LUIS FERNANDO GONÇALVES PIRES

UM MÉTODO NUMÉRICO PARA SOLUÇÃO DE ESCOAMENTOS UTILIZANDO COMPONENTES CONTRAVARIANTES EM COORDENADAS NÃO ORTOGONAIS

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA

Rio de Janeiro, 4 de fevereiro de 1994
LUÍS FERNANDO GONÇALVES PIRES

UM MÉTODO NUMÉRICO PARA SOLUÇÃO DE ESCOAMENTOS UTILIZANDO COMPONENTES CONTRAVARIANTES EM COORDENANDAS NÃO ORTOGONAI

Tese apresentada ao Departamento de Engenharia Mecânica da PUC/RJ como parte dos requisitos para obtenção do título de Doutor em Engenharia Mecânica.

Orientadora: Angela O. Nieckele.

Departamento de Engenharia Mecânica
Pontifícia Universidade Católica do Rio de Janeiro

Rio de Janeiro, 4 de fevereiro de 1994.
À Felicia,

Gustavo e

Gabriel
AGRADECIMENTOS

Ao Instituto de Projetos Especiais do Centro Tecnológico do Exército pela oportunidade que me foi confiada.

À Pontifícia Universidade Católica do Rio de Janeiro, em especial ao Departamento de Engenharia Mecânica, pelo Curso realizado.

À Doutora Angela Ourivo Nieckele, orientadora, pela determinação e confiança demonstradas desde à sugestão até a conclusão da tese.

Aos Membros da Banca Examinadora, pelas sugestões e estímulos proporcionados durante a defesa da tese.

Ao CNPq e à Vice-Reitoria de Assuntos Acadêmicos, pelas bolsas de estudo, sem as quais este trabalho não poderia ser concluído.

Aos meus pais e amigos, pelo ampabo e dedicação à mim conferidos.
RESUMO

O trabalho desenvolveu uma metodologia de solução numérica de escoamentos em geometrias complexas, numa formulação incompressível e bi-dimensional. As equações de conservação são discretizadas com o emprego da técnica de volumes finitos em coordenadas não ortogonais. Esta técnica mapeia o espaço real num espaço transformado, no qual as fronteiras do domínio de cálculo coincidem com as fronteiras do domínio físico.

Os componentes contravariantes da velocidade foram empregados como variáveis dependentes nas equações de conservação de quantidade de movimento. Estas equações foram obtidas em coordenadas não ortogonais pela manipulação algébrica das equações discretizadas para os componentes cartesianos. Este procedimento, que emprega um sistema de coordenadas auxiliar fixo localmente, evita o surgimento dos diversos termos oriundos da curvatura e da não ortogonalidade da malha, que seriam obtidos caso fosse empregada a análise tensorial para a derivação destas equações. O acoplamento pressão-velocidade é feito utilizando o algoritmo SIMPLEC. O conjunto de equações algébricas resultante é resolvido por um esquema de solução segregado, no qual é empregado um esquema de solução linha-a-linha (TDMA), com um processo de correção por blocos para acelerar a convergência.

A metodologia desenvolvida foi utilizada para a solução de diversos problemas visando analisar o seu desempenho. Foram estudados os seguintes casos: escoamento laminar entre dois cilindros, convecção natural entre dois cilindros exêncricos, escoamento induzido numa cavidade trapezoidal pelo movimento de suas bases, escoamento laminar num canal, escoamento axi-simétrico num duto com redução da seção reta e escoamento laminar e turbulento axi-simétrico num duto com estrangulamento. Tendo em vista os bons resultados obtidos para estes testes, pode-se concluir que as opções realizadas para a confecção do esquema desenvolvido foram corretas, pois geraram um algoritmo eficiente e versátil.
ABSTRACT

A solution method for bi-dimentional incompressible fluid flow problems in complex geometries is developed in this work. The method solves the conservation equations in a non-orthogonal coordinate system using the finite volumes technique.

The contravariant velocities are kept as dependent variables in the momentum equations. These equations are obtained by an algebric manipulation of the discretization equations written in a locally fixed coordinate system. This procedure avoids the treatment of the extra terms if the discretization equations for the curvilinear velocities are obtained in the conventional manner. The coupling of pressure and velocities are performed by the SIMPLEC algorithm. The set of algebric equations are solved using an iterative method in conjunction with coefficient update for linearization. In the computer implementation of the proposed scheme a line-by-line algorithm (TDMA) has been employed with a block correction procedure to enhance the convergence.

The method is tested by solving a variety of problems. The problems include: flow between two concentric rotating cylinders, natural convection in an eccentric annuli, driven flow in a trapezoidal cavity with moving lids, laminar flow in a channel, axisimetric flow in a duct with reduced cross section and laminar and turbulent flow through a tube with an axisimetric constriction. The objective of these tests is to establish the validity of the proposed scheme and demonstrate its applicability to a wide variety of problems.
SUMÁRIO

LISTA DE FIGURAS..vii

I - INTRODUÇÃO..1

II - EQUAÇÃO GERAL DE CONSERVAÇÃO..............................7
 II.1 - Introdução...7
 II.2 - Equação geral..7
 II.3 - Formulação de volumes finitos para a equação geral......8
 II.3.1 - Relações Importantes......................................10
 II.3.2 - Formulação em coordenadas curvilíneas..................15
 II.4 - Equação da continuidade....................................21
 II.5 - Discretização da equação geral em termos de φ...........22

III - ESCOLHA DAS VARIÁVEIS DEPENDENTES E DOS V.C..........26
 III.1 - Introdução ..26
 III.2 - Escolha das variáveis primitivas..........................26
 III.3 - Posição da velocidade na malha............................27
 III.4 - Escolha da variável dependente na equação de
 quantidade de movimento....................................31
 III.4.1 - Configuração 133
 III.4.2 - Configuração 235
 III.4.3 - Configuração 338
 III.4.4 - Configuração 440
 III.4.5 - Configuração 540
 III.5 - Conclusão..43

IV - ALGORITMO DE SOLUÇÃO...45
 IV.1 - Introdução ..45
 IV.2 - Discretização da equação de conservação de
 quantidade de movimento....................................45
 IV.3 - Acoplamento pressão-velocidade............................51
 IV.3.1 - Algoritmo SIMPLEC....................................52
IV.4 - Procedimento geral de solução ... 55

V - RESULTADOS .. 58

V.1 - Introdução .. 58

V.2 - Escoamento entre dois cilindros concêntricos girando 58
 V.2.1 - Equações e Detalhes Computacionais 60
 V.2.2 - Resultados ... 61

V.3 - Convecção natural laminar em cilindros concêntricos e
 excêntricos ... 68
 V.3.1 - Equações e detalhes computacionais 68
 V.3.2 - Resultados ... 71

V.4 - Escoamento induzido numa cavidade trapezoidal 83
 V.4.1 - Equações e detalhes computacionais 83
 V.4.2 - Resultados ... 85

V.5 - Escoamento laminar em um canal 90
 V.5.1 - Equações e detalhes computacionais 92
 V.5.2 - Resultados ... 93

V.6 - Escoamento laminar em tubo com redução na seção reta ... 95
 V.6.1 - Equações e detalhes computacionais 97
 V.6.2 - Resultados ... 98

V.7 - Escoamento em um tubo com estrangulamento 106
 V.7.1 - Escoamento laminar .. 108
 V.7.1.1 - Equações e detalhes computacionais 108
 V.7.1.2 - Resultados .. 110
 V.7.2 - Escoamento turbulento ... 114
 V.7.2.1 - Modelo de turbulência 114
 V.7.2.1.1 - Leis da parede .. 119
 V.7.2.2 - Descrição do problema 122
 V.7.2.3 - Equações e detalhes computacionais 124
 V.7.2.4 - Resultados .. 124
VI - CONCLUSÃO
VI.1 - Resumo do trabalho realizado
VI.2 - Sugestões para o desenvolvimento do trabalho
REFERÊNCIAS BIBLIOGRÁFICAS
LISTA DE FIGURAS

Figura 2.1 - Volume de controle típico
Figura 2.2 - Geometria do plano físico e do domínio computacional
Figura 2.3 - Componentes covariantes e contravariantes da velocidade
Figura 3.1 - Malhas co-localizadas e deslocadas
Figura 3.2 - Arranjo co-localizado. Configuração 1
Figura 3.3 - Plano físico. Configuração 2
Figura 3.4 - Plano físico: posição dos componentes cartesianos numa curva, para a configuração 2
Figura 3.5 - Plano físico. Configuração 3
Figura 3.6 - Plano físico. Configuração 4
Figura 3.7 - Plano físico. Configuração 5
Figura 4.1 - Arranjo das velocidades U'_x
Figura 5.1 - Geometria e malha utilizadas para o problema 1
Figura 5.2 - Velocidade normalizada U para a face dos volumes de controle na diagonal principal para $\theta = 22,5^\circ$ e malha de 17x17
Figura 5.3 - Distribuição de pressão ao longo da diagonal principal para $\theta = 0^\circ$
Figura 5.4 - Distribuição de pressão ao longo da diagonal principal para $\theta = 15^\circ$
Figura 5.5 - Distribuição de pressão ao longo da diagonal principal para $\theta = 22,5^\circ$
Figura 5.6 - Distribuição de pressão ao longo da diagonal principal para $Re = 100$ e $\theta = 15^\circ$
Figura 5.8 - Malha utilizada para o problema 2
Figura 5.9 - Condutividade térmica equivalente para $e_\nu = -0,623$ e $Ra = 4,9x10^4$
Figura 5.10 - Distribuição de temperatura para $\theta = 0^\circ$ e $\theta = 180^\circ$, $e_\nu = -0,623$ e $Ra = 4,9x10^4$
Figura 5.11 - Distribuição de temperatura para \(\theta = 60^\circ \) e \(\theta = 120^\circ \),
\(e_V = -0,623 \) e \(Ra = 4,9 \times 10^4 \) .. 76

Figura 5.12 - Condutividade térmica equivalente para \(e_V = -0,652 \) e \(Ra = 4,8 \times 10^4 \) .. 78

Figura 5.13 - Distribuição de temperatura para \(\theta = 0^\circ \) e \(\theta = 180^\circ \),
\(e_V = -0,652 \) e \(Ra = 4,8 \times 10^4 \) .. 79

Figura 5.14 - Distribuição de temperatura para \(\theta = 60^\circ \) e \(\theta = 120^\circ \),
\(e_V = -0,652 \) e \(Ra = 4,8 \times 10^4 \) .. 80

Figura 5.15 - Isotermas (0,1 a 0,8) e função corrente
(-4, -8, -12, -20, -28, -32, -38) para \(e_V = 0,623 \) e \(Ra = 4,9 \times 10^4 \) 81

Figura 5.16 - Isotermas (0,1 a 0,8) e função corrente
(-3, -6, -9, -12, -15, -18, -21, -24) para \(e_V = 0,652 \) e \(Ra = 4,8 \times 10^4 \) 82

Figura 5.17 - Características geométricas do problema 3. 84

Figura 5.18 - Malha utilizada no problema 3 .. 86

Figura 5.19 - Velocidade normalizada \(U \) na linha vertical central
do domínio. ... 87

Figura 5.20 - Velocidade normalizada \(V \) na linha horizontal central
do domínio. ... 88

Figura 5.21 - Função corrente (-39,-30,-20,-10,-1, 10, 20, 30)
para \(Re = 400 \) e malha de 30x30. ... 89

Figura 5.22 - Geometria e malha utilizadas para o problema 4 91

Figura 5.23 - Evolução do resíduo de massa em função do número
de iterações para diversos ângulos... 94

Figura 5.25 - Características geométricas do problema 5 96

Figura 5.25 - Malha 40x20 utilizada para o problema 5 99

Figura 5.26 - Distribuição da velocidade \(u \) no plano \(x/d=0,098 \)
e \(Re=196 \) .. 100

Figura 5.27 - Distribuição da velocidade \(u \) no plano \(x/d=0,196 \)
e \(Re=196 \) .. 101
Figura 5.28 - Distribuição da velocidade v no plano $x/D=0,052$
$e \text{Re}=196$... 102

Figura 5.29 - Distribuição da velocidade u no plano $x/d=0,049$
$e \text{Re}=372$... 103

Figura 5.30 - Distribuição da velocidade u no plano $x/d=0,196$
$e \text{Re}=372$... 104

Figura 5.31 - Função corrente normalizada
$(0,05, 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 0,99)$............................... 105

Figura 5.32 - Características geométricas do problema 6.......................... 107

Figura 5.33 - Malha de 40×12 utilizada para o problema 6
(forra de escala).. 109

Figura 5.34 - Dimensão da região de descolamento
para o modelo M-2.. 111

Figura 5.34 - Dimensão da região de descolamento
para o modelo M-3.. 112

Figura 5.36 - Função corrente normalizada
$(0,05, 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 0,99)$............................... 113

Figura 5.37 - Relação entre a velocidade tangencial e
os componentes contravariantes.. 121

Figura 5.38 - Distribuição da velocidade adimensional
para os planos $x/X_0 = -4$ e 0... 126

Figura 5.39 - Distribuição da velocidade adimensional
para os planos $x/X_0 = 2$ e 11... 127

Figura 5.40 - Função corrente normalizada
$(0,05, 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 0,99)$............................... 128

Figura 5.41 - Variação da velocidade na linha central
em função da posição.. 129
CAPÍTULO I

INTRODUÇÃO

Processos que envolvem escoamento de fluidos e transferência de calor em geometrias complexas são vistos numa grande variedade de aplicações práticas. Exemplos podem ser encontrados em diversas áreas como aerodinâmica, turbomáquinas, trocadores de calor, projeto de reatores nucleares, etc.

Em qualquer simulação numérica a escolha do algoritmo numérico e do modelo do escoamento do fluido é direcionada por considerações como o custo computacional, o regime de escoamento, a precisão da solução desejada, etc. Estes condicionantes provocam um vasto conjunto de técnicas de simulação (diferenças finitas, volumes finitos, elementos finitos, métodos integrais), um grande número de aproximações físicas (fluído compressível ou incompressível, escoamento rotacional ou não, transiente ou permanente) e uma variedade de modos para o tratamento das imposições da geometria do contorno (interpolações com malhas cartesianas, malhas curvilíneas ortogonais ou não ortogonais). Além disto, um método de solução desenvolvido para um computador no qual todos os parâmetros foram otimizados, quando for utilizado em outra máquina pode não apresentar a mesma eficiência.

Com o contínuo avanço dos computadores e dos algoritmos numéricos, o caminho natural que se descortina é o desenvolvimento de técnicas de simulação gerais, que se adaptam à geometria do contorno e nas quais se tenha o mínimo de aproximações de ordem física. A justificativa usual para esta abordagem é que, apesar de comparativamente ser mais onerosa do que algoritmos simplificados, devido à sua generalidade, a adaptação para uma grande classe de problemas pode ser rapidamente obtida. E como justificativa final, tem-se que é muito mais simples tornar um método geral eficiente do que tornar um método eficiente geral.

Quando o problema abordado envolve uma geometria complexa, o método de elementos finitos surge como uma escolha natural. O seu desenvolvimento e aplicação nas áreas de Mecânica dos Sólidos e Resistência dos Materiais sofreram um grande impulso e seu domínio nestas áreas é absoluto. Entretanto, problemas com a discretização do termo convectivos restringiram sobremaneira sua utilização na área de Mecânica dos Fluidos. Apesar disto,
diferentes esforços vêm sendo realizados nesta área, gerando algoritmos que produziram resultados animadores. Como exemplo pode-se mencionar os trabalhos de Chatot et al. de 1980 [1], de Srinivas e Fletcher de 1985 [2] e de Baliga e Patankar de 1983 [3]. Já os métodos tradicionais de diferenças finitas utilizando expansão em série de Taylor são mais simples do que os métodos de elementos finitos, mas também esbarram na limitação de só fornecerem solução convergida e fisicamente real para problemas cuja difusão domina a convecção. Por sua vez o método de volumes finitos (ou volumes de controle) tem sido largamente utilizados na área de escoamento de fluidos devido a sua eficiência e principalmente por garantir a conservação global das variáveis de interesse.

Os métodos de diferenças finitas e de volumes finitos são facilmente utilizados em problemas com geometrias cartesianas ou cilíndricas, mas quando a geometria se torna complexa, as dificuldades que surgem na aproximação das condições de contorno tornam estes métodos de pouca eficiência. Por outro lado, observou-se durante a década de 70 o rápido desenvolvimento de técnicas de geração de malhas, ortogonais e não ortogonais, com as quais uma geometria complexa pode ser economicamente mapeada. Estas técnicas utilizam desde simples relações algébricas a equações diferenciais parciais e transformações conformes para a geração de quadriláteros curvilíneos, quando em duas dimensões e hexaedros curvilíneos quando em três dimensões. Também durante esta década, a formulação das equações de conservação em coordenadas generalizadas, apresentada por Vinokur em 1974 [4] e por Peyret e Viviand em 1975 [5], possibilitou a sua utilização em esquemas numéricos. Estes dois pontos foram fundamentais para o estabelecimento da técnica de volumes finitos como muito promissora e a mais utilizada para a solução de problemas de escoamento de fluidos e transferência de calor em geometrias complexas.

Assim, através de uma transformação de coordenadas, o espaço real dado pelas coordenadas generalizadas (ξ, η) é mapeado num espaço computacional (i, j) nos quais os volumes de controle curvilíneos do espaço real se transformam em volumes retílineos. Nestes, as condições de contorno podem ser corretamente aplicadas e as aproximações inerentes a técnica de diferenças finitas podem ser imediatamente aplicadas. Já as variáveis geométricas,
bem como as relações entre as coordenadas reais e transformadas são extraídas diretamente do mapeamento, independentemente da técnica usada para obtê-lo.

O passo mais imediato para a geração de algoritmos explorando estas características, consiste na utilização da experiência existente para a solução de problemas em geometria cartesiana. Os trabalhos de Nakayama, 1984 [6], para escoamentos tri-dimensionais turbulentos, de Shyy et al., 1985 [7], e de Hah, 1985 [8], para escoamentos bi-dimensionais turbulentos, de Shyy e Vu, 1991 [9], para problemas tri-dimensionais parabólicos e de Shyy et al., 1992 [57], para regimes compressíveis e incompressíveis bi-dimensionais, utilizaram volumes de controle deslocados para a velocidade e componentes cartesionas da velocidade (um em cada face) como variáveis dependentes na equação de conservação de quantidade de movimento. Neste esquema, para a obtenção dos fluxos de massa que cruzam as faces do volume de controle, é necessário que os dois componentes estejam disponíveis nas faces. Logo o componente que falta é obtido por interpolação. Como discutido por outros autores, este procedimento pode introduzir problemas sérios para a convergência da solução, principalmente em malhas muito não ortogonais ou com grandes curvaturas. Apesar disto, Shyy e Vu argumentam que com alguns pequenos cuidados este método pode ser aplicado para problemas complexos, apresentando bons resultados.

O problema do esquema anterior pode ser contornado se ambos os componentes forem calculados em cada face como feito por Maliska e Raithby, 1984 [10], para a solução de problemas tri-dimensionais parabólicos. Porém, neste caso o dobro de equações de conservação de quantidade de movimento necessita ser resolvido, o que aumenta sobremaneira o esforço computacional.

problemas bi-dimensionais e o de Rhie e Chow, 1983 [13], para a análise de escoamentos em torno de aerofólios, utilizam esquemas especiais para esta interpolação. Apesar dos bons resultados apresentados, houve uma descontinuidade nesta linha de pesquisa até 1988, quando Peric et al. [14] apresentaram um estudo comparativo entre os dois tipos de malha e uma nova proposta para a discretização do gradiente de pressão, ambos para geometrias cartesianas. Baseados nesta proposta, outros trabalhos foram desenvolvidos para coordenadas que se adaptam ao contorno, podendo-se citar como exemplo os trabalhos de Demirdzic et al., 1993 [56] para escoamentos bi-dimensionais a qualquer velocidade e o de Machi et al. de 1990 [15], para o estudo de escoamentos tri-dimensionais também para qualquer velocidade. Nesta linha também se apresenta o trabalho de Choi et al., 1993 [55], para situações bi-dimensionais, que empregam uma interpolação das equações de conservação de quantidade de movimento para avaliação dos componentes da velocidade nas faces dos volumes de controle.

Como alternativa à utilização dos componentes cartesianos da velocidade, tem-se os componentes que seguem a curvatura da malha, isto é, os componentes covariante e contravariante. Para o emprego em formulações de coordenadas que se adaptam ao contorno estes componentes, à primeira vista, se apresentam como ideais. Porém, as equações de conservação de quantidade de movimento se apresentam extremamente complexas devido ao surgimento de um grande número de novos termos associados à curvatura. Apesar disto, Demirdzic et al., 1987 [16], empregam a análise tensorial para a obtenção das equações de conservação, conservando o componente contravariante como variável dependente. São analisados problemas bi-dimensionais turbulentos.

