

## Wagner Nahas Ribeiro

## Avaliação de soluções numéricas para análise de fluxo bifásico com acoplamento geomecânico em meios porosos heterogêneos

#### Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação do Departamento de Engenharia Civil como requisitos parcial para obtenção do título de Doutor em Engenharia Civil.

Orientador: Euripedes do Amaral Vargas Jr.

Co-Orientador: Luiz Eloy Vaz

Rio de Janeiro Abril de 2011



### Wagner Nahas Ribeiro

### Avaliação de soluções numéricas para análise de fluxo bifásico com acoplamento geomecânico em meios porosos heterogêneos

Tese apresentada ao Programa de Pós-Graduação do Departamento de Engenharia Civil como requisitos parcial para obtenção do título de Doutor em Engenharia Civil. Aprovada pela Comissão Examinadora abaixo assinada:

> Prof. Euripedes do Amaral Vargas Jr. Orientador Pontifícia Universidade Católica do Rio de Janeiro

> > Prof. Luiz Eloy Vaz

Co-Orientador Universidade Federal Fluminense

Dr. André Luiz Muller Grupo de Tecnologia em Computação Gráfica - Tecgraf

Prof<sup>a</sup>. Christianne de Lyra Nogueira

Universidade Federal de Ouro Preto

Prof. Leonardo José do Nascimento Guimarães Universidade Federal de Pernambuco

Prof. Márcio da Silveira Carvalho Pontifícia Universidade Católica do Rio de Janeiro

**Prof. José Eugenio Leal** Coordenador Setorial do Centro Técnico Cientifico- PUC-Rio

Rio de Janeiro, 15 de abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador

#### Wagner Nahas Ribeiro

Graduou-se em Engenharia Civil pela UFOP (Universidade Federal de Ouro Preto) em 2002. Em 2005 apresentou a dissertação de mestrado intitulada *Aplicações da Análise Limite Numérica a Problemas de Estabilidade Axissimétricos em Geotecnia* no Departamento de Engenharia Civil da mesma universidade. Em 2005 ingressou no curso de doutorado em geotecnia da PUC-Rio (Pontifícia Universidade Católica do Rio de Janeiro).

Ficha Catalográfica

Ribeiro, Wagner Nahas

Avaliação de soluções numéricas para análise de fluxo bifásico com acoplamento geomecânico em meios porosos heterogêneos / Wagner Nahas Ribeiro ; orientador: Euripedes do Amaral Vargas Jr. ; coorientador: Luiz Eloy Vaz. – 2011.

127 f. : il. (color.) ; 30 cm

Tese (doutorado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil, 2011.

Inclui bibliografia

 Engenharia civil – Teses. 2. Fluxo bifásico acoplado. 3. Elementos finitos. 4. Volumes finitos. 5. Análise tensão-deformação. 6. Elementos finitos descontínuos. 7. Elementos de Raviart-Thomas. I. Vargas Junior, Euripedes do Amaral. II. Vaz, Luiz Eloy. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

#### Agradecimentos

Seria extensa a lista de agradecimentos a todos que contribuíram de uma forma ou de outra na elaboração desse trabalho e ainda no processo de curso do doutorado, nem por isso devo deixar de citar alguns nomes que mais decisivamente colaboraram nos últimos acontecimentos para a conclusão desse trabalho:

Ao professor Vargas que mostrou o caminho a ser seguido para o andamento desse trabalho.

Ao professor Eloy Vaz que contribuiu enormemente em momentos decisivos para o êxito deste trabalho com seu exemplo e incentivo.

Aos integrantes da banca examinadora que contribuíram para a revisão com sugestões extremamente pertinentes para a melhoria do trabalho, principalmente a Profa. Christianne que diligentemente corrigiu vários equívocos de português.

A todos os amigos e amigas de mestrado e doutorado que compartilharam das várias etapas transcorridas durante o doutoramento.

Ao CNPq, à CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

A todos os funcionários da PUC que sempre deram o apoio necessário para o bom andamento das atividades, em especial a Rita de Cássia.

Aos meus familiares que sempre apoiaram e incentivaram nos momentos críticos.

A querida Andrea que me apoiou e colaborou nas correções do volume final, e ao prezado Paul Antezana que diagramou todo o volume final.

Ao meu bom Deus que é bom.

