

Eduardo Silva Maia

Pelotização e Redução de Concentrado Magnetítico

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio.

> Orientadores: Prof. José Carlos D'Abreu Prof. Francisco José Moura

Rio de Janeiro Abril de 2011

Eduardo Silva Maia

Pelotização e Redução de Concentrado Magnetítico

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processos Químicos e Metalúrgicos da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. José Carlos D'Abreu** Orientador Departamento de Engenharia de Materiais – PUC-Rio

> **Prof. Francisco José Moura** Departamento de Engenharia de Materiais – PUC-Rio

> > Prof. Hélio Marques Kohler

TECNOS - Inovações Tecnológicas Ltda.

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

PUC-Rio - Certificação Digital Nº 0913459/CA

Rio de Janeiro, 14 de abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Eduardo Silva Maia

Graduado em Engenharia de Produção-Metalúrgica em 2005, pela Pontifícia Universidade Católica do Rio de Janeiro. Desde então, trabalha como consultor da Metal Data S/A, analisando e desenvolvendo projetos, principalmente, nas áreas de siderurgia e mineração.

Ficha Catalográfica

Maia, Eduardo Silva

Pelotização e redução de concentrado magnetítico / Eduardo Silva Maia; orientadores: José Carlos D'Abreu; Francisco José Moura. – 2011.

144 f. : il. (color.) ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia de Materiais, 2011.

Inclui bibliografia

1. Engenharia de materiais – Teses. 2. Minério de ferro. 3. Magnetita. 4. Pelotização. 5. Siderurgia. 6. Redução. 7. Tratamento de minério. I. D'Abreu, José Carlos. II. Moura, Francisco José. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. IV. Título.

CDD: 620.11

Aos meus queridos pais e familiares, pela motivação, confiança e apoio que sempre passaram em todos os meus projetos.

Agradecimentos

Aos meus orientadores, Prof. José Carlos D'Abreu e Prof. Francisco José Moura, pela amizade, incentivos e ensinamentos passados durante a realização deste trabalho.

À empresa Metal Data S/A, representada pelo presidente Aroldo Ceotto, e todos meus colegas de trabalho, pelo total apoio e auxílio concedido, sem os quais este trabalho não seria realizado.

À PUC-Rio, pelos auxílios concedidos para realização deste trabalho.

Ao Mauro Yamamoto e João Antônio Vilar da Silva, do laboratório Nomos Análises Minerais Ltda. e seus colaboradores, pelo apoio na realização da etapa de tratamento do minério magnetítico.

Ao Eng. Floriano Wendling, da empresa Radieng Consultoria Ltda. e seus colaboradores, pelo apoio na realização dos testes de pelotização e ensinamento ao longo deste trabalho.

Ao Eng. Raimundo Nonato Rodrigues Filho, pelo auxílio na realização dos testes de redução.

A todos os professores, colegas e a equipe do Departamento de Engenharia dos Materiais (DEMa), pela amizade e colaboração transmitida durante a execução deste trabalho.

Aos meus familiares e amigos, pelo apoio.

E principalmente, à Deus, pela minha vida.

Resumo

Maia, Eduardo Silva; D'Abreu, José Carlos; Moura, Francisco José. **Pelotização e Redução de Concentrado Magnetítico.** Rio de Janeiro, 2011. 144p. Dissertação de Mestrado - Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

A tendência mundial de aumento da quantidade de finos (sinter feed e pellet feed) nas lavras de minério de ferro tem elevado a importância dos processos de aglomeração, em especial a pelotização, que tem por característica produzir pelotas de excelente qualidade química e alta resistência mecânica, além de ser um processo menos poluente que a sinterização. Atualmente, as jazidas de minério de ferro em lavra no Brasil, exploram minérios predominantemente hematíticos (hematita e/ou itabirito). Apesar do país não possuir tradição na exploração de minérios magnetíticos, existem ocorrências destes que vêm despertando crescente interesse, sendo, contudo, necessário à adequação das etapas do beneficiamento mineral e dos parâmetros operacionais da pelotização. O presente trabalho, fruto de uma interação da empresa Metal Data S/A e o Grupo de Siderurgia do DEMa/PUC-Rio, trata do estudo da pelotização de um minério de ferro magnetítico, proveniente de uma jazida brasileira em fase de pesquisa mineral, com o objetivo de analisar sua viabilidade exploratória para produção de pelotas a serem utilizadas como matéria prima na indústria siderúrgica. Os procedimentos experimentais foram divididos em três etapas: tratamento do minério, pelotização e redução, buscando assim, definir uma rota de tratamento do minério e, posteriormente, a caracterização química, mecânica e metalúrgica das pelotas produzidas. Foram estudados três tipos de misturas para a pelotização, envolvendo oito diferentes concentrados. Os resultados indicaram que o minério magnetítico é passível de concentração e capaz de produzir um pellet feed de qualidade, utilizando rota de beneficiamento com operações unitárias típicas. Este material mostrou potencial para a formação de pelotas cruas em discos de laboratório e, após as operações de queima, produziu pelotas que apresentaram granulometria entre 9,5 e 16,0 mm, resistência à compressão de 126 a 339 kg/pelota, índice de tamboramento de 67,7 a 94,9 %, porosidades de 23,8 a 40,74%, grau de metalização de 30 a 75%, entre outras.