Uma análise detalhada sobre os problemas envolvidos na escolha da malha e das variáveis dependentes e os efeitos sobre o sucesso da solução adotada serão apresentados no capítulo III.

Os esquemas computacionais utilizando malhas ortogonais sofrem um problema exterior ao método, que é a própria geração da malha ortogonal. Estas malhas são difíceis de gerar em geometrias tri-dimensionais. Mesmo para o caso bi-dimensional, esta geração requer técnicas especiais que não possuem um controle muito bom sobre o espaçamento das linhas da malha. Desta forma, na busca de esquemas de aplicação geral, a formulação não ortogonal é recomendada.

Para complementar um esquema de cálculo de escoamentos, diversas decisões ainda necessitam ser tomadas, quase tão importantes quanto as mencionadas anteriormente, tais como, a utilização ou não das variáveis primitivas, o emprego de um procedimento de solução segregado ou simultâneo para as equações de conservação, a função de interpolação para as derivadas dos fluxos convectivos (isto é, o uso de esquemas de baixa ordem, tipo "power-law" [11], ou de ordem elevada, tipo "flux-spline" [21]), o processo de linearização das equações e o algoritmo de acoplamento pressão-velocidade.
Desta forma, o presente trabalho tem como objetivos estudar as variações do cálculo de escoamentos incompressíveis em geometrias complexas, dentro da técnica de volumes finitos, existentes na bibliografia, e, baseado neste estudo, gerar uma metodologia de cálculo para esta classe de problemas. Para isto, esta tese está organizada da seguinte forma:

- Capítulo II: é apresentada a equação geral e a formulação de volumes finitos. São derivadas algumas relações para a transformação desta equação para coordenadas generalizadas e por fim é feita a discretização desta equação;

- Capítulo III: são feitas as escolhas das variáveis primitivas, da posição da velocidade na malha e um estudo sobre as possibilidades de escolha das variáveis dependentes na equação de conservação de quantidade de movimento;

- Capítulo IV: a equação geral é particularizada para a equação de conservação de quantidade de movimento e é apresentado o esquema utilizado para o acoplamento pressão-velocidade. Por fim é formulado o algoritmo completo de solução;

- Capítulo V: são apresentados diversos problemas para teste da formulação desenvolvida;

- Capítulo VI: são apresentadas a conclusões finais sobre o trabalho desenvolvido e feitas algumas recomendações para desenvolvimentos futuros.
CAPÍTULO II
EQUAÇÃO GERAL DE CONSERVAÇÃO

II.1 - Introdução

Este capítulo apresenta, primeiramente, a equação geral de conservação e algumas relações importantes necessárias para a transformação desta equação para um sistema de coordenadas que se adaptam ao contorno de geometrias complexas. Posteriormente a equação é discretizada para aplicação do método numérico.

II.2 - Equação geral

O estudo de problemas de transferência de calor, mecânica dos fluidos e processos correlatos, os quais abordam fenômenos de difusão e convecção envolvem a solução de equações de conservação, as quais, de uma maneira geral são expressas sob a forma de equações diferenciais. Estas equações de conservação apresentam um termo de armazenamento temporal da variável de interesse, um termo de fluxo líquido convectivo, um termo de fluxo líquido difusivo e um termo de geração da variável dependente. Portanto, estas equações podem ser formulados em função de uma variável genérica \(\phi \), obtendo-se uma equação diferencial com um aspecto único, que pode ser especializada para um certo problema pela escolha correta da variável dependente, do termo fonte, e do coeficiente de difusão associado a esta equação, a qual está apresentada abaixo:

\[
\frac{\partial}{\partial t} (\rho \phi) + \nabla \cdot (\rho \vec{u} \phi) = \nabla \cdot (\Gamma \nabla \phi) + S
\]

(2.1)

onde \(\vec{u} \) é o campo de velocidades, \(\rho \) é a massa específica, \(\Gamma \) é o coeficiente de difusão e \(S \) é o termo fonte. Esta equação representa a equação da continuidade se \(\phi = 1 \) e \(\Gamma = S = 0 \). A equação de conservação de quantidade de movimento, com propriedades constantes, é representada pela equação 2.1 se \(\phi = u_i \) (componentes da velocidade), \(\Gamma = \mu \) (viscosidade...
absoluta) e \(S = -\partial p/\partial x_i \). Como último exemplo tem-se a equação da energia, a qual para propriedades constantes pode ser obtida se \(\phi = T \) e \(\Gamma = k/c_p \) (razão entre a condutividade térmica e o calor específico) e \(S = Q \) (geração de calor).

Esta equação 2.1 pode ser reescrita como:

\[
\frac{\partial \rho \phi}{\partial t} + \vec{V} \cdot \vec{J} = S \tag{2.1}
\]

onde \(\vec{J} \) é o fluxo total de \(\phi \), formado por um termo convectivo e um termo difusivo.

\[
\vec{J} = \rho \vec{u} \phi - \Gamma \vec{V} \phi \tag{2.2}
\]

II.3 - Formulação de volumes finitos para a equação geral

A equação discretizada em termos de fluxo será obtida utilizando o método de volumes finitos. Para isto a equação geral (2.1) será integrada no tempo e num volume de controle típico, representado pela região hachurada na figura 2.1.

Este método possui a vantagem de satisfazer a formulação integral da conservação de quantidades, tais como massa, quantidade de movimento, energia, etc., sobre cada volume de controle e, consequentemente, sobre todo o domínio. Neste, as propriedades são armazenadas no centro geométrico dos V.C. e os fluxos avaliados nas faces. Esta formulação segue a prática B descrita por Patankar [11]. Assim a equação (2.1) fica:

\[
\int_V \int_t^{t+\Delta t} \frac{\partial \rho \phi}{\partial t} \, dt \, dV + \int_V \int_t^{t+\Delta t} \vec{V} \cdot \vec{J} \, dt \, dV = \int_V \int_t^{t+\Delta t} S \, dt \, dV \tag{2.3}
\]

Aplicando o teorema da divergência à segunda integral tem-se:

\[
\int_V \int_t^{t+\Delta t} \vec{V} \cdot \vec{J} \, dt \, dV = \int_{\partial V} \int_t^{t+\Delta t} \vec{J} \cdot \vec{n} \, dS \, dt \tag{2.4}
\]
Figura 2.1 - Volume de controle típico
onde σ é a superfície do volume de controle e dS é um elemento de área e n é o vetor unitário normal à superfície. No presente trabalho será feita a aproximação de escoamentos bidimensionais.

O sistema de coordenadas curvilíneas a ser adotado (ξ, η) é relacionado com o sistema cartesiano (x, y) pelas expressões:

$$\xi = \xi (x, y) \quad (2.5)$$
$$\eta = \eta (x, y) \quad (2.6)$$

As seções nos planos real e computacional estão apresentadas na figura 2.2. Para a discretização da equação 2.1, o domínio computacional será dividido em volumes finitos (quadriláteros no plano), sendo os pontos nodais principais localizados nos centros dos volumes de controle.

II.3.1 - Relações Importantes

Para facilitar a obtenção da equação de discretização nas coordenadas curvilíneas (ξ, η), algumas relações importantes são apresentadas a seguir.

A derivada de uma função no espaço real pode ser transformada para o espaço (ξ, η) da seguinte forma:

$$\frac{\partial f}{\partial \xi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \xi} \quad (2.7)$$

$$\frac{\partial f}{\partial \eta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \eta} \quad (2.8)$$

Este sistema quando resolvido para $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ fornece:

$$\frac{\partial f}{\partial x} = \left(\frac{\partial f}{\partial \xi} \frac{\partial x}{\partial \eta} - \frac{\partial f}{\partial \eta} \frac{\partial \xi}{\partial \eta} \right) \frac{1}{J_a} \quad (2.9)$$
Figura 2.2 - Geometria do plano físico e do domínio computacional
\[
\frac{\partial f}{\partial y} = \left(\frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial y} \right) \frac{1}{J_a}
\]

onde \(J_a\) é o Jacobiano da transformação inversa dado por:

\[
J_a = \begin{vmatrix}
\frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\
\frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y}
\end{vmatrix}
\]

(2.11)

Os vetores unitários tangentes às linhas de coordenadas \(\xi\) e \(\eta\) no ponto P são obtidos pelas relações abaixo:

\[
\hat{e}_\xi = \frac{\hat{\xi}}{\partial \xi} \\
\hat{e}_\eta = \frac{\hat{\eta}}{\partial \eta}
\]

(2.12)

(2.13)

onde \(\hat{r}\) é o vetor posição do ponto genérico \(P(x, y)\), dado por:

\[
\hat{r} = x\hat{e}_x + y\hat{e}_y
\]

(2.14)

Substituindo (2.14) em (2.12) e (2.13) e rearrumando tem-se:

\[
\hat{e}_\xi = \frac{1}{h_x} \left(\frac{\partial x}{\partial \xi} \hat{e}_x + \frac{\partial y}{\partial \xi} \hat{e}_y \right)
\]

(2.15)

e

\[
\hat{e}_\eta = \frac{1}{h_\eta} \left(\frac{\partial x}{\partial \eta} \hat{e}_x + \frac{\partial y}{\partial \eta} \hat{e}_y \right)
\]

(2.16)

onde

\[
h_x = \left[\left(\frac{\partial x}{\partial \xi} \right)^2 + \left(\frac{\partial y}{\partial \xi} \right)^2 \right]^{\frac{1}{2}}
\]

(2.17)
\[h_\eta = \left[\left(\frac{\partial \xi}{\partial \eta} \right)^2 + \left(\frac{\partial \eta}{\partial \eta} \right)^2 \right]^{1/2} \]

(2.18)

O vetor unitário \(\tilde{n}_\xi \) normal a uma curva de \(\xi \) constante é dado por:

\[\tilde{n}_\xi = \frac{\tilde{v}_\xi}{|\tilde{v}_\xi|} \]

(2.19)

e da mesma forma tem-se:

\[\tilde{n}_\eta = \frac{1}{h_\eta} \left(\frac{\partial \eta}{\partial \eta} \tilde{e}_x - \frac{\partial \xi}{\partial \eta} \tilde{e}_y \right) \]

(2.20)

\[\tilde{n}_\eta = \frac{1}{h_\eta} \left(\frac{\partial \eta}{\partial \xi} \tilde{e}_x + \frac{\partial \xi}{\partial \xi} \tilde{e}_y \right) \]

(2.21)

O volume de um elemento é dado por:

\[dV = \left| \frac{\partial \xi}{\partial \nu} \left(\frac{\partial \xi}{\partial \xi} \times \frac{\partial \eta}{\partial \eta} \right) d\xi d\eta d\nu \right| \]

(2.22)

ou, para o caso bi-dimensional, onde \(\partial \nu \) é unitário, tem-se:

\[dV = J d\xi d\eta \]

(2.23)

Os componentes da velocidade nas direções das coordenadas, isto é, os componentes covariantes, ilustrados na figura 2.3, são:

\[u_\xi = \tilde{u} \cdot \tilde{e}_\xi = \left(\frac{u}{\partial \xi} + \frac{\nu}{\partial \xi} \right) \frac{1}{h_\xi} \]

(2.24)

\[v_\eta = \tilde{u} \cdot \tilde{e}_\eta = \left(\frac{u}{\partial \eta} + \frac{\nu}{\partial \eta} \right) \frac{1}{h_\eta} \]

(2.25)

onde \(u \) e \(v \) são os componentes cartesianas da velocidade.
Figura 2.3 - Componentes covariantes e contravariantes da velocidade.
Já os componentes contravariantes da velocidade, isto é, os componentes normais as curvas de ξ e η constantes são obtidas por:

$$U_\xi = \bar{u} \cdot n_\xi = \left(u \frac{\partial y}{\partial \eta} - v \frac{\partial x}{\partial \eta} \right) \frac{1}{h_\eta}$$ \hspace{1cm} (2.26)$$

e
$$V_\eta = \bar{u} \cdot n_\eta = \left(-u \frac{\partial y}{\partial \xi} + v \frac{\partial x}{\partial \xi} \right) \frac{1}{h_\xi}$$ \hspace{1cm} (2.27)$$

Com estas relações, pode-se partir para a discretização da equação (2.1).

II.3.2 - Formulação em coordenadas curvilíneas

Selecionando como volume de controle típico, o volume ilustrado na figura 2.1, a integral de superfície da equação 2.4 pode ser desmembrada em quatro integrais efetuadas sobre cada face do volume de controle, ou seja:

$$\int_{t_i}^{t_{i+\Delta t}} \bar{J} \cdot \bar{n}_d S dt = \int_{\sigma_i} \int_{t_i}^{t_{i+\Delta t}} \bar{J} \cdot \bar{n}_d S dt + \int_{\sigma_i} \int_{t_{i+\Delta t}}^{t_{i+2\Delta t}} \bar{J} \cdot \bar{n}_d S dt + \int_{\sigma_i} \int_{t_{i+2\Delta t}}^{t_{i+3\Delta t}} \bar{J} \cdot \bar{n}_d S dt + \int_{\sigma_i} \int_{t_{i+3\Delta t}}^{t_{i+4\Delta t}} \bar{J} \cdot \bar{n}_d S dt$$ \hspace{1cm} (2.28)$$

Assim, considerando que:

$$\bar{J} = J_x \bar{e}_x + J_y \bar{e}_y$$ \hspace{1cm} (2.29)$$

e com o auxílio das equações (2.2) e (2.20), a primeira integral do lado direito de (2.28) pode ser escrita como:

$$J_x \Delta t = \int_{\sigma_i} \int_{t_i}^{t_{i+\Delta t}} \bar{J} \cdot \bar{n}_d S dt = \int_{\sigma_i} \int_{t_i}^{t_{i+\Delta t}} \left[\left(p \frac{\partial \phi}{\partial x} - \Gamma \frac{\partial \phi}{\partial \xi} \right) \bar{e}_x + \left(\rho v \phi - \Gamma \frac{\partial \phi}{\partial \eta} \right) \bar{e}_y \right]$$ \hspace{1cm} (2.30)$$

$$\left(\frac{\partial y}{\partial \eta} \bar{e}_x - \frac{\partial x}{\partial \eta} \bar{e}_y \right) \frac{1}{h_\eta} \right) dt h_\eta d\eta$$
Rearrumando e efetuando o produto escalar, tem-se:

\[
J_e \Delta t = \int_{\Gamma} \int_{\Delta} \left[\rho \phi \left(\frac{\partial u}{\partial \eta} - \nu \frac{\partial \delta}{\partial \eta} \right) - \Gamma \left(\frac{\partial \phi}{\partial \eta} \frac{\partial \psi}{\partial \eta} - \frac{\partial \phi}{\partial \eta} \frac{\partial \delta}{\partial \eta} \right) \right] dt \, d\eta
\]

Usando as equações (2.9) e (2.10) as derivadas em coordenadas cartesianas podem ser substituídas por derivadas nas coordenadas transformadas. Assim, assumindo que o integrando não varia ao longo de $\Delta \eta$ e $\Delta \eta$, tem-se:

\[
J_e \Delta t = \left(\rho \phi h \cdot U_\xi \right) \Delta t \Delta \eta - \Gamma \left[\frac{\partial \phi}{\partial \xi} \frac{\partial \psi}{\partial \eta} - \frac{\partial \phi}{\partial \eta} \frac{\partial \psi}{\partial \xi} \right] \frac{\partial \psi}{\partial \eta} + \frac{\partial \phi}{\partial \eta} \left(\frac{\partial \phi}{\partial \eta} \frac{\partial \psi}{\partial \eta} - \frac{\partial \phi}{\partial \eta} \frac{\partial \psi}{\partial \xi} \right) \frac{1}{Ja} \Delta t \Delta \eta
\]

onde U_ξ é o componente contravariante da velocidade como definido na equação (2.26) e, para a discretização temporal, foi utilizada a formulação totalmente implícita, sendo que os índices correspondentes aos valores avaliados no instante de tempo à frente foram omitidos. Como em todas as integrais do lado direito aparecerão Δt, esta pode ser dividida por este, e, rearrumada, fica:

\[
J_e = \left(\rho \phi h \cdot U_\xi \right) \Delta \eta - \Gamma \left[\frac{\partial \phi}{\partial \xi} \left(\frac{\partial \psi}{\partial \eta} \right)^2 + \left(\frac{\partial \phi}{\partial \eta} \right)^2 \right] + \frac{\partial \phi}{\partial \eta} \left(\frac{\partial \phi}{\partial \eta} \frac{\partial \psi}{\partial \eta} + \frac{\partial \psi}{\partial \eta} \frac{\partial \phi}{\partial \xi} \right) \frac{1}{Ja} \Delta \eta
\]

com o auxílio das equações (2.15), (2.16), (2.17) e (2.18) tem-se:

\[
J_e = \left(\rho \phi h \cdot U_\xi \right) \Delta \eta - \frac{h^2 \phi \cdot \Delta \eta}{Ja} \left(\frac{\Gamma}{h \cdot \psi} \right) + \frac{h^2 \phi \cdot \Delta \eta}{Ja} \left(\vec{\epsilon}_e \cdot \vec{\epsilon}_n \right) \left(\frac{\Gamma}{h \cdot \partial \phi} \right)
\]
ou

\[J_e = J_{p,e} - J_{s,e} \] \hspace{1cm} (2.35)

onde

\[J_{p,e} = \left(\rho \phi h_n U_e \right)_e \Delta \eta - \alpha_{\xi,e} \left(\frac{\Gamma}{h_n} \frac{\partial \phi}{\partial \xi} \right)_e \Delta \eta \] \hspace{1cm} (2.36)

\[J_{s,e} = -\beta_{\xi,e} \left(\frac{\Gamma}{h_n} \frac{\partial \phi}{\partial \eta} \right)_e \Delta \eta \] \hspace{1cm} (2.37)

\[\alpha_{\xi} = \frac{h_n^2}{J_n} \] \hspace{1cm} (2.39)

\[\beta_{\xi} = \alpha_{\xi} \left(\varepsilon_{\xi} \cdot \xi_{\eta} \right) \] \hspace{1cm} (2.40)

\[J_p \] é chamado de fluxo primário e possui termos convectivos e difusivos. \(J_s \) é chamado de fluxo secundário e possui somente termos difusivos. Este termo surge devido a que não ortogonalidade da malha, pois no caso ortogonal \(\varepsilon_{\xi} \cdot \xi_{\eta} = 0 \) e \(\beta_{\xi} = 0 \). Algumas propriedades de \(\alpha_{\xi} \) e de \(\beta_{\xi} \) podem ser enunciadas:

- \(\alpha_{\xi} \) é sempre positivo;

- \(\beta_{\xi} \) pode ser negativo, positivo ou zero, dependendo de \(\varepsilon_{\xi} \cdot \xi_{\eta} \), mas será sempre menor que \(\alpha_{\xi} \).

Como \(\alpha_{\xi} \) é sempre maior que \(\beta_{\xi} \), o primeiro pode ser interpretado como a área primária e o outro como a área secundária na avaliação do fluxo difusivo total que atravessa a superfície \(\sigma_c \).

Pelo mesmo procedimento usado para o cálculo de \(J_e \) pode-se obter \(J_w \), isto é:

\[J_w = \frac{1}{\Delta t} \int_{\sigma_s} \int_{t_{n+1}}^{t_{n+\Delta t}} J \cdot \hat{n} \, dt \, dS = J_{p,w} - J_{s,w} \] \hspace{1cm} (2.41)
onde

\[J_{p,w} = (\rho\phi h_w U_w) \Delta \xi - \alpha_{\xi,w} \left(\frac{\Gamma}{h_w} \frac{\partial \phi}{\partial \xi} \right) \Delta \eta \] \tag{2.42}

\[J_{z,w} = -\beta_{\xi,w} \left(\frac{\Gamma}{h_w} \frac{\partial \phi}{\partial \eta} \right) \Delta \eta \] \tag{2.43}

Para as integrais que envolvem as faces norte e sul equações similares podem ser obtidas, isto é, para a face norte:

\[J_n = \frac{1}{\Delta t} \int_{\sigma_n} \int_{t_i}^{t_i+\Delta t} \mathbf{J} \cdot \mathbf{n} dt dS = J_{p,n} - J_{a,n} \] \tag{2.44}

onde

\[J_{p,n} = (\rho\phi h_n V_n) \Delta \xi - \alpha_{\xi,n} \left(\frac{\Gamma}{h_n} \frac{\partial \phi}{\partial \xi} \right) \Delta \xi \] \tag{2.45}

\[J_{a,n} = -\beta_{\xi,n} \left(\frac{\Gamma}{h_n} \frac{\partial \phi}{\partial \xi} \right) \Delta \xi \] \tag{2.46}

e para a face sul:

\[J_s = \frac{1}{\Delta t} \int_{\sigma_s} \int_{t_i}^{t_i+\Delta t} \mathbf{J} \cdot \mathbf{n} dt dS = J_{p,s} - J_{a,s} \] \tag{2.47}

onde
\[J_{p,s} = \left(\rho \phi h \right) V_{\eta} \Delta \xi - \alpha_{\eta,s} \left(\frac{\Gamma}{h_{\eta}} \frac{\partial \phi}{\partial \eta} \right) \Delta \xi \]
\hspace{1cm} (2.48)

e

\[J_{s,s} = -\beta_{\eta,s} \left(\frac{\Gamma}{h_{\xi}} \frac{\partial \phi}{\partial \xi} \right) \Delta \xi \]
\hspace{1cm} (2.49)

Nestas equações, \(V_{\eta} \) é o componente contravariante definido pela equação 2.27.