#### Resumo

Ribeiro, Wagner Nahas; Vargas Jr., Euripedes do Amaral; Vaz, Luiz Eloy. **Avaliação de soluções numéricas para análise de fluxo bifásico com acoplamento geomecânico em meios porosos heterogêneos.** Rio de Janeiro, 2011. 127 p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

O acoplamento fluido-mecânico como é conhecido o efeito tanto do meio poroso no meio fluido, quanto do efeito do meio fluido no meio poroso, possui uma ampla aplicabilidade em diversos campos da engenharia, tornando-se um importante objeto de estudo. O presente trabalho analisa alguns modelos acoplados de deformação e fluxo, particularmente fluxo bifásico e acoplamento com deformação, levando-se em consideração a não linearidade física do solo. A análise de fluxo em condição bifásica pode conduzir a instabilidade, devido à característica parabólica-hiperbólica das equações governantes, bem como o método empregado para soluções das mesmas, podendo não capturar satisfatoriamente condições de heterogeneidade do meio geológico. Sendo assim, são estudadas formulações numéricas capazes de contornar essas dificuldades e ainda empregadas em condição acoplada com o problema de deformação. Emprega-se inicialmente o método dos elementos finitos, MEF, para solução do problema acoplado com fluxo bifásico, em sequência uma formulação mista em que se resolve a equação da pressão através do MEF, e intermediariamente utilizam-se métodos de melhor aproximação da velocidade como os elementos de Raviart-Thomas de mais baixa ordem e solução da equação da saturação pelo método dos volumes finitos, MVF, com esquema de interpolação de alta ordem para captura de frente de saturação. Ainda assim é apresentada uma formulação em que se emprega o método dos elementos finitos descontínuos, MEFD, apresentado em Hoteit (2008), que no presente trabalho é acoplada com o problema de deformação utilizando um procedimento staggered para solução iterativa de ambos os sistemas. São apresentados exemplos que validam as diversas formulações e que destacam as propriedades de cada uma das formulações, com vantagens e desvantagem nas suas aplicações.

#### Palavras-chave

Fluxo bifásico acoplado; Elementos finitos; Volumes finitos; Elementos Finitos descontínuos; Elementos de Raviart-Thomas.

#### Abstract

Ribeiro, Wagner Nahas; Vargas Jr., Euripedes do Amaral(Advisor); Vaz, Luiz Eloy (Co-Advisor). **Evaluation of numerical solutions for analysis of coupled two-phase flow with geomechanical behavior in heterogeneous porous media.** Rio de Janeiro, 2011. 127p. Dsc. Thesis. Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

The fluid-mechanical coupling is known as the effect of both the porous media in a fluid as the fluid in porous media, it has been studied intensively in past years and in recent years, given its importance in various application fields of engineering. This works studies numerical models of coupled deformation and flow, considering coupled two-phase flow and deformation, taking into account the nonlinear soil behavior. The numerical analysis of two-phase flow can lead to instabilities due to parabolic-hyperbolic character of the governing equations and the method employed does not adequately capture the heterogeneity of the geological environment. Thus, we analyze the numerical formulations capable of overcoming these difficulties and to be employed on coupled condition with deformation. Initially the finite element method, FEM, is employed for solution of the coupled two-phase flow problem. Another formulation is employed in a mixed basis, the pressure equation is solved through the FEM, solution of the equation of saturation by finite volume method, FVM, using interpolation scheme with high order to capture the saturation front. In an intermediate step, it is employing methods to better pos-processing the velocity filed as the lowest-order Raviart-Thomas finite elements. Finally, it is presented a formulation that employs the discontinuous finite element method, DFEM, presented in Hoteit et al (2008), is coupled in this work with the problem of deformation using a staggered procedure for iterative solution of the systems. Examples are presented that validate the various formulations and highlight the properties of each formulation, with advantages and disadvantages in their applications.

#### Keywords

Coupled two-phase flow; Finite elements; Finite volumes; Analysis stress and deformation; Discontinuous finite elements; Raviart-Thomas elements.