Palavras-chave

Minério de Ferro; Pellet Feed; Pelotas; Pelotização; Siderurgia; Redução; Tratamento de minério.

Abstract

Maia, Eduardo Silva; D'Abreu, José Carlos (Advisor); Moura, Francisco José (Advisor). **Pelletizing and Reducing of Magnetite Concentrate.** Rio de Janeiro, 2011. 144p. MSc. Dissertation – Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

The global increasing trend of producing iron ore fines (sinter feed and pellet feed) has also increased the importance of the applomeration processes, in particular the pelletizing, which has as main characteristic to produce high quality pellets with excellent mechanical resistance, besides being a less polluting process than the sintering. Currently, Brazilian mines exploit mainly hematite deposits (hematite and / or itabirite ores). Although the country has no tradition in exploiting magnetite minerals, there is a growing interest trend in magnetite occurrences, although it might be necessary to adequate mineral processing and pelletizing operating parameters when using such ore. This work is a result of an interaction between the company Metal Data S/A and the Siderurgy Group of the DEMa/PUC-Rio and describes the pelletizing process using magnetite iron ore from a Brazilian deposit in exploration stage, in order to evaluate its suitability for exploratory pellet production to be used as feedstock in the steel industry. The experimental procedures were divided into three steps - ore processing, pelletizing and reduction, aiming to define the ore treatment route and chemical, mechanical and metallurgical characteristics of the produced pellets. Three types of mixtures for pelletizing were analysed, involving eight different concentrates. The results indicated that the magnetite ore is likely to concentrate and capable of producing a pellet feed with adequate quality, using a processing route with typical unit operations. It was observed that this materal has a potential for the formation of green pellets in the laboratory pelletizing disc and, after burning operations, produced pellets that had particle size between 9.5 and 16.0 mm, compression strength from 126 to 339 kg / pellet, tumble index from 67.7 to 94.9%, porosity from 23.8 to 40.74%, degree of metallization from 30 to 75%, among others.

Keywords

Iron Ore; Pellet Feed; Pellets; Pelletizing; Siderurgy; Reduction; Mineral Processing.

Sumário

1 INTRODUÇÃO	16
2 OBJETIVO	18
3 REVISÃO BIBLIOGRÁFICA	19
3.1. MINÉRIO DE FERRO	19
3.1.1. Cenário Internacional	21
3.1.2. Cenário Nacional	25
3.2. BENEFICIAMENTO MINERAL	33
3.2.1. Amostragem	34
3.2.2. Cominuição	39
3.2.3. Índice de Trabalho	44
3.2.4. Classificação e Peneiramento	46
3.2.5. Concentração Gravítica	52
3.2.6. Separação Magnética	57
3.2.7. Flotação	62
3.3. PELOTIZAÇÃO	64
3.4. REDUÇÃO	67
3.4.1. Termodinâmica da Redução	67
3.4.2. Cinética da Redução	73
4 PROCEDIMENTOS EXPERIMENTAIS	75
4.1. MATERIAIS UTILIZADOS	75
4.1.1. Concentrado Magnetítico	75
4.1.2. Outros	79
4.2. DESENVOLVIMENTO EXPERIMENTAL	81
4.2.1. Tratamento do Minério Magnetítico	81
4.2.2. Pelotização	87
4.2.3. Redução	98
5 RESULTADOS E DISCUSSÃO	101
5.1. TRATAMENTO DO MINÉRIO MAGNETÍTICO	101
5.1.1. Análise Química	101
5.1.2. Distribuição %Fe por Faixa Granulométrica	101

5.1.3. Grau de Liberação	103
5.1.4. Índice de Trabalho (WI)	104
5.1.5. Ensaio de Moagem	105
5.1.6. Ensaio de Concentração Física	110
5.2. PELOTIZAÇÃO	118
5.2.1. Ensaios Físicos	119
5.3. REDUÇÃO	127
5.3.1. Grau de Redução	127
5.3.2. Grau de Metalização	129
5.3.3. Análise Metalográfica	130
5.4. QUALIDADE DAS PELOTAS	135
6 CONCLUSÕES E RECOMENDAÇÕES	137
7 REFERÊNCIAS	140