Assim, todas as integrais da equação (2.28) foram abordadas e as demais integrais da equação (2.3) podem ser tratadas. Nesta equação, a primeira integral fica:

\[\int_{V} \int_{t}^{t+\Delta t} \frac{\partial \rho \phi}{\partial t} dt dV = \left(\rho \phi - \rho^{*} \phi^{*} \right) \rho J_{a} \Delta \eta \Delta \xi \]
\hspace{1cm} (2.50)

onde para a integração, foi assumido que \(\rho_{p} \) e \(\phi_{p} \) prevalecem em todo o volume de controle.

O índice "o" indica o valor da variável no instante de tempo anterior. Para haver coerência com os termos obtidos anteriormente, a equação (2.50) será dividida por \(\Delta t \) resultando em:

\[\frac{1}{\Delta t} \int_{V} \int_{t}^{t+\Delta t} \frac{\partial \rho \phi}{\partial t} dt dV = \left(\rho \phi - \rho^{*} \phi^{*} \right) \rho J_{a} \frac{\Delta \eta \Delta \xi}{\Delta t} \]
\hspace{1cm} (2.51)

O termo fonte na equação (2.26) pode ser tratado de forma semelhante, resultando em:

\[\frac{1}{\Delta t} \int_{V} \int_{t}^{t+\Delta t} S dt dV = \bar{S} J_{a} \Delta \xi \Delta \eta \]
\hspace{1cm} (2.52)

onde \(\bar{S} \) é o valor médio de \(S \) no volume de controle. Ao se combinar as expressões (2.35), (2.41), (2.44), (2.47), (2.51) e (2.52) verifica-se que todas estas contêm uma integral de volume, e como este é genérico, todos os termos podem ser postos sob a mesma integral e consequentemente igualada a zero, comprovando que o integrando é zero. Em vista disto, fica-se com:
\[
\left(\rho \Phi - \rho_0 \Phi^0 \right)_p \frac{\Delta E \Delta \eta}{\Delta t} + \left(J_{p,e} - J_{s,e} \right) + \left(J_{p,n} - J_{s,n} \right) + \left(J_{p,s} - J_{s,s} \right) = \bar{S} J_{\Delta \xi \Delta \eta} \\
\]

(2.53)

Nesta equação, os fluxos secundários oriundos da não ortogonalidade da malha, acarretam um problema: caso estes sejam tratados implicitamente, no plano (\(\xi, \eta\)) será gerada uma formulação de nove pontos (dois fluxos avaliados em cada face), o que não é desejado, pois esta formulação implaca no emprego de algoritmos de solução mais complexos do que os necessários numa formulação de cinco. Assim, estes termos serão tratados explicitamente e agregados ao termo fonte. Uma vez que os fluxos secundários são difusivos, para escoamentos com números de Reynolds elevados e/ou para malhas próximas a ortogonalidade, estes fluxos são pequenos, não acarretando problemas de convergência. Logo, a equação (2.53) fica:

\[
(\rho \Phi)_p \frac{\Delta E \Delta \eta}{\Delta t} + J_{p,e} - J_{p,w} + J_{p,n} - J_{p,s} = b_s + b_{no} \\
\]

(2.54)

onde

\[
b_s = \left(\bar{S} + \left(\rho \Phi^0 \right)_p \right) \frac{\Delta \xi \Delta \eta}{\Delta t} \\
\]

(2.55)

e

\[
b_{no} = J_{s,e} - J_{s,w} + J_{s,n} - J_{s,s} \\
\]

(2.56)

onde o termo \(b_{no}\) contém somente os fluxos secundários, devido a não ortogonalidade da malha.

O passo seguinte no desenvolvimento seria obter a equação discretizada para \(\Phi\), mas para aproveitar algumas passagens executadas anteriormente, será apresentada a equação da continuidade na formulação de volumes finitos.
II.4 - Equação da continuidade

A equação da continuidade é um caso particular da equação (2.1) na qual \(\phi=1, \Gamma=1 \) e \(S=0 \). Logo, todo o procedimento desenvolvido até o momento é válido e os valores de \(\phi, \Gamma \) e \(S \) podem ser substituídos diretamente em (2.54) o que resulta em:

\[
(p-p^\circ) \partial_a \frac{\Delta \xi}{\Delta t} + \left(\rho \eta U_\xi \right)_e \Delta \eta - \left(\rho \phi U_\xi \right)_w \Delta \eta + \left(\rho \phi V_\eta \right)_n \Delta \xi - \left(\rho \phi V_\eta \right)_s \Delta \xi = 0 \tag{2.57}
\]

ou

\[
(p-p^\circ) \partial_a \frac{\Delta \xi}{\Delta t} + F_e - F_w + F_n - F_s = 0 \tag{2.58}
\]

onde

\[
F_e = \left(\rho \eta U_\xi \right)_e \Delta \eta \\
F_w = \left(\rho \eta U_\xi \right)_w \Delta \eta \\
F_n = \left(\rho \phi V_\eta \right)_n \Delta \xi \\
F_s = \left(\rho \phi V_\eta \right)_s \Delta \xi
\tag{2.59}
\]

A equação (2.58) também pode ser obtida em termos dos componentes covariantes da velocidade. Como os componentes covariantes não são perpendiculares às superfícies de volume de controle, estes devem multiplicar outras áreas (normais aos componentes) que são definidas pelos parâmetros \(\alpha \) e \(\beta \), ou seja, o fluxo de massa que atravessa a superfície deste será:

\[
F_e = \left[\rho \left(\alpha \eta u_\xi - \beta \phi v_\eta \right) \right]_{\eta} \Delta \eta \tag{2.60}
\]

isto é, quando \(e \cdot \eta \) for menor que 90 graus, \(v_\eta \) estará introduzindo massa pela superfície "e", e quando for maior que 90 graus estará contribuindo com \(u_\xi \) para a saída de massa. Quando a
malha for ortogonal, \(v_n \) não contribui para o balanço de massa na superfície \(e \). Os componentes covariante e contravariante podem ser relacionados por:

\[
U_\xi h_n = \alpha_\xi u_\xi - \beta_\xi v_n
\]

(2.61)

Assim as relações (2.59) podem ser reescritas como:

\[
F_\xi = \left[\rho (\alpha_\xi u_\xi - \beta_\xi v_n) \right]_e \Delta \eta
\]

\[
F_w = \left[\rho (\alpha_\xi u_\xi - \beta_\xi v_n) \right]_w \Delta \eta
\]

\[
F_n = \left[\rho (\alpha_n v_n - \beta_n u_\xi) \right]_n \Delta \xi
\]

\[
F_s = \left[\rho (\alpha_n v_n - \beta_n u_\xi) \right]_s \Delta \xi
\]

(2.62)

donde conclui-se que é necessário o conhecimento dos dois componentes em cada face do volume de controle para a aplicação desta equação da continuidade.

II.5 - Discretização da equação geral em termos de \(\phi \)

A equação geral obtida para a formulação de volumes de controle para o fluxo \(\bar{J} \) nas seções anteriores, necessita ser transformada para a variável \(\phi \). Esta equação possui os valores de \(\bar{J} \) nas faces dos volumes, escritos nas coordenadas transformadas em termos dos fluxos principais e secundários. Nestas expressões, as derivadas espaciais de \(\phi \) ainda necessitam ser discretizadas. Como o valor da variável \(\phi \) é armazenada no centro do volume de controle e os fluxos são calculados nas faces, é necessário estabelecer um critério de interpolação para \(\phi \) ao longo da malha, de modo que estas derivadas e os valores numéricos de \(\phi \) sejam corretamente avaliados.

Como mencionado anteriormente, os fluxos secundários são puramente difusivos e desta forma os gradientes envolvidos podem ser avaliados através de um perfil linear. Porém, os fluxos principais apresentam componentes difusivos e convectivos, que precisam de um tratamento especial. A opção por um perfil linear não é apropriado na presença de situações
com número de Reynolds elevado. Nestes casos, um esquema que leve em conta a
característica "upwind" de problemas convectivos faz-se necessário para que uma solução
estável possa ser obtida. Numerosos esquemas foram desenvolvidos para este propósito, e
vários trabalhos [12,21,22,23,24] foram elaborados para a avaliação de suas características. O
uso de esquemas de baixa ordem introduz o problema da falsa difusão [11], portanto, de uma
forma geral o uso de esquemas de ordem elevada é recomendado para uma solução mais
precisa e estável. Porém, sabe-se que ao alinhar a malha com o escoamento, o problema da
falsa difusão pode ser diminuído, logo, o uso de coordenadas curvilíneas pode ajudar a reduzir
este problema.

Tendo em vista que o presente trabalho tem como principal objetivo o desenvolvimento
de um esquema para o cálculo de escoamento de fluidos em geometrias complexas, o problema
da falsa difusão não será abordado e o tratamento da questão da convecção-difusão será
realizado pelo esquema "power-law". Neste método, desenvolvido por Patankar[11, 25],
utiliza-se um perfil aproximado da solução exata da equação de difusão-convecção
unidimensional para avaliar o fluxo principal (convectivo e difusivo) de ϕ nas faces em função
do valor de ϕ nos pontos nodais adjacentes. Por exemplo, para a face leste e oeste tem-se:

$$J_{p,e} = F_e \phi_p + a_E (\phi_p - \phi_E)$$

(2.63)

e

$$J_{p,w} = F_w \phi_p + a_W (\phi_w - \phi_p)$$

(2.64)

Substituindo os perfis aproximados dos fluxos na equação 2.54 e fazendo uso da
equação da continuidade (equação 2.57), pode-se escrever a equação discretizada final como:

$$a_p \phi_p = a_E \phi_E + a_W \phi_W + a_s \phi_s + a_N \phi_N + b$$

(2.65)

onde
\[a_R = D_e A(\|P_e\|) + \|F_e, 0\| \]
\[a_w = D_w A(\|P_w\|) + \|F_w, 0\| \]
\[a_n = D_n A(\|P_n\|) + \|F_n, 0\| \]
\[a_s = D_s A(\|P_s\|) + \|F_s, 0\| \]

(2.64a)

\[b = b_s + b_{no} \]

(2.64b)

sendo

\[b_s = S_e J a \Delta \xi \Delta \eta + a_s^p \phi_p^2 \]

(2.64c)

\[a_s^p = \rho_s^p J_a \frac{\Delta \xi \Delta \eta}{\Delta t} \]

(2.64d)

\[a_f = a_R + a_w + a_n + a_s + a_p^s - S_p J a \Delta \xi \Delta \eta \]

(2.64e)

\[b_{no} = J_{n,e} - J_{n,w} + J_{n,n} - J_{n,s} \]

(2.64f)

Nas equações (2.64) o termo de fonte foi linearizado na forma tradicional, isto é:

\[S = S_e + S_p \phi_p \]

(2.65)

onde \(S_p \) deve ser negativo para evitar que \(a_p \) possa se tornar negativo. O símbolo \(\| \) representa o maior valor dos elementos contidos dentro do símbolo. \(P \) é o número de Peclet, definido como a razão entre o fluxo de massa \(F \) e a condutância \(D \) através das faces:

\[P = \frac{F}{D} \]

(2.66)

Para as faces "e" e "n" tem-se:

\[F_e = (\rho U_e) h_{ne} \Delta \eta \]
\[F_n = (\rho V_n) h_{tn} \Delta \xi \]

(2.67)
\[D_e = \left[\frac{\Gamma \alpha_k}{h} \right] \frac{\Delta \eta}{(\xi_e - \xi_p)} \]
\[D_n = \left[\frac{\Gamma \alpha_n}{h} \right] \frac{\Delta \xi}{(\eta_n - \eta_p)} \]

(2.68)

A função de interpolação \(A(|P|) \) de acordo com o esquema "Power-Law" é definida como:

\[A(|P_e|) = \left[0, \left(1 - |P_e| \right) \right] \]

(2.69)

Como complementação, algumas observações podem ser feitas:

1) Como os fluxos secundários envolvem somente efeitos difusivos, as derivadas de \(\phi \) contidas nestes termos são discretizadas assumindo um perfil linear;

2) A solução de problemas no estado estacionário é obtida fazendo \(\Delta t \to \infty \), o que anula o termo \(a_0 \), de acordo com a equação (2.64d).

3) Como \(D \) é calculado nas faces do volume de controle e \(\Gamma \) está disponível nos pontos nodais, o valor de \(\Gamma \) nas faces é obtido por uma média harmônica, como recomenda Patankar [11].
CAPÍTULO III

ESCOLHA DAS VARIÁVEIS DEPENDENTES E DOS V.C.

III.1 - Introdução

A escolha das variáveis dependentes, principalmente da equação de quantidade de movimento, e da posição dos volumes de controle, em coordenadas não ortogonais, requer bem mais cuidado do que na formulação cartesiana. O estudo destas possibilidades e as razões das opções adotadas serão apresentados neste capítulo.

III.2 - Escolha das variáveis primitivas

Diversos pesquisadores apresentaram métodos de solução da equação (2.1), sendo um dos mais conhecidos o desenvolvido por Patankar [11]. Estas soluções para ϕ, dependem do conhecimento do campo de velocidade que na maioria dos problemas também é desconhecido. Os componentes da velocidade são governados pelas equações de conservação de quantidade de movimento, que por sua vez são casos particulares da equação (2.1), com ϕ=ū e Γ=μ e o correto termo de fonte. Porém, as equações de quantidade de movimento possuem no termo fonte o gradiente de pressão que guia cada componente da velocidade, que por sua vez também é uma incógnita do problema. Uma vez que não existe uma equação de "conservação de pressão", a determinação simultânea do campo de pressão e de velocidades torna-se complexa. Por outro lado, o campo de velocidade que satisfizer as equações de conservação de quantidade de movimento, também deve satisfazer as equações de conservação de massa. Desta forma, uma equação para determinação da pressão é geralmente obtida indiretamente, via a equação da continuidade.

Um outro procedimento adotado para contornar esta dificuldade é formular as equações do movimento em termos da função corrente e da vorticidade. Esta formulação só é aplicável em problemas bi-dimensionais, uma vez que a função corrente só é definida neste espaço. Quando o problema é desta forma abordado, os gradientes de pressão nas equações do movimento desaparecem, o que gera o principal atrativo do método. Entretanto, a dificuldade
de extensão do método para três dimensões e a grande complexidade para a formulação das condições de contorno restringem a aplicabilidade do método. Logo, devido a estes problemas e ao fato da maior dificuldade de interpretação dos resultados quando esta formulação é empregada, selecionou-se utilizar os métodos que empregam as variáveis primitivas, isto é, velocidade, pressão, temperatura, etc., através da solução da equação (2.1).

III.3 - Posição da velocidade na malha

O volume de controle da velocidade na equação de quantidade de movimento pode ser coincidente (ou co-localizado) com o volume de controle das demais propriedades ou deslocado (ou desencontrado) em relação a estes. Ambos os arranjos estão apresentados na figura 3.1 para uma malha cartesiana.

A utilização da malha co-localizada apresenta o inconveniente da possibilidade do surgimento de campos oscilatórios de pressão, problema apresentado por Patankar [11], e fartamente discutido na bibliografia. Por outro lado, a simplicidade geométrica da malha co-localizada é muito atrativa, o que levou alguns pesquisadores a desenvolverem esquemas usando esta malha, nos quais se tentaram métodos alternativos para a avaliação do gradiente de pressão visando dificultar o surgimento de soluções oscilatórias. Roberts e Forester, 1979[26], desenvolveram um trabalho para a análise de escoamentos 3-D parabólicos laminares e turbulentos. Uma malha não ortogonal foi usada para o estudo de escoamentos turbulentos em difusores nos quais a seção reta variava de retangular a circular. Para garantir a convergência do método foi necessária a introdução de filtros numéricos de forma a eliminar as oscilações na solução. Hsu [12] propôs um esquema chamado \(P—\Omega \) no qual os fluxos de massa que entram na equação da continuidade não são obtidos pela média das velocidades que são armazenadas nos pontos nodais principais e que satisfazem as equações da quantidade de movimento. Por outro lado, estas equações são combinadas de tal forma que as velocidades nas faces do volume de controle são obtidas efetivamente em função das pressões dos pontos nodais adjacentes. Outros trabalhos que utilizam malhas não deslocadas também podem ser citados como o de Rhie e Chow [13] e Hoge et al., 1979 [27], realizados com o intuito de
• pontos de armazenagem de todas as variáveis

→ pontos de armazenagem das variáveis vetoriais

• pontos de armazenagem das demais variáveis

Figura 3.1: Malhas co-localizadas e deslocadas.
estudar escoamentos em torno de aerofólios, e o de Lawal e Mujumdar [20] para fluidos não
newtonianos. Em 1988, Peric et al. [14] propuseram uma maneira diferente de construir a
equação de correção de pressão, através da avaliação das velocidades nas faces dos volumes
de controle, que é feita segundo uma filosofia semelhante ao conceito de malha deslocada. Os
trabalhos de Marchi et al., 1989 [28], e de Bortoli, 1990 [29], utilizam metodologias
semelhantes à de Peric et al., sendo o trabalho de Marchi et al. [15] empregado para o cálculo
de escoamentos 3-D sub-sônico e super-sônico apresentando bons resultados.

A malha deslocada foi usada primeiramente por Harlow e Welch em 1965[30] no
método por eles denominado MAC, e em outros trabalhos de Harlow. Esta também forma a
base do método SIMPLE de Patankar e Spalding ,1972 [31], do método SIMPLER de
Raithby. A grande maioria dos trabalhos desenvolvidos para o estudo de escoamento de
fluidos utiliza esta malha, provando ser uma ferramenta bastante versátil e confiável.

Na tentativa de se determinar a superioridade de uma malha sobre a outra, foram
realizados alguns estudos comparativos [9, 14]. Como um resumo destes trabalhos, pode-se
estabelecer um quadro de vantagens e desvantagens:
<table>
<thead>
<tr>
<th></th>
<th>Deslocado</th>
<th>Co-localizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algoritmo especial para evitar surgimento de campos oscilatórios de pressão</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Simplicidade do algoritmo de solução devido a posição de armazenamento das variáveis</td>
<td>Menor</td>
<td>Maior</td>
</tr>
<tr>
<td>Geração de condição de contorno artificial para a equação de correção de pressão</td>
<td>Não</td>
<td>Sim</td>
</tr>
<tr>
<td>Extrapolação da pressão no contorno para a equação de quantidade de movimento</td>
<td>Sim</td>
<td>Sim</td>
</tr>
<tr>
<td>Aproveitamento dos coeficientes dos termos convectivos das velocidades para as demais variáveis</td>
<td>Não</td>
<td>Sim</td>
</tr>
</tbody>
</table>

Apesar da análise teórica e numérica apresentada nestes trabalhos, estes não fornecem uma conclusão definitiva sobre a superioridade de uma formulação sobre a outra. De maneira geral, estas discussões utilizam os componentes cartesianos da velocidade como variáveis na equação de quantidade de movimento. Porém, quando outras variáveis são selecionadas o quadro acima pode ser alterado consideravelmente, uma vez que outras equações (principalmente a equação da continuidade) entram no processo de solução. Assim, a escolha do tipo da malha também deve estar associada à escolha da variável na equação de quantidade de movimento. Desta forma, no presente trabalho, a malha deslocada será adotada, devido aos argumentos apresentados no próximo item e também a um critério de segurança e de familiaridade de sua implementação.
III.4 - Escolha da variável dependente na equação de quantidade de movimento

As variáveis dependentes nas equações de quantidade de movimento são os componentes da velocidade. Para sistemas de coordenadas do tipo cartesiana ou cilíndrica a escolha destas variáveis é óbvia. Para sistemas de coordenadas curvilíneas, e em especial não ortogonais, tem-se outras alternativas:

i) componentes da velocidade em sistemas cartesianos ou cilíndricos;

ii) componentes contravariantes da velocidade;

iii) componentes covariantes da velocidade.

Os componentes cartesianos da velocidade foram usados em vários trabalhos com malhas não ortogonais [6, 10, 26, 34]. A vantagem desta escolha é que as equações se tornam muito simples, sendo bastante semelhantes as desenvolvidas para sistemas de coordenadas cartesianas. Entretanto, quando o grau de não ortogonalidade da malha aumenta, ambos os componentes da velocidade devem ser armazenadas em cada face do volume de controle, necessitando, desta forma, que o dobro de equações seja resolvido, acarretando um considerável aumento do esforço computacional.