## Sumário

| 1.     | INTRODUÇÃO                                            | 19 |
|--------|-------------------------------------------------------|----|
| 1.1.   | Considerações Gerais                                  | 19 |
| 1.2.   | Objetivos da Pesquisa                                 | 24 |
| 1.3.   | Organização do Presente Trabalho                      | 25 |
| 2.     | FORMULAÇÕES MATEMÁTICAS PARA SIMULAÇÃO DE             |    |
|        | FLUXO BIFÁSICO E BIFÁSICO-ACOPLADO EM MEIOS           |    |
|        | POROSOS                                               | 26 |
| 2.1.   | Considerações Gerais                                  | 26 |
| 2.2.   | Equação de equilíbrio                                 | 26 |
| 2.3.   | Análise de Fluxo Bifásico em Meios Porosos            | 29 |
| 2.3.1. | Equação do Balanço de Massa                           | 29 |
| 2.3.2. | Formulação Parabólica                                 | 33 |
| 2.3.3. | Formulação Hiperbólica                                | 34 |
| 2.4.   | Resumo das Equações Gerais                            | 37 |
| 2.5.   | Definições para as Pressões de Fluidos                | 38 |
| 2.5.1. | Classificação de Equações Diferenciais Parciais (EDP) | 39 |
| 2.5.2. | Pós-processamento da Velocidade                       | 41 |
| 2.5.3. | Determinação da Porosidade                            | 44 |
| 2.5.4. | Relações Constitutivas para Permeabilidade            | 45 |
| 3.     | FORMULAÇÕES PARA SIMULAÇÃO DE FLUXO                   |    |
|        | BIFÁSICO E BIFÁSICO-ACOPLADO EM MEIOS POROSOS         |    |
|        | VIA MÉTODOS NUMÉRICOS                                 | 49 |
| 3.1.   | Considerações Gerais                                  | 49 |

## Sumário

| 3.2.                       | Formulações Numéricas das Equações Governantes                                                                                                                     | 50                   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 3.2.1.<br>3.2.2.<br>3.2.3. | Formulação em Elementos Finitos – Método de Galerkin<br>Formulação em Volumes Finitos Baseado em Elementos Finitos<br>Formulação em Elementos Finitos Descontínuos | . 50<br>. 59<br>. 63 |
| 3.3.                       | Análise Não-Linear Local                                                                                                                                           | . 67                 |
| 3.3.1.                     | Princípio da máxima dissipação plástica                                                                                                                            | .67                  |
| 3.4.                       | Procedimentos de Solução                                                                                                                                           | . 71                 |
| 3.4.1.<br>3.4.2.           | Procedimento para o problema de fluxo bifásico<br>Procedimento <i>staggered</i> para o problema de acoplamento fluido                                              | .73                  |
| 3.4.3.                     | Procedimento <i>staggered</i> para o problema de acoplamento fluido<br>mecânico com fluxo bifásico via MVF e MEFD                                                  | .75                  |
| 4.                         | EXEMPLOS DE VERIFICAÇÃO DAS FORMULAÇÕES                                                                                                                            |                      |
|                            | PARA SIMULAÇÃO DE FLUXO EM MEIOS POROSOS                                                                                                                           | .78                  |
| 4.1.                       | Considerações Gerais                                                                                                                                               | .78                  |
| 4.2.                       | Adensamento unidimensional                                                                                                                                         | .79                  |
| 4.3.                       | Escoamento entre Placas                                                                                                                                            | . 87                 |
| 4.4.                       | Escoamento com Barreiras                                                                                                                                           | . 89                 |
| 4.5.                       | Pós-processamento da Velocidade Através de Elementos de Raviart-Thomas                                                                                             | .91                  |
| 4.6.                       | Fluxo Bifásico Unidimensional – Método MEF – Galerkin                                                                                                              | . 94                 |
| 4.7.                       | Fluxo Bifásico Unidimensional – Método MEFD                                                                                                                        | .96                  |
| 4.8.                       | Fluxo Bifásico Bidimensional – Problema dos Cinco Poços                                                                                                            | . 97                 |
| 4.9.                       | Fluxo Bifásico Bidimensional – Problema dos Cinco Poços –<br>Meio Heterogêneo                                                                                      | 100                  |
| 4.10.                      | Adensamento unidimensional para caso de $S_w = 1$                                                                                                                  | 102                  |
| 4.11.                      | Fluxo Bifásico em Reservatório Estratificado                                                                                                                       | 104                  |

