. Efeito do número de capilaridade	94
4.1.2.6. O modelo alternativo	98
4.1.2.7. Comparação dos dados experimentais com	
o modelo empírico	100
4.1.3. Formação de gotas no mecanismo tipo jato	104
4.1.3.1. Descrição do mecanismo observado	106
4.1.3.2. Influência das variáveis controladas	107
4.1.3.3. Efeito das vazões dos fluidos injetados	
4.1.3.4. Efeito do número de capilaridade	
5. Comentários finais e sugestões	113
5.1. Comentários	113
5.2. Sugestões para trabalhos futuros	114
Referências bibliográficas	116

Lista de figuras

Figura 1.1:	Demanda de energia primária mundial por cenário.	21
Figura 1.2:	Reservas provadas de petróleo dos 15 primeiros	
	países, finais 2009.	22
Figura 1.3:	Recuperação secundária do petróleo através de	
	água (waterflooding).	26
Figura 1.4:	Formação de emulsões pela quebra de gota na união	
	de dois poros durante a recuperação secundária.	28
Figura 2.1:	a) Emulsão água em óleo. b) Emulsão óleo em	
	água. c) Emulsão múltipla a/o/a.	32
Figura 2.2:	Comportamento das moléculas de surfactante na	
	interface de uma gota de óleo em água.	33
Figura 2.3:	Comportamento do surfactante no sistema óleo-água	
	(emulsão o/a) para concentrações diferentes de	
	surfactante.	34
Figura 2.4:	Película superficial criada pelas forças moleculares.	35
Figura 2.5:	Superfície curva que mostra os raios principais	
	que a definem.	36
Figura 2.6:	Molhabilidade e ângulo de contato.	37
Figura 2.7:	Diferentes casos de molhabilidade.	38
Figura 2.8:	Curvas de permeabilidade relativa à água e ao	
	óleo em função da saturação de água S_w .	39
Figura 2.9:	Configuração de uma gota de óleo presa em um poro	
	na presença de um gradiente de pressão produzido	
	pelo fluxo de água no meio poroso.	40
Figura 2.10:	Classificação da dinâmica de gotas micro-fluídicas.	44
Figura 2.11:	Formação de gotas por fluxo cruzado. a) Junção T.	
	b) Junção Y.	45
Figura 2.12:	Formação de gotas por correntes de co-fluxo.	45

Figura 2.13:	Formação de gotas por fluxo focado.	46
Figura 2.14:	Gotas menores que a largura do canal	
	imersas em um fluido transportador.	46
Figura 2.15:	Gotas maiores do que a largura do canal.	47
Figura 2.16:	Coalescência passiva de gotas. a) Por geometria que	
	permite a fusão de gotas. b) Por desestabilização	
	através de uma câmara de descompressão.	47
Figura 2.17:	Coalescência ativa de gotas. a) e b) Por eletro-	
	coalescência. c) Por aquecimento localizado.	48
Figura 2.18:	Sequência do processo de formação de gota	
	pelo mecanismo de quebra confinado.	49
Figura 2.19:	Sequência do processo de formação de gota	
	pelo mecanismo de quebra não confinado.	50
Figura 2.20:	Mecanismo de formação de gotas tipo jetting em	
	junções micro-fluídicas T de seção retangular.	51
Figura 2.21:	Sequência do processo de formação de gota pelo	
	mecanismo de quebra parcialmente confinado.	52
Figura 3.1:	Esquema da bancada e os diferentes equipamentos	
	utilizados.	56
Figura 3.2:	Fotografia da bancada experimental.	56
Figura 3.3:	Conjunto do dispositivo micro-fluídico utilizado.	57
Figura 3.4:	Bombas de seringa utilizadas Cole Parmer.	58
Figura 3.5:	a) Seringas Hamilton Gastight. b) Conexões utilizadas	
	entre as seringas e o conjunto micro-fluídico.	59
Figura 3.6:	Diferentes fluidos utilizados como fases	
	dispersas e contínuas.	61
Figura 3.7:	Procedimento de preparação das fases dispersas.	61
Figura 3.8:	Procedimento de preparação das fases contínuas.	62
Figura 3.9:	a) Dispensador de ajuste analógico para medir um	
	volume exato de glicerina. b) Filtrado das fases	
	contínuas mediante uma bomba de vácuo.	63
Figura 3.10:	Equipamentos utilizados na determinação da massa	
	específica das fases.	64