Por outro lado os componentes covariante e contravariante da velocidade mudam suas direções e tendem a seguir as linhas da malha. Esta característica faz com que estas sejam mais atrativas em malhas distantes da ortogonalidade e em geometrias com curvaturas fortes. Mas, devido a esta mudança de direção as equações de conservação se tornam muito complexas devido ao surgimento de termos que levam em conta a curvatura da malha. Especificamente no caso da equação de quantidade de movimento, já que este se conserva ao longo de uma linha reta, este problema se torna mais evidente. Deve-se ressaltar que para malhas ortogonais ambas os componentes (cvariante e contravariante) se confundem.

Como foi exposto acima, qualquer componente que for escolhido apresenta vantagens e desvantagens quase que do mesmo porte. Porém, para o desenvolvimento de um esquema de solução para escoamentos de fluidos, um outro ponto importante deve ser considerado, a saber, o acoplamento pressão-velocidade. Neste ponto a escolha da malha, e do componente da velocidade influem diretamente no sucesso da solução. Como a discussão sobre este ponto
será calculada no acoplamento entre a pressão e a velocidade segundo a formulação do método SIMPLE [31], suas principais equações serão apresentadas à seguir.

Neste método supõe-se que a pressão pode ser escrita como:

\[p = p' + p^* \] \hspace{1cm} (3.1)

onde \(p^* \) é um valor arbitrado e \(p' \) é a correção de pressão para se obter o valor correto. Da mesma forma os componentes da velocidade são escritos como:

\[\bar{u} = \bar{u}' + \bar{u}^* \] \hspace{1cm} (3.2)

As equações de correção de velocidade são obtidas substituindo as relações acima na equação de conservação de quantidade de movimento, o que resulta em expressões para \(\bar{u}' \) proporcionais ao gradiente de \(p' \). Para uma malha bi-dimensional, com o volume de controle da velocidade deslocado em relação ao volume de controle das demais variáveis, estas relações tem a seguinte forma:

\[u'_x \sim (p_p' - p_e') \] \hspace{1cm} (3.3)

\[e \]

\[v'_e \sim (p_p' - p_N') \] \hspace{1cm} (3.4)

Para se obter a equação de correção de pressão as equações (3.3) e (3.4) são substituídas na equação da continuidade discretizada, gerando uma equação da forma:

\[a_v p_p' = \sum_{nb} a_{nb} p_{nb}' + b \] \hspace{1cm} (3.5)

onde o número de vizinhos, \(nb \), vai depender da utilização da malha deslocada ou colocionalizada e da escolha dos componentes da velocidade que serão usadas como variáveis dependentes. Uma descrição mais detalhada do acoplamento pressão-velocidade será formulada no capítulo IV.
III.4.1 - Configuração 1

Esta é a configuração co-localizada, isto é, todas as variáveis são armazenadas nos mesmos locais e os componentes cartesionanos da velocidade são usados como variáveis dependentes nas equações de quantidade de movimento. Esta configuração foi usada para escoamentos bi-dimensionais em [13, 20, 27, 28, 29] e para escoamentos 3-D parabólicos em [15, 26].

Para uma malha bi-dimensional, este arranjo está apresentado na figura 3.2. Para este caso, o gradiente de pressão na equação de quantidade de movimento para o componente da velocidade \(u_p \), envolve somente \(p_E \) e \(p_W \), isto é, a pressão em pontos alternados em vez de pontos adjacentes. Como mencionado anteriormente isto pode acarretar que um campo de pressão ondulatório possa ser interpretado como uniforme pela equação de quantidade de movimento [11].

Além disto, um outro problema surge quando a equação da continuidade é utilizada para se obter a equação de correção de pressão. Como a equação da continuidade é integrada no volume de controle principal, é necessário que os fluxos de massa nas faces sejam obtidos por interpolação a partir dos valores nos pontos nodais principais. Logo, como \(u_p \) é proporcional a \((p_w - p_E) \) e \(u_E \) é proporcional a \((p_E - p_{EE}) \) o valor da velocidade \(u_p \), na interface, será proporcional a \((p_w - p_E) \) e a \((p_E - p_{EE}) \). Assim a equação resultante para a correção de pressão conterá nove pontos: P, E, W, N, S, EE, WW, NN e SS.

Quando coordenadas curvilineas forem utilizadas nas equações de conservação, os fluxos de massa envolvem ambos os componentes em cada face. Logo para cada fluxo, duas interpolações são necessárias, transformando a equação de \(p' \) de nove para treze pontos, uma vez que as pressões \(p'_{NE}, p'_{NW}, p'_{SE} \) e \(p'_{SW} \) também estarão envolvidas.

Para contornar estes problemas Péric et al. [14] propuseram que as velocidades nas faces que entram na equação da continuidade fossem avaliadas de maneira semelhante a malha deslocada, isto é:
Figura 3.2 - Arranjo co-localizado. Configuração 1.
\[u_e = u_e^* - d_e (p_e^* - p_f^*) \]
(3.6)

o que é suficiente para evitar o aparecimento de campos de pressão irrais. Porém, para a obtenção de \(u_e^* \), Peric sugere uma média através das equações linearizadas de conservação de quantidade de movimento aplicadas aos volumes de controle centrados em \(P \) e em \(E \). Além disso, a formulação co-localizada exige a geração de condições de contorno artificiais para a pressão, o que não é necessário no método deslocado [9].

III.4.2 - Configuração 2

O enfoque mais comum adotado para evitar os problemas associados à malha co-localizada é armazenar as quantidades vetoriais e escalares em locais diferentes.

Esta prática é largamente utilizada para o cálculo de escoamentos em coordenadas cartesianas. Fazendo uma analogia a este método de solução, Nakayama [6], Shyy et al. [7], Hah [8] e Piquet e Visionneau em 1991 [35] entre outros, escolheram os componentes cartesianos da velocidade (um em cada face do volume de controle) como variáveis dependentes, no tratamento de problemas em coordenadas curvilíneas. Esta configuração está apresentada na figura 3.3.

Uma vez que ambos os componentes são necessários nas faces do volume de controle para avaliação dos fluxos de massa que cruzam estas faces, é necessário que o componente desconhecido seja obtido por interpolação. Para uma malha curvilínea com o volume de controle deslocado, o componente da velocidade na face leste será proporcional a:

\[u_e' \sim \left(p_{Pe} - p_{Pe}^* \frac{\partial y}{\partial \eta} - p_{SE} + p_{SE}^* - p_{NE} + p_{NE}^* \frac{\partial y}{\partial \xi} \right) \frac{4 \Delta \eta}{\Delta \xi} \]
(3.7)

ou seja, o componente da velocidade envolve seis pontos de pressão. Para se obter o componente \(u_e' \), é necessário uma interpolação entre as velocidades \(v_n', v_{se}', v_n \) e \(v_{se} \). Estes componentes trarão, em acréscimo às pressões dos pontos da equação (3.7), as pressões dos pontos EE, SEE, e NEE. Quando o mesmo procedimento for executado para todas as faces do
Figura 3.3 - Plano físico: Configuração 2.
Figura 3.4 - Plano físico: posição dos componentes cartesianos numa curva para a configuração 2.
volume de controle, ter-se-á uma equação de pressão com 21 pontos, o que a torna muito difícil de resolver por métodos iterativos.

Para poder resolver a equação resultante usando o algoritmo TDMA, Shyy et al. [7] desprezaram os termos de gradiente de pressão na equação da velocidade, que desapareciam normalmente se a malha fosse ortogonal. Uma outra solução proposta é tratar os componentes da velocidade que não estão disponíveis como conhecidos da iteração anterior. Este método, além de precisar de uma forte sub-relaxação, apresenta uma velocidade de convergência semelhante a aproximação anterior [7].

Uma desvantagem mais significativa deste arranjo é verificada em geometrias com grandes curvaturas, o que pode ser observado com o auxílio da figura 3.4. Conforme o escoamento vai atravessando a curva, a velocidade u é armazenada no local onde a componente v deveria ser armazenada, o que pode anular o efeito da malha deslocada. Este caso é discutido com detalhes por Shyy e Vu [9], que utilizam esta metodologia de solução.

III.4.3 - Configuração 3

A figura 3.5 apresenta o arranjo usado em [10]. Neste, ambos os componentes cartesianos são armazenadas no centro das faces do volume de controle e a pressão é armazenada no centro. Uma vez que não há necessidade de interpolações para a pressão e para a velocidade, o surgimento de campos oscilatórios de pressão é evitado.

A equação de pressão resultante envolve nove pontos para uma malha não ortogonal e cinco pontos quando esta se torna ortogonal, o que é uma condição desejável. Entretanto, para se obter os dois componentes em cada face é necessário resolver duas vezes o número de equações de quantidade de movimento das demais formulações. Apesar dos coeficientes das equações para os componentes em cada face serem os mesmos, existe um maior esforço computacional bem como uma necessidade maior de espaço para armazenagem. Este método foi usado para a solução de escoamentos bi-dimensionais e tri-dimensionais parabólicos em dutos com seção reta variável.
Figura 3.5 - Plano físico: Configuração 3.
III.4.4 - Configuração 4

Esta alternativa utiliza o componente covariante da velocidade como apresentado na figura 3.6. Este componente foi usado como variável dependente por Karki [17]. À primeira vista esta escolha se apresenta mais coerente, uma vez que o gradiente de pressão que guia cada componente covariante só envolve as variações na direção da velocidade, isto é, o componente covariante u_ξ é guiado pelo gradiente $\partial p/\partial \xi$. Assim, ter-se-ia uma formulação de cinco pontos para a equação de pressão. Porém, a equação da continuidade em coordenadas curvilíneas envolve os componentes contravariantes em cada face do volume de controle. Pode-se, no entanto, relacionar estes dois componentes como visto no capítulo anterior. Por exemplo, o componente contravariante normal a uma linha de ξ constante, pode ser obtido pela equação 2.61:

$$U_\xi h_n = \alpha_\xi u_\xi - \beta_\xi v_\eta$$ \hspace{1cm} (3.8)

Como somente um componente é armazenado em cada face, o valor de v_η, por exemplo, na face "e" não é conhecido. Logo, este valor teria que ser obtido por interpolações e novamente surgiria uma formulação de nove pontos. Para evitar este problema Karki trata os componentes não disponíveis explicitamente a partir dos valores obtidos da última iteração. Assim, a equação de pressão é reduzida a cinco pontos. Deve-se mencionar que para malhas ortogonais o parâmetro β_ξ é igual a zero e os componentes covariante e contravariante tornam-se idênticos.

Por fim, esta escolha introduz uma complexidade maior nas equações de conservação de quantidade de movimento, devido ao surgimento de novos termos oriundos da tendência deste componente de seguir a curvatura da malha.

III.4.5 - Configuração 5

A alternativa à escolha do componente covariante seria o componente contravariante da velocidade como apresentado na figura 3.7. Nesta configuração um componente contravariante
Figura 3.6 - Plano físico: Configuração 4.
Figura 3.7 - Plano físico: Configuração 5.
é armazenado em cada face do volume de controle deslocado. Este arranjo, usado por Demirdzic et al. [16], por Yang et al. em 1990 [36] e por Kerkar e Choudhury em 1992 [37], fornece uma equação de pressão com nove pontos e, quando a malha se torna muito não ortogonal, esta equação pode perder a dominância da diagonal. Para a transformação desta equação para cinco pontos, os termos oriundos da não ortogonalidade são tratados explicitamente, e incorporados ao termo fonte. Desta forma, quando a malha se torna ortogonal, estes termos desaparecem, e a equação não altera seu aspecto.

Como mencionado anteriormente, o componente contravariante aparece naturalmente durante o processo de transformação de coordenadas das equações de quantidade de movimento e da continuidade, necessitando desta forma ser sempre resgatado e utilizado, independentemente da metodologia escolhida. Logo, a eleição deste componente como variável dependente, além de simplificar a obtenção do acoplamento pressão-velocidade (via equação da continuidade), torna o algoritmo de solução semelhante ao obtido normalmente, quando da utilização de componentes e malhas cartesianas.

Como no caso anterior, as equações de conservação de quantidade de movimento também se apresentam mais complexas.

III.5 - Conclusão

Este capítulo teve por finalidade apresentar as alternativas envolvidas na escolha da malha e da variável dependente para as equações de conservação de quantidade de movimento. De um modo resumido, a análise deste capítulo permite concluir que:

a) Na utilização de malhas co-localizadas deve-se tomar cuidado com a avaliação dos fluxos nas faces e com os cálculos dos gradientes de pressão;

b) Na utilização de malhas deslocadas, os fluxos nas faces e os gradientes de pressão são facilmente obtidos;

c) As equações de conservação de quantidade de movimento para componentes que seguem a malha, obtidas pela análise tensorial, são extremamente complexas;
d) Na utilização de componentes covariantes, os gradientes de pressão nas equações de quantidade de movimento são mais simples. Porém, os componentes contravariantes precisam ser resgatados para os cálculos de fluxos convectivos e conservação de massa;

f) A simplicidade apresentada pela malha colocalizada é contrabalancada pela necessidade de esquemas especiais para a discretização do gradiente de pressão; estudos para a determinação da superioridade da malha colocalizada sobre a deslocada em coordenadas que se adaptam ao contorno não permitem uma conclusão definitiva;

g) Na escolha de malhas colocalizadas, é recomendada a escolha dos componentes cartesianos;

h) Na utilização de malhas deslocadas, os componentes contravariantes apresentam certa superioridade sobre os demais.

As escolhas para o presente trabalho são:
- malha deslocada;
- componentes contravariantes.

Esta escolha pode à primeira vista não parecer justificável, principalmente em função do item c. Porém, as equações de conservação de quantidade de movimento em coordenadas generalizadas não serão obtidas pela análise tensorial, e sim por um procedimento algebraico, semelhante ao desenvolvido por Karki [17], envolvendo a equação geral discretizada e as relações entre os componentes cartesianos e contravariantes. Este procedimento, descrito no próximo capítulo, além de evitar o surgimento dos numerosos termos que apareceriam na derivação tensorial, permite que os problemas possam ser formulados utilizando as coordenadas cartesianas, o que simplifica consideravelmente a definição dos termos de fonte.
CAPÍTULO IV

ALGORITMO DE SOLUÇÃO

IV.1 - Introdução

O desenvolvimento apresentado nos capítulos anteriores já permite montar um algoritmo de solução para problemas puramente difusivos ou nos quais o campo de velocidades é conhecido. Porém, para problemas convectivos, a solução da equação de conservação de quantidade de movimento exige alguns cuidados a mais devido à presença do gradiente de pressão nesta equação. Este capítulo apresenta a abordagem dada a estes problemas, bem como o algoritmo final utilizado para a solução de todos os casos exemplos desta tese.

IV.2 - Discretização da equação de conservação de quantidade de movimento

As equações de conservação de quantidade de movimento para fluidos newtonianos são as equações de Navier-Stokes, que podem ser expressas em coordenadas cartesianas como:

\[
\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + F_i
\]

onde

\[
\tau_{ij} = \mu \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] - \frac{2}{3} \mu \frac{\partial u_k}{\partial x_k} \delta_{ij}
\]

(4.1b)

O componente " i " destas equação pode ser reescrito como:

\[
\frac{\partial}{\partial t}(\rho u_i) + \text{div}\left(\rho \vec{u} u_i\right) = \text{div}\left(\mu \text{grad}[u_i]\right) + S
\]

(4.2a)

onde
\[S = -\frac{\partial p}{\partial x_i} + \text{div} \left[\mu (\text{grad} \{ u \})^T \right]_i + F_i \] (4.2b)

Estas equações são muito similares às equações que governam o transporte de um escalar, e podem ser discretizadas seguindo o procedimento discutido nos capítulos anteriores. Isto pode ser feito inclusive de forma independente da escolha feita para as variáveis dependentes a serem usadas nestas equações, uma vez que são equações gerais.

No capítulo anterior, após alguma discussão sobre as diversas possibilidades, os componentes contravariantes da velocidade foram escolhidos como variáveis a serem utilizadas como variáveis dependentes. Porém, uma vez que estes componentes não possuem direção fixa (ao contrário dos componentes cartesianos), e como a conservação da quantidade de movimento se dá ao longo de uma linha reta, as equações diferenciais para os componentes contravariantes (bem como para os covariantes) apresentam termos adicionais associados a este fato, isto é, termos ligados à curvatura da malha. A derivação destes termos adicionais é geralmente realizada através da análise tensorial [16] O número destes termos, num sistema de coordenadas não ortogonal, é muito elevado. Se a discretização da equação para os componentes contravariante (ou covariante) for obtida da maneira convencional, isto é, começando da forma diferencial destas equações, serão necessárias aproximações numéricas para todos estes termos, o que torna a programação muito complexa e trabalhosa.

Para contornar este fato, Karki [17], utilizando os componentes covariantes, apresentou um procedimento no qual estes termos são obtidos pela manipulação algebríca das equações discretizadas num sistema de coordenadas fixo localmente. Assim, as equações discretizadas são obtidas sem nenhuma referência a sua forma diferencial. Este mesmo método será utilizado para a derivação das equações de conservação de quantidade de movimento, empregando os componentes contravariantes como variáveis dependentes. Após o presente trabalho de tese estar em fase final de testes, um procedimento muito semelhante ao aqui adotado foi apresentado no final de 1992 por Kelkar e Choudhury [37].

Para iniciar o desenvolvimento, as equações (4.1) serão discretizadas para o ponto nodal P, utilizando o processo anteriormente descrito, o que resulta em:
\[a_p u_p = a_e u_e + a_w u_w + a_n u_n + a_s u_s - \left(\frac{\partial p}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial p}{\partial \eta} \frac{\partial y}{\partial \xi} \right) \frac{\Delta V}{Ja} + b_u \] (4.3)

e de maneira análoga, obtém-se a equação para \(v \):

\[a_p v_p = a_e v_e + a_w v_w + a_n v_n + a_s v_s - \left(\frac{\partial p}{\partial \eta} \frac{\partial x}{\partial \xi} - \frac{\partial p}{\partial \xi} \frac{\partial x}{\partial \eta} \right) \frac{\Delta V}{Ja} + b_v \] (4.4)

Pode-se observar que para o mesmo ponto nodal, os coeficientes vizinhos das duas equações são iguais. O componente contravariante normal a uma linha de \(\eta \) constante é definido por:

\[U_{\xi p} = \left[\frac{1}{h_\eta} \left[u \frac{\partial y}{\partial \eta} - v \frac{\partial x}{\partial \eta} \right] \right] _p \] (4.5)

Substituindo (4.3) e (4.4) em (4.5) e rearrumando, tem-se:

\[a_p U_{\xi p} h_{np} = a_e \left[u_e \left(\frac{\partial y}{\partial \eta} \right) _p - v_e \left(\frac{\partial x}{\partial \eta} \right) _p \right] + a_w \left[u_w \left(\frac{\partial y}{\partial \eta} \right) _p - v_w \left(\frac{\partial x}{\partial \eta} \right) _p \right] + \\
+ a_s \left[u_s \left(\frac{\partial y}{\partial \eta} \right) _p - v_s \left(\frac{\partial x}{\partial \eta} \right) _p \right] + a_n \left[u_n \left(\frac{\partial y}{\partial \eta} \right) _p - v_n \left(\frac{\partial x}{\partial \eta} \right) _p \right] - \\
\left(\frac{\partial p}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial p}{\partial \eta} \frac{\partial y}{\partial \xi} \right) \frac{\Delta V}{Ja} - \left(\frac{\partial p}{\partial \eta} \frac{\partial x}{\partial \xi} - \frac{\partial p}{\partial \xi} \frac{\partial x}{\partial \eta} \right) \frac{\partial x}{\partial \eta} \frac{\Delta V}{Ja} + \\
+ b_u \left(\frac{\partial y}{\partial \eta} \right) _p - b_v \left(\frac{\partial x}{\partial \eta} \right) _p \] (4.6)

Observa-se que os componentes cartesionos ainda estão presentes na equação (4.6). Estes podem ser eliminados utilizando-se as relações inversas a (4.5), isto é, expressões que fornecem os componentes cartesionos em função dos componentes contravariantes. Este procedimento fornece equações similares às que seriam obtidas através da formulação...
tensorial, o que não é desejado. Analisando porém a equação (4.6) observa-se que, por exemplo, o termo:

\[
\frac{1}{h_{np}} \left(u_E \left(\frac{\partial y}{\partial \eta} \right)_p - v_E \left(\frac{\partial x}{\partial \eta} \right)_p \right)
\]