## Sumário

| 4.12.                      | Fluxo Bifásico em Falhas 1                                     | .06 |
|----------------------------|----------------------------------------------------------------|-----|
| 4.13.                      | Fluxo Bifásico Acoplado em Falhas1                             | .08 |
| 4.14.                      | Análise Acoplada de Fluxo Bifásico em Reservatório Fraturado 1 | .09 |
| 4.15.                      | Fluxo Bifásico em Coluna Unidimensional 1                      | .13 |
| 4.16.                      | Comparação de Tempo de Processamento1                          | .14 |
| 5.                         | CONCLUSÕES E SUGESTÕES PARA TRABALHOS                          |     |
|                            | FUTUROS1                                                       | 16  |
| 5.1.                       | Conclusões1                                                    | 16  |
| 5.2.                       | Sugestões para trabalhos futuros 1                             | .18 |
| REFERÊNCIAS BIBLIOGRÁFICAS |                                                                |     |

Lista de Figuras

# Lista de Figuras

| Figura 2-1   | Volume de controle para balanço de massa do fluido                    |
|--------------|-----------------------------------------------------------------------|
| Figura 3-1:  | Formas possíveis de montagem do volume de controle, a)                |
|              | baseado na célula, b) baseado na célula e vértice e c) baseado        |
|              | no vértice. (extraído de Carvalho, 2005)59                            |
| Figura 4-1:  | Esquema da coluna para adensamento unidimensional                     |
| Figura 4-2:  | Malha utilizada nas análises, elementos Q4, 300 elementos             |
|              | finitos                                                               |
| Figura 4-3:  | Esquema do problema de escoamento entre placas paralelas              |
|              | (a), Correa (2006) e malha de elementos finitos utilizada, 200        |
|              | elementos Q4 (b)                                                      |
| Figura 4-4:  | Perfil de velocidade $v_x$ ao longo da altura H (a), e mapa de        |
|              | velocidades, cor azul representa $v_x$ =0.5 e cor vermelha $v_x$ =1.0 |
|              | (b)                                                                   |
| Figura 4-5:  | Esquema do problema de escoamento entre barreiras,                    |
|              | condições de contorno aplicadas e dados dos materiais                 |
|              | utilizados                                                            |
| Figura 4-6:  | Malha empregada na análise do exemplo de escoamento entre             |
|              | barreiras, 625 elementos Q490                                         |
| Figura 4-7:  | Campos de velocidade $v_y$ e perfil de velocidade $v_y$ ao longo de   |
|              | BE: (a) pós-processamento global, (b) lei de Darcy                    |
| Figura 4-8:  | Campo de pressão aplicado92                                           |
| Figura 4-9:  | Campos de velocidade $v_x$ para malhas estruturadas e não             |
|              | estruturadas obtidas através de RT <sub>0</sub> 93                    |
| Figura 4-10: | Campos de velocidade vx para malha estruturada inclinada              |
|              | obtido através de RT <sub>0</sub> 94                                  |
| Figura 4-11: | Esquema do problema de reservatório95                                 |
| Figura 4-12: | Malha utilizada Q4, 192 elementos95                                   |
| Figura 4-13: | Malhas utilizadas Q4, 320 e 160 elementos                             |