Figura 3.11:	Equipamentos utilizados na determinação da	
	viscosidade das fases.	65
Figura 3.12:	Equipamentos utilizados na determinação da	
	tensão superficial das fases.	65
Figura 3.13:	Esquema da junção micro-fluídica T e tamanho	
	de gota L.	67
Figura 3.14:	Desenho esquemático da junção micro-fluídica T	
	com a indicação dos canais principal e secundário.	67
Figura 3.15:	Esquema que mostra as diferenças entre uma junção	
	micro-fluídica T de seção retangular e uma de seção	
	oval.	68

Figura 4.1:	Tamanho de gota em função da razão de vazões dos	
	fluidos injetados para os sete sistemas estudados.	72
Figura 4.2:	Mecanismo de quebra chamado de squeezing.	73
Figura 4.3:	Formação de gota observada no sistema N°1	74
Figura 4.4:	Formação de gota observada no sistema N°2	74
Figura 4.5:	Formação de gota observada no sistema N°3	74
Figura 4.6:	Formação de gota observada no sistema N°4	74
Figura 4.7:	Formação de gota observada no sistema N°5	74
Figura 4.8:	Formação de gota observada no sistema N°6	75
Figura 4.9:	Tamanho de gota em função da vazão de fase	
	contínua injetada correspondente ao sistema N°1.	76
Figura 4.10:	Tamanho de gota em função da vazão de fase	
	contínua injetada correspondente ao sistema N°2.	76
Figura 4.11:	Tamanho de gota em função da vazão de fase	
	contínua injetada correspondente ao sistema N°3.	77
Figura 4.12:	Tamanho de gota em função da vazão de fase	
	contínua injetada correspondente ao sistema N°4.	77
Figura 4.13:	Tamanho de gota em função da vazão de fase	
	contínua injetada correspondente ao sistema N°5.	78
Figura 4.14:	Tamanho de gota em função da vazão de fase	
	contínua injetada correspondente ao sistema N°6.	78
Figura 4.15:	Tamanho de gota em função da vazão de fase	

PUC-Rio - Certificação Digital Nº 0921479/CB

	contínua para duas fases dispersas com diferentes	
	viscosidades. Qd=0.01 ml/h e µc=0.97 mPa.s.	80
Figura 4.16:	Tamanho de gota em função da vazão de fase	
	contínua para duas fases dispersas com diferentes	
	viscosidades. Qd=0.05 ml/h e µc=0.97 mPa.s.	81
Figura 4.17:	Tamanho de gota em função da vazão de fase	
	contínua para duas fases dispersas com diferentes	
	viscosidades. Qd=0.09 ml/h e µc=0.97 mPa.s.	81
Figura 4.18:	Tamanho de gota em função da vazão de fase	
	contínua para duas fases dispersas com diferentes	
	viscosidades. Qd=0.01 ml/h e µc=12.47 mPa.s.	82
Figura 4.19:	Tamanho de gota em função da vazão de fase	
	contínua para duas fases dispersas com diferentes	
	viscosidades. Qd=0.05 ml/h e µc=12.47 mPa.s.	82
Figura 4.20:	Tamanho de gota em função da vazão de fase	
	contínua para duas fases dispersas com diferentes	
	viscosidades. Qd=0.09 ml/h e µc=12.47 mPa.s.	83
Figura 4.21:	Tamanho de gota em função da vazão de duas fases	
	contínuas para uma mesma fase dispersa.	
	Qd=0.01 ml/h e μ d=3.4 mPa.s.	85
Figura 4.22:	Tamanho de gota em função da vazão de duas fases	
	contínuas para uma mesma fase dispersa.	
	Qd=0.05 ml/h e μ d=3.4 mPa.s.	85
Figura 4.23:	Tamanho de gota em função da vazão de duas fases	
	contínuas para uma mesma fase dispersa.	
	Qd=0.09 ml/h e μ d=3.4 mPa.s.	86
Figura 4.24:	Tamanho de gota em função da vazão de duas fases	
	contínuas para uma mesma fase dispersa.	
	Qd=0.01 ml/h e µd=16.9 mPa.s.	86
Figura 4.25:	Tamanho de gota em função da vazão de duas fases	
	contínuas para uma mesma fase dispersa.	
	Qd=0.05 ml/h e µd=16.9 mPa.s.	87
Figura 4.26:	Tamanho de gota em função da vazão de duas fases	
	contínuas para uma mesma fase dispersa.	