(4.7)

representa uma velocidade paralela a normal \(\bar{n}_{np}\) no ponto nodal \(E\) e consequentemente paralela a \(U_{\xi_p}\). Assim, a equação (4.6) pode ser reescrita como:

\[
a_p U_{\xi_p} = a_E U_{\xi E} + a_w U_{\xi w} + a_\xi U_{\xi \xi} + a_\eta U_{\eta \eta} - \left[\frac{\partial p}{\partial z} h^2 - \frac{\partial p}{\partial \eta} (\xi_{\xi} \cdot \xi_{\eta}) h \eta_{\eta} \right]_{p} \frac{\Delta V}{h_{np}} + b'_{U}
\]

(4.8)

onde

\[
U_{\xi E} = \frac{1}{h_{\eta p}} \left(u_E \left(\frac{\partial y}{\partial \eta} \right)_p - v_E \left(\frac{\partial x}{\partial \eta} \right)_p \right)
\]

(4.9)

e

\[
b'_{U} = b_{u} \left(\frac{\partial y}{\partial \eta} \frac{1}{h_{np}} - b_{v} \left(\frac{\partial x}{\partial \eta} \right) \frac{1}{h_{np}} \right)
\]

(4.10)

A figura 4.1 apresenta os componentes de velocidades \(U_{\xi}\). Estes componentes, por serem paralelos ao componente \(U_{\xi}\) no ponto \(P\), geram uma equação que não envolve termos de curvatura. Isto ocorre pois localmente resgata-se o sentido da conservação da quantidade de movimento, que se dá ao longo de uma direção determinada. Porém, as equações resultantes apresentam mais de uma família de componentes, o que dificulta o processo de solução. Para eliminar estas novas variáveis, observa-se que, por exemplo, \(U_{\xi E}\) pode ser expressa por uma combinação de \(U_{\xi E}\) e \(V_{\eta E}\), mas caso isto seja feito, as equações algébricas resultantes necessitariam de tratamentos especiais para serem resolvidas. Logo, para se obter uma equação para \(U_{\xi E}\) em termos dos vizinhos, faz-se o artifício de somar e subtrair termos
Figura 4.1 - Arranjo das velocidades U'_5.
iguais na equação 4.8, resultando em:

\[
a_p U_{ep} = a_n U_{en} + a_w U_{ew} + a_s U_{es} + a_s U_{ep} - \\
- \frac{\Delta V\alpha_{ep}}{h_{ep} h_{np}} \left(\frac{\partial p}{\partial \xi} \right)_p + \frac{\Delta V\beta_{ep}}{h_{np}^2} \left(\frac{\partial p}{\partial \eta} \right)_p + B_{ep}
\] (4.11)

onde

\[
B_{ep} = a_e \left(U'_{ep} - U_{ep} \right) + a_w \left(U'_{ew} - U_{ew} \right) + \\
+ a_n \left(U'_{en} - U_{en} \right) + a_s \left(U'_{es} - U_{es} \right) + b'_{up}
\] (4.12)

Na equação (4.11) os termos como \(a_n \left(U'_{ep} - U_{ep} \right) \) representam o efeito de curvatura da malha e são equivalentes aos termos fonte obtidos pela análise tensorial. Estes termos são calculados explicitamente no termo fonte, sendo \(U'_{ep} \) obtido dos componentes cartesianos, os quais são obtidos pelas seguintes expressões:

\[
u = \left(V_n \frac{\partial x}{\partial \eta} + U_\xi \frac{\partial x}{\partial \xi} \right) \frac{1}{Ja}
\] (4.13)

\[
v = \left(V_n \frac{\partial y}{\partial \eta} + U_\xi \frac{\partial y}{\partial \xi} \right) \frac{1}{Ja}
\] (4.14)

Para uma malha desfasada, o sistema de equações pode ser escrito como:

\[
a_e U_{xe} = \sum a_{ab} U_{eb} + B_{xe} - \frac{\Delta V\alpha_{xe}}{h_{xe} h_{ne}} \left(\frac{\partial p}{\partial \xi} \right) + \frac{\Delta V\beta_{xe}}{h_{ne}^2} \left(\frac{\partial p}{\partial \eta} \right)_e
\] (4.15)
\[a_n V_{hn} = \sum a_{nb} V_{hn'b} + B_{hn} = \frac{\Delta V_{\alpha_{mn}}}{h_{\alpha} h_{\beta}} \left(\frac{\partial p}{\partial \alpha} \right)_n + \frac{\Delta V_{\beta_{mn}}}{h_{\alpha} h_{\beta}} \left(\frac{\partial p}{\partial \beta} \right)_n \] (4.16)

IV.3 - Acoplamento pressão-velocidade

Para a análise de um escoamento precisa-se avaliar o campo de velocidades, pressão, densidade e temperatura. As equações necessárias para isso são as equações de conservação de massa, quantidade de movimento, energia, e uma equação de estado.

Se o escoamento é de fluido incompressível (variações de pressão não afetam a densidade), a equação de estado pode ser apenas empregada para o cálculo da densidade em escoamentos não isotérmicos. Uma vez que a equação da energia fornece a temperatura e as equações de conservação de quantidade de movimento fornecem os componentes da velocidade, resta somente a equação da continuidade para a obtenção da pressão. Como a pressão não aparece explicitamente na equação da continuidade, algoritmos para a determinação da pressão são obtidos manipulando as equações de conservação de quantidade de movimento e da continuidade.

Desde a sua concepção em 1972, o algoritmo SIMPLE de Patankar e Spalding [31] foi extensivamente usado na solução do acoplamento pressão velocidade em problemas de escoamento de fluidos incompressíveis.

Ao longo destes anos um grande número de modificações foi proposto [25, 32, 38], todos com o objetivo de melhorar as propriedades de convergência do SIMPLE. O algoritmo SIMPLER (SIMPLE Revised) de Patankar [25] e o SIMPLEX (SIMPLE Consistent) de Van Doormaal e Raithby [32] são alguns exemplos que exibem um comportamento melhor que o do SIMPLE. Em 1986, Issa e co-autores [39] propuseram o algoritmo PISO, que adota uma solução marchante no tempo, sendo portanto não iterativo. Uma análise comparativa entre estes três métodos (SIMPLER, SIMPLEX e PISO), tomando como base o esforço computacional para um mesmo nível de convergência foi apresentado por Jang et al. em 1986 [40]. Neste trabalho, para quatro problemas testes diferentes, não foi possível determinar com
clareza a superioridade de um método sobre os demais. Para o algoritmo desenvolvido neste trabalho, o método SIMPELEC foi escolhido devido a sua simplicidade e consistência.

IV.3.1 - Algoritmo SIMPELEC

A equação de conservação de quantidade de movimento para \(U_e \) obtida no item anterior (4.15), pode ser escrita com os gradientes de pressão discretizados como:

\[
a_c U_{e} = \sum a_{nb} U_{nb} + B_{e} + \frac{\Delta V\alpha_{te}}{h_{te} h_{ne} \Delta \xi_e} (p_p - p_E) - \frac{\Delta V\beta_{te}}{h_{te}^2 \Delta \eta} \left(\frac{p_s + p_{NE} - p_N - p_{NE}}{4} \right)
\]

(4.17)

Observa-se que na equação (4.17) os termos \(\frac{\Delta V\alpha_{te}}{h_{te} h_{ne} \Delta \xi_e} \) e \(\frac{\Delta V\beta_{te}}{h_{te}^2 \Delta \eta} \) são as áreas onde os gradientes de pressão atuam. De maneira análoga tem-se:

\[
a_n V_{nt} = \sum a_{nb} V_{nt} + B_{nt} + \frac{\Delta V\alpha_{tn}}{h_{tn} h_{nt} \Delta \xi_n} (p_p - p_N) - \frac{\Delta V\beta_{tn}}{h_{tn}^2 \Delta \eta} \left(\frac{p_w + p_{NW} - p_E - p_{NE}}{4} \right)
\]

(4.18)

Para um campo de pressão arbitrado \(p^* \), as velocidades \(U_e^* \) e \(V_n^* \) correspondentes serão:

\[
a_c U_{e}^* = \sum a_{nb} U_{nb}^* + B_{e} + \frac{\Delta V\alpha_{te}^*}{h_{te} h_{ne} \Delta \xi_e} (p_p^* - p_E^*) - \frac{\Delta V\beta_{te}^*}{h_{te}^2 \Delta \eta} \left(\frac{p_s^* + p_{NE}^* - p_N^* - p_{NE}^*}{4} \right)
\]

(4.19)

\[
a_n V_{nt}^* = \sum a_{nb} V_{nt}^* + B_{nt} + \frac{\Delta V\alpha_{tn}^*}{h_{tn} h_{nt} \Delta \xi_n} (p_p^* - p_N^*) - \frac{\Delta V\beta_{tn}^*}{h_{tn}^2 \Delta \eta} \left(\frac{p_w^* + p_{NW}^* - p_E^* - p_{NE}^*}{4} \right)
\]

(4.20)

Subtraindo as equações (4.19) e (4.20) de (4.17) e (4.18) respectivamente tem-se:

\[
a_c U_{e}^* = \sum a_{nb} U_{nb} + \frac{\Delta V\alpha_{te}}{h_{te} h_{ne} \Delta \xi_e} (p_p - p_E) - \frac{\Delta V\beta_{te}}{h_{te}^2 \Delta \eta} \left(\frac{p_s + p_{NE} - p_N - p_{NE}}{4} \right)
\]

(4.21)

\[
a_n V_{nt}^* = \sum a_{nb} V_{nt} + \frac{\Delta V\alpha_{tn}}{h_{tn} h_{nt} \Delta \xi_n} (p_p^* - p_N^*) - \frac{\Delta V\beta_{tn}}{h_{tn}^2 \Delta \eta} \left(\frac{p_w^* + p_{NW}^* - p_E^* - p_{NE}^*}{4} \right)
\]

(4.22)
onde

\[U'_\xi = U'_\eta - U'_{\xi} \quad V'_\eta = V'_\eta - V'_{\eta} \quad \text{equação (4.23)} \]

\[p' = p - p^* \quad \text{equação (4.24)} \]

Subtraindo de ambos os lados da equação (4.21) o termo \(U'_{\xi e} \sum a_{\alpha b} \), tem-se:

\[U'_{\xi e} \left(a_e - \sum a_{\alpha b} \right) = \sum a_{\alpha b} \left(U'_{\xi_{\alpha b}} - U'_{\xi} \right) + \frac{\Delta V \alpha_{\xi e}}{h_{\xi e} h_{\eta e} \Delta \xi} \left(p'_{\xi} - p_{\xi e} \right) - \frac{\Delta \bar{V} \beta_{\xi e}}{h_{\eta e} \Delta \eta} \left(\frac{p'_{\eta} + p'_{\eta e} - p_{\eta} - p_{\eta e}}{4} \right) \quad \text{equação (4.25)} \]

O próximo passo é crucial para o objetivo que se pretende atingir. Consiste em aproximar a equação (4.25) de forma que a velocidade fique relacionada apenas às derivadas locais do campo de pressão. A aproximação do método SIMPLEC admite que o termo \(\left(U'_{\xi_{\alpha b}} - U'_{\xi} \right) \) pode ser considerado nulo e, desta forma, a equação (4.25) fica reduzida a:

\[U'_{\xi e} = \frac{A_e}{\left(a_e - \sum a_{\alpha b} \right) h_{\eta e}} \left(p'_{\eta} - p_{\xi e} \right) - \frac{A'_{\xi e}}{\left(a_e - \sum a_{\alpha b} \right) h_{\eta e}} \left(p'_{\eta} + p'_{\eta e} - p_{\eta} - p_{\eta e} \right) \quad \text{equação (4.26)} \]

e por um raciocínio análogo tem-se:

\[V'_{\eta e} = \frac{A_n}{\left(a_n - \sum a_{\alpha b} \right) h_{\xi e}} \left(p'_{\xi} - p_{\eta e} \right) - \frac{A'_{\eta e}}{\left(a_n - \sum a_{\alpha b} \right) h_{\xi e}} \left(p'_{\xi} + p'_{\xi e} - p_{\xi} - p_{\xi e} \right) \quad \text{equação (4.27)} \]

onde

\[A_e = \frac{\Delta V \alpha_{\xi e}}{h_{\xi e} \Delta \xi} \quad \text{equação (4.28a)} \]

\[A'_{\xi e} = \frac{\Delta \bar{V} \beta_{\xi e}}{4 h_{\eta e} \Delta \eta} \quad \text{equação (4.28b)} \]

\[A_n = \frac{\Delta V \alpha_{\eta e}}{h_{\eta e} \Delta \eta} \quad \text{equação (4.28d)} \]

\[A'_{\eta e} = \frac{\Delta \bar{V} \beta_{\eta e}}{4 h_{\xi e} \Delta \xi} \quad \text{equação (4.28d)} \]
Substituindo (4.26) e (4.27) em (4.23) e rearrumando tem-se:

\[U_{se} = U_{se}^* + d_e \left(\frac{p_P^* - p_E^*}{h_{te}} \right) - d_e' \left(\frac{p_S + p_{se} - p_N - p_{se}'}{h_{te}} \right) \] \hspace{1cm} (4.29)

\[V_{np} = V_{np}^* + d_n \left(\frac{p_P^* - p_N^*}{h_{tn}} \right) - d_n' \left(\frac{p_W + p_{nw} - p_N - p_{nw}'}{h_{tn}} \right) \] \hspace{1cm} (4.30)

onde

\[d_e = \frac{A_e}{(a_e - \sum a_{eb})} \] \hspace{1cm} (4.31a)

\[d_e' = \frac{A_e'}{(a_e - \sum a_{eb})} \] \hspace{1cm} (4.31b)

\[d_n = \frac{A_n}{(a_n - \sum a_{nb})} \] \hspace{1cm} (4.31c)

\[d_n' = \frac{A_n'}{(a_n - \sum a_{nb})} \] \hspace{1cm} (4.31d)

Para se obter a equação de correção de pressão, as equações (4.29) e (4.30) são substituídas na equação da continuidade, que depois de rearrumada fica:

\[a_p p_p = a_e p_{eb} + a_N p_N + a_s p_s + a_W p_W + b \] \hspace{1cm} (4.32)

onde

\[a_p = \rho_e \cdot d_e + \rho_w \cdot d_w + \rho_s \cdot d_s + \rho_n \cdot d_n \] \hspace{1cm} (4.33)

\[a_e = \rho_e \cdot d_e - \rho_n \cdot d_n' + \rho_s \cdot d_s' \] \hspace{1cm} (4.34a)

\[a_w = \rho_w \cdot d_w - \rho_e \cdot d_e' + \rho_n \cdot d_n' \] \hspace{1cm} (4.34b)

\[a_N = \rho_n \cdot d_n - \rho_e \cdot d_e' + \rho_w \cdot d_w' \] \hspace{1cm} (4.34c)

\[a_s = \rho_s \cdot d_s - \rho_n \cdot d_n' + \rho_e \cdot d_e' \] \hspace{1cm} (4.34d)

\[a_{nb} = - \rho_e \cdot d_n' - \rho_s \cdot d_s' \] \hspace{1cm} (4.34e)

\[a_{se} = \rho_e \cdot d_e' + \rho_s \cdot d_s' \] \hspace{1cm} (4.34f)
\[a_{NW} = \rho_w d'_w + \rho_d d'_n \]
\[a_{SW} = -\rho_w d'_w + \rho_d d'_s \]

(4.34g)
(4.34h)

sendo

\[b = a_{NR}p'_{NR} + a_{NW}p'_{NW} + a_{SE}p'_{SE} + a_{SW}p'_{SW} + B \]

(4.35a)

\[B = \left(\rho_v - \rho_p \right) \frac{J_s}{\Delta t} + (\rho_n U'_n)_w - (\rho_n U'_n)_s + (\rho_n V'_n)_s - (\rho_n V'_n)_n \]

(4.35b)

IV.4 - Procedimento geral de solução

O conjunto de equações a ser resolvido pode ser escrito na forma matricial como:

\[[A][\phi] = [B] \]

(4.36)

Na equação (4.36), \([\phi]\) é o vetor de incógnitas e cada elemento da matriz de coeficientes \([A]\) é ele próprio uma matriz \(m\) por \(m\), onde \(m\) é o número de incógnitas. A solução deste conjunto de equações é, de maneira geral, realizada por métodos diretos [41, 42, 43] ou por métodos iterativos [11]. Sem levar em consideração a eficiência de cada método, o que pode ser avaliado na literatura pertinente (Silva, 1991 [44]), os métodos iterativos apresentam uma considerável simplicidade de implementação além de serem largamente utilizados. Já os métodos diretos possuem um maior emprego para escoamentos com número de Mach elevado. No presente trabalho será utilizado um método iterativo, também chamado de abordagem segregada.

Neste tipo de abordagem as várias variáveis são resolvidas separadamente, isto é, enquanto uma variável é resolvida as demais permanecem constantes. O conjunto de equações apresenta uma matriz de coeficientes tridiagonal que é resolvido por um processo de solução linha-a-linha (Tri-Diagonal Matrix Algorithm -TDMA [11]). Para aumentar a taxa de convergência (principalmente em malhas refinadas), é empregado um processo de correção por blocos [25, 45] associado à TDMA.
Todos os métodos de solução citados trabalham com equações lineares. Porém, como pode ser facilmente observado, as equações de conservação são, de maneira geral, não lineares, devido a presença das variáveis nos coeficientes destas equações. No presente esquema, estas não linearidades serão resolvidas através do cálculo destes coeficientes baseados nos valores das variáveis da iteração anterior. Assim, apesar destes coeficientes ficarem defasados por uma iteração, quando a solução total convergir, todas as equações estarão satisfeitas e a dependência destes coeficientes da iteração anterior desaparecerá.

O algoritmo geral de solução, escrito em FORTRAN 77 e implementado num micro-computador 486 de 33MHz, consiste nos seguintes passos:

1 - Conhecidos no instante \(t = 0 \) os campos iniciais de velocidade, pressão, temperatura e massa específica, estima-se estes campos para \(t = t + \Delta t \) (normalmente os campos estimados são os próprios campos iniciais);

2 - Arbitra-se um campo de pressão \(p^* \) igual ao campo de pressão disponível;

3 - Calculam-se os componentes cartesianos, a partir dos componentes contravariantes disponíveis, para a avaliação dos termos de fonte e de curvatura presentes nas equações (4.19) e (4.20)

4 - Resolvem-se as equações (4.19) e (4.20) para a determinação de \(U_\xi^* \) e \(V_\eta^* \);

5 - Resolve-se a equação de correção de pressão, (4.32), para \(p' \) e atualiza-se a pressão por (4.24);

6 - Atualizam-se as velocidades \(U_\xi \) e \(V_\eta \) pelas equações de correção de velocidades (4.29) e (4.30);

7 - Resolvem-se as outras variáveis escalares que afetam o campo de velocidades;

8 - Repetem-se os passos 3 a 7 até a convergência, utilizando para \(p^* \) a pressão calculada no passo 5;

9 - Considerando-se os campos obtidos no item 8 como campos iniciais, incrementa-se o intervalo de tempo e itera-se até quando o regime permanente, se existir, for alcançado, ou até quando for de interesse avançar a solução.

Algumas observações sobre o algoritmo podem ser formuladas:
a) Para a utilização do algoritmo SIMPLEC é necessário que as equações de conservação de quantidade de movimento sejam sub-relaxadas, para que \(a_e - \sum a_{eb} \) seja diferente de zero (se \(S_p = 0 \), pois \(a_e = \frac{\sum a_{eb} - S_p \Delta V}{\Omega} \), onde \(\Omega \) é o fator de sub-relaxação.

b) O termo \(B \) (equação 4.35b) representa o resíduo ou erro na conservação de massa no volume de controle. Quando este erro se anula, significa que o campo de pressões gera velocidades que conservam a massa e consequentemente a correção de \(p' \) se anula também. Assim, se o processo iterativo convergir, convergirá para o campo de pressões correto, independente das aproximações envolvidas. De maneira geral, as aproximações influenciarão principalmente na taxa de convergência.

c) Para evitar a possibilidade do surgimento de coeficientes negativos, os fatores presentes nos termos das equações (4.34a) a (4.34d), devidos a não ortogonalidade da malha, foram tratados explicitamente e agregados ao termo de fonte.

d) Os termos de correção advindos dos vizinhos em diagonal, dados pelas equações (4.34e) a (4.34h), são tratados de duas maneiras distintas: ou são calculados explicitamente baseados nos valores da iteração anterior ou são completamente ignorados (o que não implica em nada além do comentado no item b). Apesar desta última opção poder trazer problemas de convergência para casos com malhas muito não ortogonais, em todos os problemas tratados neste trabalho, não foi observada nenhuma variação significativa entre as duas opções.
CAPÍTULO V
RESULTADOS

V.1 - Introdução

Neste capítulo o esquema proposto é empregado na solução de um número variado de problemas. Estes problemas incluem: escoamento entre dois cilindros concentricos girando; convecção natural entre cilindros excentricos, escoamento numa cavidade trapezoidal com as bases se deslocando, escoamento em um tubo com redução de seção e escoamento laminar e turbulento num tubo com estrangulamento. Estes exemplos foram escolhidos por apresentarem soluções analíticas, numéricas ou experimentais que permitem comparações de modo a estabelecer a validade do esquema proposto e demonstrar a sua aplicação a uma variada gama de situações. Apesar do tratamento transiente ter sido apresentado no desenvolvimento teórico e implementado no algoritmo de solução, todos os problemas estudados enquadram-se no caso de regime permanente.