| Figura 4-14: Perfil de saturação ao longo de $x$ para formulação em volumes |
|-----------------------------------------------------------------------------|
| finitos, curva em pontos, elementos finitos descontínuos, linha             |
| continua e solução analítica, curva em traço e ponto                        |
| Figura 4-15: Esquema do problema de cinco poços                             |
| Figura 4-16: Evolução da frente de saturação para vários tempos. a) t=0,7s, |
| b) t=4,2s, c) t=7,7s, d) t=11,2s, e) t=14,7s, f) t=19,6s99                  |
| Figura 4-17: Campo de permeabilidade <i>k</i> <sub>x</sub> aleatório100     |
| Figura 4-18: Evolução da frente de saturação para vários tempos, $k_x$ ,    |
| aleatório. a) t=0,7s, b) t=4,2s, c) t=7,7s, d) t=11,2s, e) t=14,7s,         |
| f) t=19,6s                                                                  |
| Figura 4-19: Esquema do problema fluxo bifásico em meio heterogêneo104      |
| Figura 4-20: Malha empregada na análise do problema de fluxo bifásico em    |
| meio heterogêneo104                                                         |
| Figura 4-21 : Perfis de saturação para vários tempos, meio heterogêneo. a)  |
| t=0s, b) t=1,s, c) t=2s, d) t=3s, e) t=4s.                                  |
| Figura 4-22: Campo de saturação para meio heterogêneo, extraído de Hoteit   |
| et al (2008)                                                                |
| Figura 4-23: Esquema do problema fluxo bifásico em falhas106                |
| Figura 4-24: Perfis de saturação para vários tempos, meio heterogêneo. a)   |
| t=0s, b) t=1s, c) t=2s, d) t=3s, e) t=4s.                                   |
| Figura 4-25: Esquema do problema fluxo bifásico acoplado em falhas108       |
| Figura 4-26: Condições de contorno do problema de fluxo bifásico em         |
| falhas                                                                      |
| Figura 4-27: Evolução dos campos de saturação para vários tempos,           |
| reservatório com falha. a) t=0s, b) t=3s, c) t=6s, d) t=9s, e)              |
| t=11s111                                                                    |
| Figura 4-28: Evolução dos campos de tensão efetiva máxima para vários       |
| tempos, reservatório com falha. a) t=0s, t=3s, c) t=6s, d) t=9s,            |
| e) t=11s112                                                                 |
| Figura 4-29: Evolução do campo de deformação volumétrica para vários        |
| tempos, reservatório com falha. a) t=0s, t=3s, c) t=6s, d) t=9s,            |
| e) t=11s112                                                                 |
|                                                                             |

| Gráfico 4 - 2: | Evolução no tempo da distribuição de pressão de poros ao      |
|----------------|---------------------------------------------------------------|
|                | longo da coluna                                               |
| Gráfico 4 - 3: | Deslocamento no topo da coluna                                |
| Gráfico 4 - 4: | Perfil de velocidade ao longo da coluna para vários tempos85  |
| Gráfico 4 - 5: | Velocidade ao longo do tempo para o topo da coluna            |
| Gráfico 4 - 6: | Porosidade ao longo do tempo de análise para a base da        |
|                | coluna, calculada no primeiro ponto de Gauss acima da base 87 |
| Gráfico 4 - 7: | Comparações entre os resultados da solução analítica e da     |
|                | implementação de elementos de RT: (a) $v_x$ ao longo de y =   |
|                | 3,5, e (b) $v_y$ ao longo de x = 7,5                          |
| Gráfico 4 - 8: | Perfil de saturação ao longo do reservatório95                |
| Gráfico 4 - 9: | Deslocamento no topo da coluna 103                            |
| Gráfico 4 - 10 | Pressão de poros na base da coluna                            |
| Gráfico 4 - 11 | Variação da frente de saturação de água ao longo da coluna    |
|                | para t=7s109                                                  |
| Gráfico 4 - 12 | : Variação da frente de saturação de água ao longo da coluna  |
|                | para t=7s110                                                  |
| Gráfico 4 - 13 | Variação da pressão de água ao longo da coluna para vários    |
|                | tempos                                                        |

## Lista de Tabelas

| Tabela 4-1: Parâmetros utilizados no exemplo de coluna poroelástica     | 81  |
|-------------------------------------------------------------------------|-----|
| Tabela 4-2 : Parâmetros e condições de contorno empregados no exemplo   |     |
| de fluxo bifásico unidimensional                                        | 95  |
| Tabela 4-3: Parâmetros utilizados no exemplo de fluxo bifásico em meio  |     |
| heterogêneo                                                             | 104 |
| Tabela 4-4 : Parâmetros utilizados no exemplo de fluxo bifásico em meio |     |
| heterogêneo                                                             | 107 |
| Tabela 4-5: Tempo de pós-processamento da velocidade para diferentes    |     |
| malhas                                                                  | 114 |
| Tabela 4-6: Tempo de pós-processamento para diferentes métodos          | 115 |