Qd= $0.09 \text{ ml/h} e \mu d=16.9 \text{ mPa.s.}$

- Figura 4.27: Tamanho de gota em função da vazão de duas fases contínuas com tensões interfaciais diferentes para uma mesma fase dispersa. Qd=0.01 ml/h e μd=3.4 mPa.s.
 89
- Figura 4.28: Tamanho de gota em função da vazão de duas fases contínuas com tensões interfaciais diferentes para uma mesma fase dispersa. Qd=0.05 ml/h e μd=3.4 mPa.s.
 90
- Figura 4.29: Tamanho de gota em função da vazão de duas fases contínuas com tensões interfaciais diferentes para uma mesma fase dispersa. Qd=0.09 ml/h e μd=3.4 mPa.s.
 90
- Figura 4.30: Tamanho de gota em função da vazão de duas fases contínuas com tensões interfaciais diferentes para uma mesma fase dispersa. Qd=0.01 ml/h e μd=16.9 mPa.s.
 91
- Figura 4.31: Tamanho de gota em função da vazão de duas fases contínuas com tensões interfaciais diferentes para uma mesma fase dispersa. Qd=0.05 ml/h e μd=16.9 mPa.s.
 91
- Figura 4.32: Tamanho de gota em função da vazão de duas fases contínuas com tensões interfaciais diferentes para uma mesma fase dispersa. Qd=0.09 ml/h e μd=16.9 mPa.s.
 92
- Figura 4.33: Desenho que mostra as duas partes da interface da gotaestabelecida pelo confinamento no canal principal.92
- Figura 4.34: Tamanho de gota em função do número de capilaridade de duas fases dispersas para uma mesma fase contínua. μc=0.97 mPa.s.
 Figura 4.35: Tamanho de gota em função do número de capilaridade de duas fases dispersas para uma
- mesma fase contínua. μc=12.47 mPa.s.
 95
 Figura 4.36: Tamanho de gota em função do número de capilaridade de uma mesma fase dispersa para duas fases contínuas. μd=3.4 mPa.s.
 95
- Figura 4.37: Tamanho de gota em função do número de capilaridade de uma mesma fase dispersa para duas fases contínuas. µd=16.9 mPa.s.
 96
- Figura 4.38: Modelo de formação de gota no mecanismo

	Squeezing.	100
Figura 4.39:	Tamanho de gota em função da razão de vazões dos	
	fluidos injetados no sistema N°1.	101
Figura 4.40:	Tamanho de gota em função da razão de vazões dos	
	fluidos injetados no sistema N°2.	101
Figura 4.41:	Tamanho de gota em função da razão de vazões dos	
	fluidos injetados no sistema N°3.	102
Figura 4.42:	Tamanho de gota em função da razão de vazões dos	
	fluidos injetados no sistema N°4.	102
Figura 4.43:	Tamanho de gota em função da razão de vazões dos	
	fluidos injetados no sistema N°5.	103
Figura 4.44:	Tamanho de gota em função da razão de vazões dos	
	fluidos injetados no sistema N°6.	103
Figura 4.45:	Mecanismo de quebra chamado de jato ou jetting.	104
Figura 4.46:	Formação de gota observada no sistema N°7	
	para Qd=0.01 ml/h e Qc=0.03 ml/h.	105
Figura 4.47:	Formação de gota observada no sistema N°7	
	para Qd=0.04 ml/h e Qc=0.07 ml/h.	105
Figura 4.48:	Formação de gota observada no sistema N°7	
	para Qd=0.07 ml/h e Qc=0.08 ml/h.	105
Figura 4.49:	Tamanho de gota em função da razão de vazões	
	dos fluidos injetados. São apresentados os regimes	
	de formação de gota e os modelos simples.	106
Figura 4.50:	Tamanho de gota em função da vazão de fase contínua	
	para três vazões da fase dispersa no sistema N°7.	108
Figura 4.51:	Tamanho de gota em função do número de capilaridade	
	e comparações para vazões fixas de fase dispersa	
	de 0.01, 0.05 e 0.09 ml/h.	110

Lista de tabelas

Tabela 3.1:	Propriedades das fases dispersas e das fases	
	contínuas a 23°C.	66
Tabela 4.1:	Tabela resumo das propriedades principais dos fluidos	
	utilizados nos sete sistemas avaliados.	71