V.2 - Escoamento entre dois cilindros concêntricos girando

O problema consiste na avaliação do escoamento laminar gerado entre dois cilindros concêntricos. O cilindro interno de raio \(r_1 \) está parado e o cilindro externo, de raio \(r_2 = 2r_1 \), está girando em torno do seu eixo a uma velocidade constante \(w \), como ilustrado na figura 5.1.

Em coordenadas polares, este problema torna-se unidimensional e possui solução analítica [54] na qual o componente radial do campo de velocidades é zero, e o componente angular varia somente com a coordenada radial. A pressão também só varia com a coordenada radial. Porém, se o problema for formulado em outro sistema de coordenadas, a solução torna-se bi-dimensional, e resolvido numericamente, podem-se comparar os resultados obtidos com a solução analítica.

O domínio computacional é definido pelo paralelogramo apresentado na figura 5.1. Este é fixo no espaço e o escoamento atravessa suas fronteiras. Os valores dos ângulos \(\theta \) utilizados
Figura 5.1 - Geometria e malha para escoamento entre dois cilindros.
foram 0°, 15° e 22,5° e as condições de contorno prescritas nas faces do domínio foram obtidas através da solução exata.

V.2.1 - Equações e Detalhes Computacionais

As equações para o problema podem ser adimensionalizadas pela utilização das relações abaixo:

\[
X = \frac{x}{r_1} \quad Y = \frac{y}{r_1} \quad U = \frac{u}{2r_1\omega}
\]

\[
V = \frac{v}{2r_1\omega} \quad P = \frac{P - P_o}{\rho(2r_1\omega)^2} \quad \text{Re} = \frac{\rho 2r_1^2 \omega}{\mu}
\]

onde \(u\) e \(v\) são os componentes cartesianos da velocidade nas direções \(x\) e \(y\) respectivamente, \(P\) é a pressão adimensionalizada, \(P_o\) é a pressão no centro do domínio e \(\text{Re}\) é o número de Reynolds. Assim, pode-se escrever:

quantidade de movimento na direção \(x\)

\[
\frac{\partial}{\partial X} (UU) + \frac{\partial}{\partial Y} (VU) = -\frac{\partial P}{\partial X} + \frac{1}{\text{Re}} \left[\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right]
\]

quantidade de movimento na direção \(y\)

\[
\frac{\partial}{\partial X} (UV) + \frac{\partial}{\partial Y} (VV) = -\frac{\partial P}{\partial Y} + \frac{1}{\text{Re}} \left[\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right]
\]

continuidade

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0
\]
Estas equações, caso fossem escritas segundo as coordenadas ξ e η, seriam extremamente complexas, tornando a interpretação física de cada termo muito difícil. Logo, para melhor entendimento estas equações não serão transformadas.

Em coordenadas polares, a solução exata para este problema é apresentada por Schlichting [54]. Esta pode ser transformada para coordenadas cartesianas de modo a se obter a seguinte solução bidimensional:

\[
U = \frac{2}{3} \left(R - \frac{1}{R} \right) \frac{Y}{R},
\]

\[
V = -\frac{2}{3} \left(R - \frac{1}{R} \right) \frac{X}{R},
\]

\[
P = \frac{2}{9} \left(R^2 - \frac{1}{R^2} \right) - \frac{8}{9} \ln R
\]

onde

\[
R^2 = X^2 + Y^2
\]

Para a obtenção da solução numérica o domínio computacional foi dividido em volumes iguais como mostrado na figura 5.1. Os resultados foram obtidos para 10x10, 15x15 e 19x19 volumes de controle. O cálculo foi interrompido quando a máxima variação na pressão entre iterações foi da ordem de 10^{-4} por cento.

V.2.2 - Resultados

Uma avaliação inicial dos resultados permite verificar que a pressão é o parâmetro de maior importância para a verificação dos erros. A figura 5.2 apresenta a velocidade
Figura 5.2 - Velocidade normalizada U para a face dos volumes de controle na diagonal principal para $\theta = 22.5^\circ$ e malha de 17x17.
normalizada nas faces dos volumes de controle da diagonal principal para Re=1000, uma malha de 17x17 e um ângulo de 22,5°. Pode-se observar que há praticamente uma coincidência total com os valores exatos. Para os demais valores de Re, número de pontos e ângulos estudados obteve-se resultados semelhantes. O erro máximo encontrado para Uₚ foi da ordem de 3,8% para um ângulo de 0°, Re =1000 e uma malha de 12x12 e o maior erro médio dentro do domínio de cálculo foi de 1,19%. Para este mesmo caso foi encontrado o maior erro médio na pressão, igual a 3,4%. Estes erros percentuais são definidos como:

\[e = \frac{|\phi_{exato} - \phi_{calculado}|}{\phi_{máximo} - \phi_{mínimo}} \times 100 \]

(5.6)

onde \(\phi \) é Uₚ ou p, e \(\phi_{max} \) e \(\phi_{min} \) são os valores exatos máximo e mínimo de \(\phi \) no domínio computacional. O erro médio no domínio é definido por:

\[\bar{e} = \frac{\sum e_i}{(número \ de \ pontos \ do \ domínio)} \]

(5.7)

As figuras 5.3 a 5.5 apresentam a comparação entre os valores calculados com uma malha de 17x17 pontos nodais e os valores exatos da pressão ao longo da diagonal principal, para os três ângulos estudados. São apresentados também os dados obtidos por Karki [17]. Observa-se uma boa concordância entre os valores calculados e os exatos. Apesar da solução exata ser independente do número de Reynolds, os dados obtidos tendem a um maior erro com o aumento de Re. Este fato pode ser creditado à falsa difusão. De maneira geral, os resultados do presente trabalho apresentam menores erros que os obtidos por Karki [17]. Observa-se também uma diminuição dos erros com o aumento do ângulo \(\theta \), isto é, com o aumento da deformação do domínio. Isto é explicado pelas menores dimensões do domínio, o que faz com que a influência das condições de contorno seja mais pronunciada. A figura 5.6 apresenta o resultado para Re=100, um ângulo de 15 graus, e para diversas malhas. A análise destes resultados demonstra que a solução numérica tende à exata à medida que a malha é refinada.
Figura 5.3 - Distribuição de pressão ao longo da diagonal principal para $\theta = 0^\circ$.
Figura 5.4 - Distribuição de pressão ao longo da diagonal principal para $\theta = 15^\circ$.
Figura 5.5 - Distribuição de pressão ao longo da diagonal principal para $\theta = 22,5^\circ$.
Figura 5.6 - Distribuição de pressão ao longo da diagonal principal para \(Re = 100 \) e \(\Theta = 15^\circ \).
V.3 - Convecção natural laminar em cilindros concêntricos e excêntricos

A determinação das condições de transferência de calor por convecção natural entre cilindros concêntricos e excêntricos foi largamente investigada devido às diversas e importantes aplicações. Kuehn e Goldstein, 1976 [46], realizaram um estudo teórico e experimental sobre o fenômeno em cilindros concêntricos e posteriormente, em 1978 [47], complementando o estudo anterior, mediram experimentalmente os efeitos da excentricidade no processo de transferência de calor global e local. Projahnh et al. [48] apresentaram um estudo teórico usando uma formulação baseada na função corrente e na vorticidade em coordenadas adaptadas ao contorno. Seus resultados concordam bem com os valores experimentais apresentados por Kuehn. Resultados semelhantes foram obtidos por Karki [17] que utilizou uma metodologia baseada nos componentes covariantes da velocidade em coordenadas generalizadas. Desta maneira, pela disponibilidade de resultados tanto numéricos quanto experimentais, este problema torna-se uma boa referência para a comprovação da metodologia empregada neste trabalho.

O problema é caracterizado pelo escoamento laminar existente entre dois cilindros que apresentam uma excentricidade vertical e, sendo que o cilindro interno, de diâmetro \(D_p \), está a uma temperatura \(T_i \) e o cilindro externo, de diâmetro \(D_o \), está a uma temperatura inferior \(T_o \), como descrito na figura 5.7. A excentricidade vertical provoca uma simetria que permite o estudo somente de uma metade do domínio físico. Para tornar possível a comparação com a bibliografia citada, a análise será limitada ao caso em que a relação entre os diâmetros é de 2,6 e o número de Prandtl é igual a 0,7, o que corresponde ao ar.

V.3.1 - Equações e detalhes computacionais

Além das equações da energia e da continuidade, o problema é definido pelas equações de Navier-Stokes. Estas consideram a existência de escoamento laminar gerado pelas forças de corpo. O efeito da temperatura na massa específica é determinado pela aproximação de Boussinesq. Estas equações podem ser adimensionalizadas empregando as seguintes relações:
Figura 5.7 - Características geométricas do problema 2.
\[
X = \frac{x}{L} \quad Y = \frac{y}{L} \quad U = \frac{uL}{\alpha}
\]

\[
V = \frac{vL}{\alpha} \quad \theta = \frac{(T - T_0)}{(T_i - T_0)} \quad p = \frac{p}{\rho \left(\frac{\alpha / L}{\alpha / L}\right)^2}
\]

onde \(L \) é a diferença entre os raios dos dois cilindros, isto é:

\[
L = \frac{(D_o - D_i)}{2}
\]

Assim, as equações utilizando estas variáveis podem ser escritas como:

 continua"ude

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0
\]

quantidade de movimento na direção \(x \)

\[
\frac{1}{\Pr}\left(U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y}\right) = -\frac{\partial P}{\partial X} + \nabla^2 U + \text{Ra} \theta
\]

quantidade de movimento na direção \(y \)

\[
\frac{1}{\Pr}\left(U \frac{\partial V}{\partial X} + V \frac{\partial V}{\partial Y}\right) = -\frac{\partial P}{\partial Y} + \nabla^2 V
\]

energia

\[
U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial Y} = \nabla^2 \theta
\]

onde \(\text{Ra} \) é o número de Rayleigh, \(\Pr \) é o número de Prandtl que são definidos como:
\[Ra = \frac{g\beta(T_i - T_o)L^3}{\nu\alpha} \]
(5.14)

\[Pr = \frac{\nu}{\alpha} \]

e o operador Laplaciano é:

\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]
(5.15)

As condições de contorno são de velocidade nula e temperatura prescrita nas paredes:

\[U = V = 0 \quad e \quad \theta = 1 \]
(5.16a)

\[U = V = 0 \quad e \quad \theta = 0 \]

e nas linhas de simetria tem-se:

\[U = \frac{\partial V}{\partial Y} = \frac{\partial \theta}{\partial Y} = 0 \]
(5.16b)

A malha utilizada foi obtida por método algébrico que permite a concentração de volumes de contorno próximo as paredes. As linhas radiais correspondem a linhas da coordenada \(\eta \) e as linhas que acompanham o contorno dos cilindros são as linhas da coordenada \(\xi \). Para todos os resultados apresentados foi utilizada uma malha de 32x22 pontos nodais, como apresentado na figura 5.8.

V.3.2 - Resultados

Como está em vista a comparação com resultados apresentados na bibliografia, não será feito um estudo completo sobre o problema. Em vez disto, somente os valores da distribuição de temperaturas e da condutividade térmica equivalente serão apresentados. Este último, que reflete a influência da convecção na transferência de calor é definido como:
Figura 5.8 - Malha utilizada para o problema 2.
\[k_{eq} = \frac{\text{Nu}}{\text{Nu}_c} \] \hspace{1cm} (5.17)

onde

\[\text{Nu}_c = \frac{2}{\ln\left(\frac{D_o}{D_i}\right)} \] \hspace{1cm} (5.18)

sendo \(\text{Nu} \) o número de Nusselt baseado no diâmetro do cilindro em questão, e \(\text{Nu}_c \) é o número de Nusselt para o caso concêntrico quando somente a condução está presente. Desta maneira a condutividade térmica equivalente para o cilindro interno é:

\[k_{eq} = \frac{h_i D_i \ln\left(\frac{D_o}{D_i}\right)}{2k} \] \hspace{1cm} (5.19)

e para o cilindro externo é:

\[k_{eq} = \frac{h_o D_o \ln\left(\frac{D_o}{D_i}\right)}{2k} \] \hspace{1cm} (5.20)

onde \(h_i \) e \(h_o \) são os coeficientes de transferência de calor locais para o cilindro interno e externo respectivamente. Estes coeficientes são baseados na diferença de temperatura entre os dois cilindros.

A geometria utilizada para os cálculos é a mesma que foi empregada para a determinação dos dados experimentais por Kuehn. Este investigou o caso de uma excentricidade positiva igual a \(e_r/L = 0,652 \) e uma excentricidade negativa igual a \(e_r/L = -0,623 \).

As figuras 5.9 a 5.11 apresentam os resultados para o caso da excentricidade de -0,623. Neste caso utilizou-se um número de Rayleigh de 4,9x10^4. A figura 5.9 corresponde a variação da condutividade térmica equivalente ao longo dos cilindros interno e externo e as
Figura 5.9 - Condutividade térmica equivalente para $e_v = -0,623$ e $Ra = 4,9 \times 10^4$.
Figura 5.10 - Distribuição de temperatura para \(\theta = 0^o \) e \(\theta = 180^o \), \(e_v = -0,623 \) e \(Ra = 4,9 \times 10^4 \).
Figura 5.11 - Distribuição de temperatura para $\theta = 60^\circ$ e $\theta = 120^\circ$, $e_v = -0,623$ e $Ra = 4,9 \times 10^4$.
Figuras 5.10 e 5.11 apresentam o perfil de temperatura entre os dois cilindros para diferentes posições angulares. Pode-se observar uma boa concordância entre os valores obtidos e os calculados numericamente por Projahn e por Karki. Em relação aos valores experimentais também há uma boa concordância. Verifica-se que, onde ocorre uma maior divergência entre os valores obtidos e os experimentais, os demais métodos numéricos também apresentam esta característica.

Para o caso de excentricidade positiva, com um número de Rayleigh de 4,8x10^4, a concordância com os métodos numéricos apresentados continua muito boa, como pode ser visto na figura 5.12, onde está apresentada a condutividade térmica equivalente e nas figuras 5.13 e 5.14, onde se observam os perfis de temperatura. Porém, em relação aos dados experimentais, tem-se uma maior divergência principalmente na região da linha de simetria superior. Este aspecto também pode ser observado nos demais métodos numéricos apresentados.

Outro fato interessante é que cada método numérico apresenta para cada caso, alternadamente, regiões mais próximas dos resultados experimentais. Assim, nenhum método apresenta, no conjunto, um desempenho superior aos demais.

O fenômeno físico envolvido pode ser melhor compreendido pela observação das isotermaas e das linhas de corrente como apresentado nas figuras 5.15 e 5.16. Para uma excentricidade negativa, observa-se que a convecção natural é mais efetiva, o que é caracterizada pela grande inversão das isotermaas. A célula convectiva também é consideravelmente maior que a apresentada no caso de excentricidade positiva. Como prova disto tem-se maiores taxas de transferência de calor, como já visto nos gráficos 5.9 e 5.12. Nos dois casos, observa-se que nas regiões onde os cilindros estão mais próximos existe uma predominância da transferência de calor por condução. Isto é caracterizado pelo espaçamento praticamente uniforme das isotermaas.
Figura 5.12 - Condutividade térmica equivalente para $e_v = -0,652$ e $Ra = 4,8 \times 10^4$.
Figura 5.13 - Distribuição de temperatura para \(\theta = 0^\circ \) e \(\theta = 180^\circ \), \(e_v = -0,652 \) e \(Ra = 4,8 \times 10^4 \).
Figura 5.14 - Distribuição de temperatura para $\theta = 60^\circ$ e $\theta = 120^\circ$, ε = -0,652 e $Ra = 4,8 \times 10^4$.
Figura 5.15 - Isotermas (0,1 a 0,8) e função corrente (-4, -8, -12, -20, -28, -32, -38) para $e_v = 0,623$ e $Ra = 4,9 \times 10^4$.
Figura 5.16 - Isotermas (0,1 a 0,8) e função corrente (-3, -6, -9, -12, -15, -18, -21, -24) para $e_V = 0,652$ e $Ra = 4,8x10^4$.
V.4 - Escoamento induzido numa cavidade trapezoidal

O escoamento laminar numa cavidade trapezoidal é um problema que não permite uma solução apurada através da utilização de coordenadas cartesianas. Este problema é semelhante ao escoamento induzido numa cavidade quadrada, o qual é fartamente documentado na literatura. Porém, esta configuração não seria um bom teste para um método que pretende tratar geometrias complexas, apesar de ter sido tratado por Maliska, 1981 [49], que gerou uma malha distorcida dentro do domínio para empregar o seu método. A comparação dos resultados é feita com os trabalhos de Darr e Vanka [62] e de Kelkar e Choudhury [37]. O estudo deste problema torna-se relevante uma vez que a análise de Kelkar e Choudhury [37] emprega uma metodologia semelhante à desenvolvida no presente trabalho.

Assim o problema consiste no escoamento induzido dentro de uma cavidade trapezoidal, de base inferior 2h, base superior h, e altura h, pelo deslocamento de suas bases numa velocidade constante \(\bar{u} \) na direção positiva da coordenada x (figura 5.17). As condições de contorno são definidas pela condição de não deslizamento nas bases e nas paredes inclinadas.

V.3.1 - Equações e detalhes computacionais

As equações que governam o problema são:

quantidade de movimento na direção x

\[
\bar{U} \cdot \nabla U = -\frac{\partial \rho}{\partial X} + \frac{1}{Re} \nabla^2 U
\]

(5.21)

quantidade de movimento na direção y

\[
\bar{U} \cdot \nabla V = -\frac{\partial \rho}{\partial Y} + \frac{1}{Re} \nabla^2 V
\]

(5.22)
Figura 5.17 - Características geométricas do problema 3.
continuidade
\[\nabla \cdot \vec{U} = 0 \] (5.23)

onde
\[\vec{U} = \frac{\vec{u}}{u} ; \quad X = \frac{x}{h} ; \quad Y = \frac{y}{h} ; \quad Re = \frac{hu}{v} \] (5.24)

As equações são apresentadas em coordenadas cartesianas por simplicidade. O domínio foi dividido em volumes de controle com uma maior concentração de pontos próximo às paredes (figura 5.18). Esta malha foi obtida através de métodos algébricos. Foram empregados 66x66 e 128x128 pontos nodais e um número de Reynolds igual a 400 visando a comparação com resultados de outros autores.

V.3.2 - Resultados

Os dados obtidos são apresentados nos gráficos das figuras 5.19 e 5.20, em termos do componente cartesiano \(u \) da velocidade na linha média vertical e do componente cartesiano \(v \) na linha média horizontal, respectivamente. Para este problema, a variação do componente \(v \) é muito mais sensível que do componente \(u \). Observa-se na figura 5.19, que para a malha uniforme de 66x66 pontos nodais, tem-se um resultado praticamente coincidente com o resultado de Darr e Vanka [62] para uma malha de 256x256. Já para o componente \(v \) existe um desvio significativo, como ilustrado na figura 5.20. Porém, os resultados para esta malha são iguais aos obtidos por Darr e Vanka [62]. Kelkar e Choudhury [37], ao apresentar seus resultados para uma malha de 128x128 pontos, comentam que a excelente concordância com os resultados de Darr e Vanka [62] para a malha de 256x256 deve-se ao fato do uso de uma maior concentração dos pontos da malha próximo às paredes. Infelizmente estes pesquisadores não forneceram outras informações sobre as características de concentração dos pontos, de modo que seus resultados pudessem ser reproduzidos. Para verificar este efeito, foi utilizado um processo algébrico de controle da malha baseado na seguinte equação:
Figura 5.18 - Malha utilizada no problema 3.
Figura 5.19 - Velocidade normalizada U na linha vertical central do domínio.
Figura 5.20 - Velocidade normalizada V na linha horizontal central do domínio.
Figura 5.21: Função corrente \((-39, -30, -20, -10, -1, 10, 15, 20, 30\)) para \(Re = 400\) e malha de \(30\times30\).
onde P_1 e P_N são os pontos iniciais e finais de uma determinada linha e P_i um ponto intermediário. O expoente "m" provê a maneira de se controlar o espaçamento entre os pontos. Para as malhas de 128x128 apresentadas na figura 5.20 foram utilizados os valores de m iguais a 1 e 1,2. Como observado, há uma melhora significativa dos resultados, praticamente coincidindo com o resultado de Darr e Vanka [62] para a malha de 256x256.