## Lista de símbolos

| σ                    | Taxa de tensão total                                      |
|----------------------|-----------------------------------------------------------|
| b                    | Taxa das forças de corpo                                  |
| ť                    | Taxa das forças de superfície                             |
| $\delta \epsilon$    | Deformações virtuais                                      |
| δu                   | Deslocamentos virtuais                                    |
| Ω                    | Domínio de análise                                        |
| Γ                    | Contorno do domínio de análise                            |
| <b>σ</b> '           | Taxa de tensão efetiva                                    |
| <i>p</i>             | Taxa da poro pressão                                      |
| 3                    | Taxa de deformação total do esqueleto                     |
| έ <sub>c</sub>       | Taxa das deformações devido à fluência                    |
| έ <sub>p</sub>       | Taxa das deformações volumétricas                         |
| σ̈́                  | Taxa da tensão efetiva inicial                            |
| D <sub>T</sub>       | Matriz constitutiva                                       |
| $K_s$                | Módulo volumétrico dos grãos                              |
| σ΄΄                  | Taxa da tensão responsável pela deformação da fase sólida |
| dy dy d <del>y</del> | Dimensões do volume de controle nas direções x, y e z,    |
| ux, uy, uz           | respectivamente                                           |
| ho                   | Densidade do fluido                                       |
| q                    | Vazão                                                     |
| t                    | Tempo                                                     |
| $\dot{m}_{\pi}$      | Incremento de massa de fluido $\pi$                       |

| K, K <sub>0</sub>             | Matriz de permeabilidade intrínseca do meio poroso          |
|-------------------------------|-------------------------------------------------------------|
| $\phi$                        | Porosidade                                                  |
| 8                             | Aceleração da gravidade                                     |
| h                             | Carga de elevação                                           |
| $k_{r\pi}$                    | Permeabilidade relativa                                     |
| $\mu_{\pi}$                   | Viscosidade dinâmica do fluido $\pi$                        |
| $S_{\pi}$                     | Grau de saturação ou simplesmente saturação do fluido $\pi$ |
| В                             | Fator de variação de volume                                 |
| $R_{s\pi}$                    | Fator de dissolução de gás no líquido                       |
| $S_w$                         | Saturação do fluido molhante                                |
| $S_{nw}$                      | Saturação do fluido não-molhante                            |
| $p_w$                         | Pressão de fluido molhante                                  |
| $p_{nw}$                      | Pressão de fluido não-molhante                              |
| $p_c$                         | Pressão capilar                                             |
| $ ho_{\scriptscriptstyle w}$  | Densidade do fluido molhante                                |
| $ ho_{\scriptscriptstyle nw}$ | Densidade do fluido não-molhante                            |
| V <sub>w</sub>                | Velocidade do fluido molhante                               |
| V <sub>nw</sub>               | Velocidade do fluido não-molhante                           |
| V <sub>t</sub>                | Velocidade total de escoamento                              |
| $f_w$                         | Função de fluxo fracionário do fluido molhante              |
| $h_{_W}$                      | Função de mobilidade do fluido molhante                     |
| <i>v</i> <sub>a</sub>         | Velocidade aparente de fluxo                                |
| $v_x$                         | Velocidade de fluxo total na direção x                      |
| v <sub>y</sub>                | Velocidade de fluxo total na direção y                      |
| $\dot{S}_{w}$                 | Taxa da saturação do fluido molhante                        |
| $\dot{S}_{nw}$                | Taxa da saturação do fluido não-molhante                    |
| $\dot{p}_{c}$                 | Taxa da pressão capilar                                     |
| $\widetilde{\mathbf{v}}_{t}$  | Vetor de velocidades pós-processadas                        |

| $\delta$         | Parâmetro dependente da malha de elementos finitos |
|------------------|----------------------------------------------------|
| he               | Tamanho característico do elemento                 |
| A                | Área do elemento                                   |
| $d\phi$          | Variação da porosidade                             |
| $d\overline{p}$  | Variação da pressão                                |
| Cp               | Compressibilidade do poro                          |
| Κ                | Módulo de deformação do meio                       |
| $K_m$            | Módulo de deformação da matriz porosa              |
| Se               | Saturação efetiva                                  |
| $S_{rw}$         | Saturação residual da fase molhante                |
| S <sub>rnw</sub> | Saturação residual da fase não-molhante            |
| р                | Poro pressão                                       |
| Ε                | Módulo de Young                                    |
| G                | Módulo cisalhante                                  |
| ν                | Coeficiente de Poisson                             |
| K <sub>s</sub>   | Módulo de deformação volumétrica dos grãos         |
| K <sub>w</sub>   | Módulo de deformação volumétrica do fluido.        |
| α                | Constante de Biot                                  |
| g                | Aceleração da gravidade, função                    |
| $g^k$            | Gradiente da função objetivo                       |
| φ                | Ângulo de atrito                                   |
| υ                | Coeficientes de Poisson drenado                    |
| $\upsilon_u$     | Coeficientes de Poisson não drenado                |
| c                | Coesão, coeficiente de difusividade                |
| $F_{VM}$         | Critério de escoamento de Von Mises                |
| F <sub>MC</sub>  | Critério de escoamento do Mohr Coulomb             |
| u                | Deslocamentos                                      |
| L                | Distância                                          |
| W <sup>e</sup>   | Energia de deformação elástica                     |
| $W^p$            | Energia de deformação plástica                     |
| 147              | Fase molhante                                      |