A figura 5.21 apresenta os contornos da função corrente. Pode-se observar a existência de dois vórtices principais girando em sentidos opostos com aspectos bem diferentes. Num caso semelhante numa cavidade quadrada, estes vórtices seriam simétricos, o que não ocorre no presente caso devido principalmente a inclinação das paredes laterais. Observa-se que o vórtice superior "deforma" o inferior e para o caso de um número de Reynolds superior, o vórtice inferior é dividido em dois [62].

V.5 - Escoamento laminar em um canal

O escoamento laminar desenvolvido num canal possui solução analítica e não apresenta nenhum problema para a simulação numérica. Porém, este pode ser um teste válido para a metodologia proposta, a partir do momento em que uma malha distorcida é utilizada para o cálculo numérico. Este raciocínio foi utilizado por Choi et al. 1993 [55], para verificação das características de convergência de dois métodos de cálculo por eles desenvolvidos, um empregando os componentes covariantes e outro os componentes contravariantes. O seu esquema básico emprega os componentes cartesianos numa malha colocalizada, sendo os componentes covariantes e contravariantes nas faces dos volumes de controle calculados explicitamente, utilizando uma interpolação das equações de conservação de quantidade de movimento escritas para os componentes cartesianos. Os resultados destes pesquisadores serão utilizados para a avaliação das características de convergência do método proposto.

O problema é configurado pelo escoamento laminar totalmente desenvolvido num canal de altura h. Neste caso, o parâmetro dominante é o número de Reynolds, igual a 100 para todos os casos, e definido por:
Figura 5.22: Geometria e malha utilizadas para o problema 4.
\[
\text{Re} = \frac{h\bar{u}}{v} \tag{5.25}
\]

A comprimento do domínio de cálculo na direção do escoamento é cinco vezes maior que metade da altura, como ilustrado na figura 5.22. Na entrada utilizou-se um perfil desenvolvido baseado na equação:

\[
\bar{u} = \frac{3}{2} \bar{u} \left(1 - \frac{y^2}{h^2} \right) \tag{5.26}
\]

onde \(\bar{u} \) é a velocidade média. Para a parede utilizou-se velocidade nula e na linha central foi considerada condição de simetria. Na saída empregou-se o critério de difusão desprezível.

V.5.1 - Equações e detalhes computacionais

As equações que governam o problema, em coordenadas cartesianas são:

continuidade

\[
\nabla \cdot \bar{u} = 0 \tag{5.27}
\]

quantidade de movimento na direção x

\[
\bar{u} \cdot \nabla \bar{u} = -\frac{\partial p}{\partial x} + \frac{1}{\text{Re}} \nabla^2 \bar{u} \tag{5.28}
\]

quantidade de movimento na direção y

\[
\bar{u} \cdot \nabla ar{v} = -\frac{\partial p}{\partial y} + \frac{1}{\text{Re}} \nabla^2 \bar{v} \tag{5.29}
\]
Foram empregadas malhas de 21x21 volumes de controle com ângulos de inclinação de 45°, 60°, e 90°, geradas por relações algébricas. A figura 5.22 apresenta um exemplo de malha para uma inclinação de 45°.

V.5.2 - Resultados

O critério de avaliação da convergência foi o mesmo utilizado por Choi et al. [55]. Este critério avalia o somatório do resíduo de massa, dado pela equação 4.35b, em função do número de iterações. Choi et al. [55] comentam que o resultado apresentado pelo algoritmo que emprega os componentes contravariantes, além de apresentar uma característica pior de convergência, estes se dá de forma oscilatória. Estas características se tornam mais acentuadas com o aumento da deformação da malha. Como observado na figura 5.23, o resultado de Choi et al. para o modelo contravariante é bem inferior ao modelo empregando os componentes covariantes. Este fato é atribuído, por estes autores, à necessidade de se agregar ao termo fonte, na formulação contravariante, os termos de pressão devidos à não ortogonalidade da malha na equação de correção de pressão. Desta forma, evita-se uma formulação de nove pontos. Porém, como visto na seção III.4.4, o emprego dos componentes covariantes, para a derivação da equação de correção de pressão, também gera uma formulação de nove pontos, sendo necessário um tratamento semelhante para se obter uma formulação de cinco pontos. Isto faz com que as equações de correção de pressão geradas pelas duas formulações sejam equivalentes. Este fato é confirmado pelos resultados apresentados pelo presente trabalho, os quais possuem uma boa concordância com os resultados de Choi et al. [55] para a formulação covariante. A pior taxa de convergência obtida por Choi et al. para os componentes contravariantes talvez possa estar relacionada com o uso de malha colocalizada.

Choi et al. comentam ainda que é necessária uma forte sub-relaxação (menor que 0,2 para a pressão e igual a 0,7 para a velocidade) para que o modelo empregando os componentes contravariantes não apresente problemas de convergência quando a malha é muito não ortogonal. Apesar do algoritmo de acoplamento pressão-velocidade usado por Choi et al. (SIMPLE) ter sido diferente do usado nesta tese (SIMPLEC), este fato não foi observado, uma vez que, para todos os ângulos estimados, os valores utilizados para o fator de sub-
Figura 5.23 - Evolução do resíduo de massa em função do número de iterações para diversos ângulos.
relaxação para a pressão, igual a 1, e para a velocidade, igual a 0,75, estão próximos aos valores recomendados para um caso ortogonal [32].

V.6 - Escoamento laminar em tubo com redução na seção reta

Este caso tem por finalidade testar a metodologia desenvolvida para uma geometria axi-simétrica. Apesar do desenvolvimento ser genérico, torna-se necessária a alteração de alguns parâmetros geométricos para a aplicação nestes casos. Assim, para este teste foi escolhido o caso de um escoamento laminar num tubo com redução de área, o qual é um problema bem documentado na bibliografia com resultados numéricos e experimentais. O trabalho de Durst e Loy, 1985 [50], apresenta um grande número de resultados experimentais em forma de tabelas para diversos valores de número de Reynolds, além da solução numérica para alguns casos utilizando uma técnica convencional, com malha cilíndrica e bloqueio dos pontos nodais que se situam fora do escoamento. Peric[14], no seu trabalho sobre a comparação entre malhas colocadas e deslocadas também apresenta a solução numérica deste problema, para um valor de Re igual a 372, empregando uma técnica semelhante de bloqueio.

A figura 5.24 determina as principais características da geometria estudada. As principais dimensões são:

\[
D = 2 \, R_0 = 19,1 \, \text{mm}
\]

\[
d = 2 \, R_1 = 10,2 \, \text{mm}
\]

Para os cálculos foi utilizado um comprimento reto no início do domínio igual a 1,3D, e após a restrição, um comprimento reto de 1D para que a condição de contorno de saída de difusão desprezível pudesse ser empregada. Na entrada utilizou-se um perfil desenvolvido baseado na equação:

\[
u = 2u \left(1 - \frac{r^2}{R_0^2} \right) \quad (5.30)
\]
Figura 5.24 - Características geométricas do problema 5.
onde \(\bar{u} \) é a velocidade média. Para as paredes empregou-se o critério de não deslizamento e na linha central foi considerada a simetria do problema. O parâmetro que domina o problema é o número de Reynolds, definido por:

\[
R_e = \frac{2pR_e \bar{u}}{\mu} \tag{5.31}
\]

Visando a comparação com os trabalhos citados anteriormente, foram utilizados no cálculo os casos de Reynolds igual a 196 e 372.

V.6.1 - Equações e detalhes computacionais

As equações que caracterizam o problema na formulação cilíndrica axi-simétrica são:

continuidade

\[
\nabla \cdot \bar{u} = 0 \tag{5.32}
\]

quantidade de movimento na direção \(x \)

\[
\nabla \cdot \bar{p} \bar{u} = -\frac{\partial p}{\partial x} + \mu \nabla^2 u \tag{5.33}
\]

quantidade de movimento na direção \(r \)

\[
\nabla \cdot \bar{p} \bar{v} = -\frac{\partial p}{\partial r} + \mu \nabla^2 v - \mu \frac{v}{r^2} \tag{5.34}
\]

onde o Laplaciano em coordenadas axi-simétricas é dado por:

\[
\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{\partial^2}{\partial \phi^2}
\]

O domínio computacional foi dividido em uma malha com uma maior concentração de pontos na região do estrangulamento e um espaçamento maior na região de saída, como visto
na figura 5.25. Para a geração desta malha foi empregada a técnica descrita por Amsden e Hirt, 1973 [51], na qual, partindo-se de uma malha retangular, os pontos da malha são puxados numa sequência de pequenos passos até suas posições finais. Após este processo, as linhas de x constante após a mudança de seção foram rearrumadas de acordo com a técnica descrita no item anterior. Foram criadas malhas com 40x20, 60x20 e 80x20 pontos nodais, para verificar se o modelo apresenta melhores resultados com o refinamento da malha. Esta técnica, apesar de rápida e simples para a geração da malha, não é muito eficiente no controle do tamanho dos volumes gerados. Porém, tendo em vista o objetivo deste tópico, o resultado obtido foi considerado satisfatório.

V.6.2 - Resultados

Durst e Loy [50] apresentam resultados experimentais para diversos valores de Re, porém, para o caso de Re=196 são apresentadas as distribuições de velocidade u e v em alguns planos. Já o valor de Re=372 também é empregado no trabalho numérico de Peric [14]. Desta forma estes dois valores foram selecionados.

Para Re=196 são apresentados, nas figuras 5.26 e 5.27, os resultados da distribuição da velocidade u nos planos x/d=0,098 e 0,196 respectivamente. Pode-se observar uma boa concordância com os resultados experimentais. Como informação suplementar a figura 5.26 apresenta os resultados para as malhas 40x20, 60x20 e 80x20. Pode-se observar a gradativa aproximação dos valores numéricos ao resultado experimental, como era de se esperar. Na figura 5.28 estão os resultados para a distribuição da velocidade v no plano x/D=0,052. Novamente pode-se comparar os resultados obtidos com o refinamento da malha (40x20 e 80x20). Durst e Loy [50] também apresenta resultados numéricos para malha de 60x69 pontos nodais, porém estes são em forma de gráficos em pequena escala, o que torna a obtenção destes dados muito imprecisa.

No caso de Re=372, os resultados são apresentados nas figuras 5.29 e 5.30, para os planos x/d=0,049 e 0,196, respectivamente. Nestas, estão presentes os resultados de Peric et al. [14], obtidos com uma malha de 80x40 volumes de controle, utilizando a técnica de bloqueio para os volumes que estão fora do escoamento. Para o plano x/d=0,049, observa-se
Figura 5.25: Malha 40x20 utilizada para o problema 5.
Figura 5.26 - Distribuição da velocidade u no plano $x/d = 0.098$ e $Re = 196$.
Figura 5.27 - Distribuição da velocidade \(u \) no plano \(x/d=0,196 \) e \(Re=196 \).
Figura 5.28 - Distribuição da velocidade \(v \) no plano \(x/D=0,052 \) e \(Re=196 \).
Figura 5.29 - Distribuição da velocidade u no plano $x/d=0.049$ e $Re=372$.
Figura 5.30 - Distribuição da velocidade u no plano $x/d=0,196$ e $Re=372$.
Figura 5.31: Função corrente normalizada \((0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99)\).
uma concordância muito boa entre os valores obtidos para a malha de 80x20 e os resultados experimentais, onde o "overshoot" da velocidade próxima à parede é capturado de uma maneira mais eficiente que o resultados de Pericet al. Como última informação, a figura 5.31 apresenta as curvas da função corrente para este valor de Re.

O trabalho de Durst e Loy também analisa o descolamento do escoamento próximo a mudança de seção. Na faixa de Re estudada, o descolamento apresenta pequenas dimensões, principalmente na direção radial. Para poder definir bem esta região, estes autores utilizaram uma malha com 69 pontos na direção radial. Apesar disto, a discrepância entre os valores calculados e os medidos experimentalmente foi considerável, chegando a 50% em alguns casos. Desta forma, para analisar especificamente esta característica, o próximo problema foi escolhido.

V.7 - Escoamento em um tubo com estrangulamento

A análise de escoamentos em tubulações com restrições é de grande importância para áreas bem diversas, como a biomédica e a petrolífera. Nesta última, a existência de restrições, causadas principalmente por cordões de solda, provoca uma maior corrosão localizada. Já na área médica, a oclusão de artérias causada por placas escleróticas torna-se um dos maiores problemas do sistema circulatório. Para obter maiores informações sobre este processo, Young e Tsai, 1973 [52] realizaram um estudo experimental com o objetivo de determinar o ponto de separação e de adesão do escoamento em função do tipo de restrição e do número de Reynolds. Também foi investigada a perda de pressão e a transição do escoamento de laminar para turbulento. Um estudo numérico com o objetivo básico de investigar o fenômeno em tubos soldados foi realizado por Rastogi, 1984 [53]. Este empregou um método baseado em coordenadas ortogonais que se adaptam ao contorno para casos laminares e turbulentos, onde foi empregado o modelo \(k-\varepsilon \). Desta forma, devido a existência de resultados numéricos e experimentais este problema foi escolhido como caso teste para verificação do modelo no tocante às características da região de descolamento.

A figura 5.32 determina as principais dimensões da geometria estudada. Nesta, a restrição é definida por um cosseno da seguinte forma:
Figura 5.32: Características geométricas do problema 6.
\[
\frac{R}{R_o} = 1 - \frac{\delta}{2R_o} \left(1 + \cos \frac{\pi x}{X_o}\right)
\]
(5.35)

para \(-X_o \leq x \leq X_o\), onde:

\(X_o\) é a metade do comprimento da restrição definido por:

\(X_o = 4R_o\) para o modelo M-2 e

\(X_o = 2R_o\) para o modelo M-3;

\(\delta = 0,66 R_o\) é a altura da restrição;

\(R_o = 9,5\) mm é o raio da tubulação.

Para os cálculos utilizou-se um pequeno comprimento reto no início do domínio e, após a restrição, um comprimento reto maior para que a condição de contorno de saída de difusão desprecíável pudesse ser empregada. Na entrada utilizou-se um perfil desenvolvido baseado na equação:

\[
u = 2\bar{u} \left(1 - \frac{r^2}{R_o^2}\right)
\]
(5.36)

onde \(\bar{u}\) é a velocidade média. Para as paredes empregou-se o critério de não deslizamento e na linha central foi considerada a simetria do problema. O parâmetro que domina o problema é o número de Reynolds, definido por:

\[
Re = \frac{2\rho R_o \bar{u}}{\mu}
\]
(5.37)

V.7.1 - Escoamento laminar

V.7.1.1 - Equações e detalhes computacionais

Visando a comparação com os trabalhos citados anteriormente, foram utilizados no cálculo os valores de Reynolds variando de 10 e 110. As equações que caracterizam este
Figura 5.33: Malha de 40x12 utilizada para o problema 6 (fora de escala).
problema são exatamente iguais as equações do caso anterior, assim como as condições de contorno, já que a única diferença é a forma da restrição do domínio.

O domínio computacional foi dividido em 40x12 pontos nodais com uma maior concentração de pontos na região do estrangulamento e um espaçamento maior na região de saída, como visto na figura 5.33. Para a geração desta malha foi empregada uma técnica algébrica com controle do espaçamento das linhas.

V.7.1.2 - Resultados

Os resultados foram obtidos para as geometrias correspondentes aos modelos M-2 e M-3 de Young e Tsai [52]. Estes resultados são apresentados nos gráficos das figuras 5.34 e 5.35 nos quais o comprimento da região de recirculação está como função do número de Reynolds. Nestes gráficos, na região abaixo do ponto mínimo da curva não ocorre o descolamento do escoamento. Acima deste ponto, seguindo a curva para à esquerda, tem-se os pontos de descolamento e, para à direita, tem-se os pontos de recolamento para um mesmo Re. Logo, a distância horizontal entre dois pontos da curva fornece o comprimento da região de recirculação. Na figura 5.34 estão presentes os resultados para o modelo M-2 e alguns pontos numéricos obtidos por Karki [17] e Rastogi [53]. Observa-se que os pontos de descolamento são bem capturados. Para baixos Re há uma boa concordância entre os resultados numéricos, porém para Re mais elevados o resultado de Karki [17] demonstra melhor desempenho. Em relação aos dados experimentais, o comprimento da região de recirculação é subestimado. Já para o modelo M-3, apresentado na figura 5.35, o desempenho do presente trabalho é superior ao obtido por Karki [17]. Em relação aos dados experimentais, tem-se uma inversão da tendência observada para o modelo M-2, isto é, o comprimento da região de recirculação foi superestimado. De maneira geral, apesar da ligeira discrepância entre os resultados experimentais e os resultados numéricos, principalmente na região de recolamento, tem-se o mesmo comportamento geral. A malha pouco refinada e a incerteza experimental (não fornecida) podem explicar esta diferença.
Figura 5.34 - Dimensão da região de descolamento para o modelo M-2.
Figura 5.34 - Dimensão da região de descolamento para o modelo M-3.
Figura 5.36: Função corrente normalizada (0,05, 0,1; 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,87, 0,9, 0,99).
V.7.2 - Escoamento turbulento

Este teste pretende avaliar o comportamento do algoritmo desenvolvido associado a um modelo de turbulência. Antes de entrar na descrição do problema será feita uma introdução sobre o modelo de turbulência adotado e suas equações.

V.7.2.1 - Modelo de turbulência

A equação de conservação de quantidade de movimento em notação indicial pode ser escrita como:

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + F_i$$

onde

$$\tau_{ij} = \mu \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] - 2\mu \frac{\partial u_k}{\partial x_k}$$

Estas equações governam tanto o escoamento laminar quanto o turbulento. Porém, o escoamento turbulento é caracterizado por apresentar flutuações das diversas propriedades em torno de um valor médio, o que permite decompor uma variável genérica ϕ como:

$$\phi = \bar{\phi} + \tilde{\phi}$$

sendo $\bar{\phi}$ o valor médio de ϕ em um intervalo de tempo Δt e $\tilde{\phi}$ a flutuação em torno do valor médio. Devido a estas flutuações, informações importantes estão contidas em recirculações de dimensões muito pequenas. Isto dificulta muito uma solução numérica pois implica num número excessivamente grande de pontos nodais e tempos de processamento extremamente elevados. Como o interesse da engenharia se concentra basicamente no comportamento médio no tempo do escoamento, pode-se buscar equações de conservação para os valores médios.
Portanto, considerando-se suficiente o conhecimento da distribuição das variáveis médias no escoamento turbulento, as equações (5.38) e (5.39) podem ser reescritas fazendo-se a decomposição das variáveis de interesse de acordo com a equação (5.40) e tomado-se a média no tempo, onde a escala de tempo é suficientemente grande para os componentes de flutuação, porém suficientemente pequena para as variações transientes de componentes médios. As equações resultantes para os valores médios são análogas às equações (5.38) e (5.39) porém apresentam um termo a mais devido ao fluxo turbulento, relacionado com $-\rho \bar{\phi} \bar{u}_i$. Para as equações de conservação de quantidade de movimento, $\bar{\phi} = \bar{u}_i$ e o termo $-\rho \bar{u}_i \bar{u}_j$ é chamado de tensão de Reynolds, ou tensão turbulenta. Logo, as equações resultantes ainda apresentam termos que envolvem flutuações, o que torna necessária a utilização de um modelo de turbulência para a avaliação destes termos. Para tal foi escolhido o modelo k-ε.

O modelo k-ε (energia cinética turbulenta - dissipação de energia cinética turbulenta) de Lauder e Spalding, 1972 [58], assume que as tensões turbulentas possuem a mesma forma que as tensões do escoamento laminar, mas a proporcionalidade entre a tensão e a taxa de deformação dá-se através da viscosidade turbulenta, μ_t, a qual é função das características do próprio escoamento. O fluxo turbulento de energia é também análogo ao fluxo de difusão laminar, sendo o coeficiente de difusão igual a μ_t / Pr_t, onde Pr_t representa o número de Prandtl turbulento.

Utilizando o modelo k-ε as equações podem ser reescritas como:

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = \frac{\partial p^*}{\partial x_i} + \frac{\partial}{\partial x_j}\left[\mu_{eff} \frac{\partial u_i}{\partial x_j}\right] + S_i$$ \hspace{1cm} (5.41)

onde

$$p^* = p + \frac{2}{3} k \rho + \frac{2}{3} \mu_{eff} \frac{\partial u_k}{\partial x_k}$$ \hspace{1cm} (5.42)

$$S_i = \frac{\partial}{\partial x_j}\left[\mu_{eff} \frac{\partial u_i}{\partial x_j}\right] + F_i$$ \hspace{1cm} (5.43)
\[\mu_{ef} = \mu + \mu_i \]
(5.44)

\[\mu_i = C_\mu \frac{k^2}{\varepsilon} \rho \]
(5.45)

onde \(\mu_{ef} \) é chamada de viscosidade aparente, e \(C_\mu \) é uma constante empírica. A barra representativa de valores médios sobre as variáveis foi omitida para simplificar a apresentação.