| nw                               | Fase não molhante                                |
|----------------------------------|--------------------------------------------------|
| L                                | Função de Lagrange                               |
| $N, \phi, N_i, N_j$              | Funções de forma                                 |
| $\Delta t$                       | Incremento de tempo                              |
| т                                | Matriz de acoplamento fluido mecânico, matriz de |
| L                                | transformação                                    |
| G                                | Módulo plástico generalizado                     |
| В                                | Matriz de compatibilidade                        |
| $\mathbf{H}_{\mathbf{w}}$        | Matriz de fluxo da fase molhante                 |
| $\mathbf{H}_{\mathbf{nw}}$       | Matriz de fluxo da fase não molhante             |
| K                                | Matriz de rigidez                                |
| $L_c$ , $L_{nw}$ , $L_w$         | Matrizes de acoplamento fluido mecânico          |
| G <sub>w</sub> , G <sub>nw</sub> | Matrizes de armazenamento                        |
| $O_w, O_{nw}, M_w,$              | Matrizes para o problema de fluxo hifásico       |
| $M_{nw}, P_w, P_{nw}$            | Matrizes para o problema de nuxo onasico         |
| λ                                | Multiplicadores de Lagrange                      |
| $J_1$                            | Primeiro invariante das tensões                  |
| Fu                               | Resíduo para equação de equilíbrio               |
| π                                | Representação de uma fase $\pi$                  |
| F <sub>p</sub>                   | Resíduo para equação de pressão                  |
| F <sub>pnw</sub>                 | Resíduo para pressão da fase não molhante        |
| <b>F</b> <sub>Snw</sub>          | Resíduo para saturação da fase não molhante      |
| $J_{2D}$                         | Segundo invariante das tensões desviadoras       |
| t                                | Tempo                                            |
| $\sigma_y$                       | Tensão de escoamento                             |
| D                                | Tensor constitutivo elástico                     |
| D <sub>T</sub>                   | Tensor constitutivo elasto-plástico              |
| 3                                | Tensor de deformações                            |
| J <sub>3D</sub>                  | Terceiro invariante das tensões desviadoras      |
| tol                              | Tolerância                                       |
| a                                | Variáveis internas                               |
| q                                | Vazão                                            |
| q                                | Vetor de incógnitas                              |

| R                | Vetor de resíduos                                           |
|------------------|-------------------------------------------------------------|
| θ                | Parâmetro de integração                                     |
| $\nabla$         | Operador de derivação                                       |
| C <sub>t</sub>   | Compressibilidade total do meio poroso                      |
| $\lambda_{_t}$   | Fator de mobilidade total                                   |
| $\lambda_n$      | Fator de mobilidade do fluido não molhante                  |
| $\lambda_{_W}$   | Fator de mobilidade do fluido molhante                      |
| $Q_t$            | Vazão total                                                 |
| $Q_w$            | Vazão do fluido molhante                                    |
| $A_{e}$          | Área do elemento                                            |
| $q_{we}$         | Vazão do fluido molhante por elemento                       |
| М                | Matriz de interpolação de segunda ordem                     |
| a, b             | Vetor de interpolação                                       |
| $\psi$           | Parâmetro de interpolação                                   |
| n                | Vetor normal a aresta do elemento                           |
| $\mathbf{C}_{u}$ | Fator de interpolação de fluxo numérico                     |
| Ι                | Matriz identidade                                           |
| J                | Matriz jacobiana                                            |
| Р                | Matriz de transformação de Piola                            |
| w                | Matriz de funções de forma para elementos de Raviart-Tomas  |
| Φ                | Matriz de funções de forma para elementos de Raviart-Thomas |
| det <b>J</b>     | Determinante da matriz jacobiana                            |