A determinação de \(k \) e \(\varepsilon \) é feita a partir da solução das equações de conservação destas duas variáveis, as quais são obtidas a partir da equação de conservação de quantidade de movimento [58].

- Conservação de energia cinética turbulenta

\[\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_i k)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\mu_i \left(\frac{\partial k}{\partial x_j} \right) \right] + S_k \]
(5.46)

onde

\[S_k = G - \rho \varepsilon \]
(5.47)

sendo \(G \) o termo de produção de energia cinética definido por:

\[G = \mu_i \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} \]
(5.48)

- Conservação da dissipação da energia cinética turbulenta

\[\frac{\partial (\rho \varepsilon)}{\partial t} + \frac{\partial (\rho u_i \varepsilon)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\mu_i \left(\frac{\partial \varepsilon}{\partial x_j} \right) \right] + S_\varepsilon \]
(5.49)

onde

\[S_\varepsilon = C_1 \frac{\varepsilon}{k} G - C_2 \rho \frac{\varepsilon^2}{k} \]
(5.50)

sendo \(Pr_\varphi \), \(Pr_k \), \(C_1 \) e \(C_2 \) constantes empíricas do modelo. Os valores recomendados por Lauder e Spalding são:
\[C_\mu = 0,09 \quad C_1 = 1,44 \quad C_2 = 1,92 \quad Pr_e = 1,3 \quad Pr_k = 1,0 \]

Com as equações do modelo de turbulência completas, pode-se partir para a transformação de coordenadas. Para isto, a equação de conservação de quantidade de movimento na direção \(x \) está reapresentada abaixo:

\[
\frac{\partial}{\partial t}(pu) + \frac{\partial pu}{\partial x} + \frac{\partial puv}{\partial y} = -\frac{\partial p^*}{\partial x} + \frac{\partial}{\partial x}\left(\mu_{ef} \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(\mu_{ef} \frac{\partial u}{\partial y}\right) + S_x \tag{5.51}
\]

onde

\[
S_x = \frac{\partial}{\partial x}\left(\mu_{ef} \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(\mu_{ef} \frac{\partial v}{\partial x}\right) + F_x \tag{5.52}
\]

ou

\[
\frac{\partial pu}{\partial t} + \nabla \cdot \vec{J} = S_x \tag{5.53}
\]

onde

\[
\vec{J} = \rho u \vec{u} - \mu_{ef} \vec{\nabla} \cdot \vec{u} \tag{5.54}
\]

Como o termo de fluxo \(J \) e o gradiente de pressão já foram tratados anteriormente, a transformação de coordenadas será aplicada somente ao termo de fonte, Logo:

\[
S_x = \frac{1}{Ja} \frac{\partial y}{\partial \eta} \frac{\partial}{\partial \xi} \left(\mu_{ef} \left[\frac{\partial u}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial u}{\partial \eta} \frac{\partial y}{\partial \xi}\right] \frac{1}{Ja}\right) + \frac{1}{Ja} \frac{\partial x}{\partial \xi} \frac{\partial}{\partial \eta} \left(\mu_{ef} \left[\frac{\partial \eta}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial \eta}{\partial \xi} \frac{\partial y}{\partial \eta}\right] \frac{1}{Ja}\right) \tag{5.55}
\]

e da mesma forma para a direção \(y \):
\[S_y = \frac{1}{Ja} \frac{\partial y}{\partial \eta} \frac{\partial}{\partial \xi} \left(\mu' \left[\frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right] \frac{1}{Ja} \right) + \frac{1}{Ja} \frac{\partial x}{\partial \xi} \frac{\partial}{\partial \eta} \left(\mu' \left[\frac{\partial v}{\partial \eta} - \frac{\partial v}{\partial \xi} \right] \frac{1}{Ja} \right) \]

(5.56)

Quando estes termos forem aplicados com as equações de movimento em

\[U_\xi = \frac{1}{h_n} \left(u \frac{\partial y}{\partial \eta} - v \frac{\partial x}{\partial \eta} \right) \]

(5.57)

tem-se para o termo fonte de \(U_\xi \):

\[h_n S_u = \frac{1}{Ja} \frac{\partial y}{\partial \eta} \frac{\partial}{\partial \xi} \left(\mu' \left[\frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right] \frac{1}{Ja} \right) + \frac{1}{Ja} \frac{\partial x}{\partial \xi} \frac{\partial}{\partial \eta} \left(\mu' \left[\frac{\partial v}{\partial \eta} - \frac{\partial v}{\partial \xi} \right] \frac{1}{Ja} \right) \]

\[+ \frac{1}{Ja} \frac{\partial x}{\partial \eta} \frac{\partial}{\partial \xi} \left(\mu' \left[\frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right] \frac{1}{Ja} \right) - \frac{1}{Ja} \frac{\partial x}{\partial \xi} \frac{\partial}{\partial \eta} \left(\mu' \left[\frac{\partial v}{\partial \eta} - \frac{\partial v}{\partial \xi} \right] \frac{1}{Ja} \right) \]

(5.58)

Expressão análoga pode ser obtida para o termo de fonte do componente \(V_\eta \).

A transformação da equação de conservação da energia cinética turbulenta e da dissipação desta energia não apresentam novidade a não ser pelo parâmetro \(G \) no termo de fonte, o qual em coordenadas cartesianas é:

\[G = \mu' \left\{ 2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] + \left(\frac{\partial u}{\partial \xi} + \frac{\partial v}{\partial \eta} \right)^2 \right\} \]

(5.59)

Neste, aplicando a transformação de coordenadas, tem-se:

\[G = \frac{\mu'}{Ja^2} \left\{ 2 \left[\left(\frac{\partial u}{\partial \xi} \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \frac{\partial u}{\partial \xi} \right)^2 + \left(\frac{\partial v}{\partial \eta} \frac{\partial v}{\partial \xi} - \frac{\partial v}{\partial \eta} \frac{\partial v}{\partial \xi} \right)^2 \right] + \right. \]

\[+ \left(\frac{\partial u}{\partial \xi} \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \frac{\partial u}{\partial \xi} + \frac{\partial v}{\partial \xi} \frac{\partial v}{\partial \xi} - \frac{\partial v}{\partial \xi} \frac{\partial v}{\partial \xi} \right)^2 \]

(5.60)
O modelo de turbulência k-ε só é válido no núcleo turbulento, onde \(\mu_t \gg \mu \). Nas regiões próximas aos contornos sólidos, onde \(\mu_t \ll \mu \) é preciso utilizar um procedimento especial. Patankar e Spalding recomendam o uso da lei da parede descrito a seguir.

V.7.2.1.1 - Leis da parede

A lei da parede consiste em utilizar para a região próxima ao contorno sólido o perfil universal de velocidades, da seguinte forma:

\[
 u^+ = n^+ \quad \text{para} \quad n^+ \leq 11,5 \quad (5.61a)
\]

\[
 u^+ = \frac{1}{k_v} \ln\left(E n^+\right) \quad \text{para} \quad n^+ \geq 11,5 \quad (5.61b)
\]

onde a velocidade e a distância adimensionais são:

\[
 u^+ = \frac{u_t}{\sqrt{\tau_w/\rho}} \quad (5.62)
\]

\[
 n^+ = \frac{n\sqrt{\tau_w/\rho}}{\nu} \quad (5.63)
\]

onde \(u_t \) é a velocidade tangencial, \(\tau_w \) é a tensão de cisalhamento na parede, \(\nu \) é a viscosidade absoluta e \(n \) é a distância de \(u_t \) à parede, \(n^+ < 11,5 \) corresponde a sub-camada laminar, enquanto \(n^+ > 11,5 \) corresponde a camada amortecedora e ao núcleo turbulento. Na equação 5.61b, \(k_v \) é a constante de von Karman e \(E \) é uma constante empírica, que apresentam os seguintes valores:

\[
k_v = 0,4 \quad \quad E = 9
\]

As relações entre estes parâmetros e as variáveis utilizadas podem ser determinadas pela observação da figura 5.37. Como de maneira geral, em malhas bem construídas, a primeira linha \(\xi_1 \) é razoavelmente paralela a superfície, tem-se:

\[
n = \Delta \eta \sin \theta \quad (5.64)
\]
e a componente tangencial \(u_t \) da velocidade \(\bar{u} \) pode ser obtida por:

\[
 u_t = U_z \sin \theta
\]

(5.65)

sendo independente de \(V_\eta \), pois a projeção desta é nula. Assim, para \(n^+ < 11.5 \):

\[
 u^* = \frac{u_t}{\sqrt{\tau_w/\rho}} = \frac{n\sqrt{\tau_w/\rho}}{\nu} \quad (5.66)
\]

Usando as expressões 5.56 e 5.57 na equação 5.55b, tem-se:

\[
 \tau_w = \mu \frac{U_z}{\Delta \eta} \quad (5.67)
\]

Para \(n^+ > 11.5 \) obtem-se de maneira análoga, isto é:

\[
 u^* = \frac{1}{k_v} \ln \left(E n^+ \right) = \frac{U_z \sin \theta n^+}{\sqrt{\tau_w/\rho} n^+} = \frac{U_z \sin \theta n^+}{\sqrt{\tau_w/\rho} \Delta \eta \sin \theta \sqrt{\tau_w/\rho}} \quad (5.68)
\]

ou

\[
 \tau_w = \mu \frac{U_z n^+}{\frac{1}{k_v} \ln \left(E n^+ \right) \Delta \eta} \quad (5.69)
\]

Supondo que a geração e a dissipação de energia cinética turbulenta estejam em equilíbrio na estreita região entre a parede e o ponto de avaliação da velocidade, e que a tensão cisalhante é aproximadamente constante e igual à tensão cisalhante junto a parede, isto é:

\[
 G = \rho \varepsilon \implies \tau_w \frac{\partial u}{\partial n} = \rho \varepsilon \implies \frac{\tau_n^2}{\mu_t} = \rho \varepsilon \implies \frac{\tau_w^2}{C_\mu \rho k^2} = \rho \varepsilon \quad (5.70)
\]
Figura 5.37 - Relação entre a velocidade tangencial e os componentes contravariantes.
tem-se:

\[\tau_w = \rho c_p \frac{1}{2} k \] \hspace{1cm} (5.71)

onde \(k \) é a energia cinética turbulenta para o ponto próximo a parede, a qual é obtida a partir de sua equação de transporte (5.46). De acordo com a equação (5.71), para \(\tau_w \) constante, tem-se que a difusão de \(k \) nas regiões das paredes é nula, logo:

\[\left(\frac{\partial k}{\partial n} \right)_w = 0 \] \hspace{1cm} (5.72)

A dissipação de energia cinética turbulenta na região próximo à parede é obtida substituindo-se o perfil logarithmo de velocidade no balanço de energia cinética turbulenta próximo à parede, ou seja, adimensionalizando-se a equação 5.70b:

\[\frac{\tau_w^2}{\rho^2 u^*} \frac{\partial u^*}{\partial n^*} = \varepsilon \quad \frac{\tau_w^2}{\rho^2 u^* k_n n^*} = \varepsilon \] \hspace{1cm} (5.73)

Substituindo a equação 5.71 e 5.63 obtém-se:

\[\varepsilon = \frac{\frac{3}{2} c_p k^{1/2}}{k_n n} \] \hspace{1cm} (5.74)

Como a dissipação é infinita na parede, prescreve-se \(\varepsilon \) em um ponto próximo a parede, sendo \(n \) a distância do ponto à parede.

V.7.2.2 - Descrição do problema

O caso selecionado para a utilização da modelagem turbulenta complementa o estudo da geometria do problema anterior. Assim, a restrição continua sendo do tipo "stenosis", simulada
por um coseno, como apresentada na figura 5.32. O raio do tubo e altura da restrição possuem os seguintes valores:

\[R_0 = 25,4 \text{ mm} \]
\[X_0 = 2R_0 \]
\[\delta = 0,5 R_0 \]

Estes valores foram obtidos por Deshpande e Giddens, 1980 [61], que realizaram experimentos nesta geometria com escoamentos com número de Reynolds variando de 5000 a 15000. Este trabalho será utilizado como base de comparação, bem como o trabalho numérico de Rastogi [53], citado no problema anterior.

O perfil de velocidades na entrada foi medido por Deshpande e Giddens [61], o qual pode ser representado pela lei da potência da seguinte forma:

\[u = u_{\text{max}} \left(1 - \frac{r}{R_0}\right)^{\frac{1}{n}} \] \hspace{1cm} (5.75)

sendo

\[\bar{u} = \frac{2n^2}{u_{\text{max}} (n+1)(2n+1)} \] \hspace{1cm} (5.76)

onde \(\bar{u} \) é a velocidade média utilizada para o cálculo do número de Reynolds, \(u_{\text{max}} \) é a velocidade máxima na linha de simetria, definida pela equação 5.75, e \(1/n \) é o expoente que caracteriza o perfil. Para o caso em questão, o valor de \(n \) utilizado foi de 6,4, obtido por Deshpande e Giddens [61], para um número de Reynolds de 15000. Os valores da energia cinética turbulenta e de sua dissipação na entrada não foram mencionados nesta referência, desta forma, estas variáveis foram calculadas segundo as expressões abaixo:

\[k = 0,003u_{\text{max}}^2 \] \hspace{1cm} (5.77)

\[\varepsilon = \frac{C_\mu k^{\nu_2}}{l} \] \hspace{1cm} (5.78)
onde

\[I = 0,03R_o \] \hspace{1cm} (5.79)

Para as paredes empregou-se o critério da lei da parede como discutido no item V.8.1.1 e para a linha central foi considerada a simetria do problema. Para a saída utilizou-se a condição de contorno de difusão desprecível.

V.7.2.3 - Equações e detalhes computacionais

A equação de continuidade que caracteriza o problema na formulação axi-simétrica é:

\[\nabla \cdot \bar{u} = \frac{1}{r} \frac{\partial}{\partial r} (r \bar{v}) + \frac{\partial \bar{u}}{\partial x} = 0 \] \hspace{1cm} (5.80)

As equações de quantidade de movimento nas direções x e r foram ilustradas no item anterior. A malha de 40x12 pontos nodais utilizada para os cálculos possui as mesmas características da malha apresentada na figura 5.33.

V.7.2.4 - Resultados

A comparação dos resultados obtidos com os valores experimentais [61] e numéricos [53] será feita em função dos valores do componente cartesiano u em diversos planos. Estes planos, selecionados nas medições de Deshpande e Giddens [61], são definidos por \(x/X_o = -4, 0, 2 \) e 11.

O perfil da velocidade u no plano inicial \(x/X_o = -4 \), é definido pela lei da potência para \(n = 6,4 \) como mencionado anteriormente. Este perfil está ilustrado na figura 5.38, juntamente com o perfil para o plano \(x/X_o = 0 \). São também apresentados os valores experimentais e os valores numéricos obtidos por Rastogi [53] com uma malha mais fina de 40x20 pontos nodais. Pode-se observar uma boa concordância com os resultados obtidos.

A figura 5.39 apresenta os resultados para os planos \(x/X_o = 2 \) e \(x/X_o = 11 \). Novamente ocorre a concordância entre os resultados obtidos e os de Rastogi [53]. Porém, para o plano \(x/X_o = 2 \) ocorre uma grande discrepância em relação aos resultados experimentais. Nestes
observam-se velocidades negativas muito mais elevadas caracterizando uma grande recirculação. Entretanto a região de recirculação calculada apresenta dimensões reduzidas. O mesmo resultado foi obtido por Rastogi [53]. Como argumenta este autor, devido a redução de 75% da área de escoamento provocada pelo estrangulamento, ocorre nesta região uma grande aceleração do fluido, comandada basicamente pela continuidade. Este fato pode ser observado na figura 5.41, onde é comparada a variação da velocidade na linha central em função da posição. Esta aceleração é suficiente para transformar a camada limite turbulenta em laminar, gerando desta forma uma região de recirculação consideravelmente maior. A falha na predição deste fenômeno está associada ao modelo k - ϵ, que na presente formulation torna-se incapaz de simular esta transição, resultando desta forma nas diferenças entre os valores calculados e experimentais. Afastado desta região, o modelo k - ϵ volta a apresentar bons resultados, como observado na figura 5.39, para o plano x/X₀ = 11.

Deve-se comentar que o caso estudado não visa uma análise profunda do problema, nem das vantagens ou desvantagens do modelo de turbulência utilizado. O objetivo primário deste caso foi a verificação da metodologia desenvolvida, aplicada a um problema mais próximo de uma situação prática. Em vista dos resultados, principalmente da concordância com os valores numéricos obtidos por Rastogi [53], pode afirmar-se que este objetivo foi alcançado.
Figura 5.38 - Distribuição da velocidade adimensional para os planos \(x/X_0 = -4 \) e 0.
Figura 5.39 - Distribuição da velocidade adimensional para os planos $x/X_0 = 2$ e 11.
Figura 5.40: Função corrente normalizada (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99).
Figura 5.41 - Variação da velocidade na linha central em função da posição.
CAPÍTULO VI

CONCLUSÃO

No decorrer deste trabalho, os objetivos de estudar as variações do cálculo de escoamentos incompressíveis em geometrias complexas e de, baseado neste estudo, montar uma metodologia de cálculo para esta classe de problemas, foram atingidos. Para uma avaliação final do trabalho realizado e para a apresentação de algumas recomendações, este capítulo será dividido em duas partes como se segue.

VI.1 - Resumo do trabalho realizado

- Capítulo I: foi realizada uma introdução à classe de problemas a serem estudados e uma revisão bibliográfica das diversas técnicas utilizadas para a abordagem da solução. Verificou-se a existência de um grande número de alternativas para todas as etapas existentes num algoritmo de solução, antecipando desta forma que diversas decisões deveriam ser tomadas.

- Capítulo II: neste capítulo apresentou-se a equação geral de conservação. Uma vez que a decisão sobre a utilização de volumes finitos já havia sido tomada, a equação geral foi discretizada de acordo com esta técnica. Utilizando relações entre o plano físico e o transformado, a equação geral, discretizada em termos do fluxo total, foi escrita em coordenadas generalizadas. Compleando este capítulo, a discretização em termos da variável genérica ϕ foi obtida utilizando o esquema "power-law" de Patankar [11].

- Capítulo III: neste capítulo as variáveis primitivas (pressão, velocidade, temperatura, etc.) foram escolhidas para comporem a metodologia de cálculo. Além disto, após uma análise das diversas possibilidades sobre a escolha da variável dependente na equação de conservação de quantidade de movimento e de sua posição na malha foi tomada a seguinte decisão: utilização dos componentes contraviante da velocidade, armazenados nas faces dos volumes de controle (arranjo deslocado).

- Capítulo IV: A utilização do componente contraviante implica numa equação de conservação de quantidade de movimento muito complexa. Para evitar esta formulação, normalmente obtida pela análise tensorial, foi utilizada a abordagem de coordenadas locais
apresentada por Karki [17]. Para o acoplamento pressão-velocidade foi eleito o método SIMPLEC [32]. Para a solução do conjunto de equações foi utilizada uma metodologia segregada, portanto iterativa, baseado num processo de solução linha-a-linha, onde as não-linearidades são resolvidas pela atualização dos coeficientes pelos valores disponíveis da iteração anterior. A escolha dos componentes contravariante associada à abordagem de coordenadas locais caracterizam a maior contribuição deste trabalho. Porém, após o início dos testes do algoritmo de solução, verificou-se que em 1992 Kelkar e Choudhury [37] apresentaram uma proposta semelhante.

- Capítulo V: neste capítulo diversos tipos de escoamento foram analisados de modo a testar e validar o trabalho desenvolvido. Estes problemas, apresentando soluções analíticas, numéricas ou experimentais, cobriam uma gama variada de situações: escoamento induzido em cavidades por superfícies em movimento, convecção natural em cavidades, convecção forçada em dutos com obstruções. Os bons resultados obtidos confirmam a eficiência da metodologia desenvolvida.

VI.2 - Sugestões para o desenvolvimento do trabalho

Alguns aspectos podem ser salientados visando o desenvolvimento do algoritmo elaborado:

a) para diminuir o efeito da falsa difusão proveniente do uso do esquema "power-law", a utilização de esquemas de ordem mais elevada, como sugerido por Nieckele [24], deve ser utilizado;

b) apesar de um procedimento de correção por blocos, associado com a TDMA linha-a-linha ter sido utilizado, técnicas mais sofisticadas, como por exemplo do tipo "multigrid" [57], podem ser utilizadas para aumentar a taxa de convergência da solução;

c) a extensão da metodologia desenvolvida para a situação tri-dimensional não inclui nenhum conceito novo. Assim, este é um campo que deve ser analisado de imediato, principalmente devido ao grande número de aplicações;

d) utilização do código desenvolvido para analisar problemas de interesse prático..
REFERÊNCIAS BIBLIOGRÁFICAS