Lista de figuras

Figura 1 – Mineração de ferro e siderurgia ⁽⁶⁾	21
Figura 2 – Evolução da produção mundial de minério de ferro (concentrado) ⁽⁴⁾	22
Figura 3 – Capacidade de produção de minério de ferro por empresa (2010) ⁽⁹⁾	23
Figura 4 – Ocorrências de minério de ferro no Brasil ⁽⁵⁾	28
Figura 5 – Evolução da produção de minério de ferro no Brasil ^(4,5)	29
Figura 6 – Evolução do consumo aparente de minério de ferro no Brasil ^(4,11)	29
Figura 7 – Evolução da produção pelotas no Brasil ^(1,4,5)	31
Figura 8 – Produção e exportação de pelotas no Brasil ^(1, 4, 5,11)	32
Figura 9 – Evolução do consumo aparente de pelotas no Brasil ^(1, 5)	32
Figura 10 – Representação esquemática da construção de	
pilhas cônica e longitudinal ⁽¹³⁾	35
Figura 11 – Quarteamento da amostra em (a) pazada fracionada	
e em (b) pazada alternada ⁽¹³⁾	35
Figura 12 – Representação esquemática do quarteamento em pilha cônica ⁽¹³⁾	36
Figura 13 – Representação esquemática do quarteamento e	
etapas de preparação da pilha de homogeneização longitudinal ⁽¹³⁾	37
Figura 14 – Quarteador Jones ⁽¹²⁾	38
Figura 15 – Mesa homogeneizadora ⁽¹³⁾	38
Figura 16 – Mesa divisora ⁽¹³⁾	39
Figura 17 – Britador de mandíbulas de dois eixos ⁽¹⁵⁾	40
Figura 18 – Britador de impacto ⁽¹⁵⁾	41
Figura 19 – Britador de rolo dentado ⁽¹²⁾	41
Figura 20 – Britador cônico	42
Figura 21 – Britador de rolos	42
Figura 22 – Moinho para testes de índice de trabalho de Bond para moagem	45
Figura 23 – Partes de um hidrociclone ⁽¹²⁾	47
Figura 24 – Três formas de descarga do underflow do hidrociclone ⁽¹³⁾	48
Figura 25 – Esquema de uma espiral (Humphreys)	55
Figura 26 – Separador magnético de imãs de terras-raras	58
Figura 27 – Separador magnético de correias cruzadas de três estágios ⁽¹³⁾	59
Figura 28 – Separador de rolos induzidos com três estágios de separação ⁽¹³⁾	60
Figura 29 – Separador magnético de tambor	61
Figura 30 – Separador magnético a úmido de alta intensidade (WHIMS)	
da Gaustec	61

Figura 31 – Diagrama Fe-O	67
Figura 32 – Diagrama de equilíbrio Fe-C ⁽²⁸⁾	69
Figura 33 – Diagrama de Chaudron (oxi-redução) ⁽²⁸⁾	71
Figura 34 – Efeito da variação de pressão sobre o equilíbrio	
da reação de Boudouard ⁽²⁸⁾	72
Figura 35 – Representação esquemática do modelo topoquímico	73
Figura 36 – Aspecto típico da formação ferrífera	75
Figura 37 – Mapa geológico e posicionamento das amostras coletadas	76
Figura 38 – Fluxograma de tratamento do minério magnetítico	78
Figura 39 – Preparação do minério <i>ROM</i> (Amostra G)	
para ensaios de caracterização tecnológica	82
Figura 40 – Análise granulométrica para determinação do grau de liberação	83
Figura 41 – Tambor para homogeneização da mistura	89
Figura 42 – Disco de pelotização	91
Figura 43 – Forno de grelha reta	91
Figura 44 – Forno rotativo	92
Figura 45 – Perfil térmico de queima das pelotas RD	92
Figura 46 – Perfil térmico de queima das pelotas AF I	93
Figura 47 – Perfil térmico de queima das pelotas AF II	93
Figura 48 – Equipamento para determinação da resistência à	
compressão das pelotas cruas	95
Figura 49 – Equipamento para determinação da resistência à	
compressão das pelotas queimadas	96
Figura 50 – Equipamento para ensaio de abrasão e tamboramento	98
Figura 51 – Forno (COMBUSTOL) utilizado para o ensaio de redução	99
Figura 52 – Curva de distribuição granulométrica corrigida	102
Figura 53 – Curva de grau de liberação	103
Figura 54 – Distribuição granulométrica do material de alimentação	
do ensaio de moagem	106
Figura 55 – Distribuição granulométrica para o produto	
da moagem a 1 minuto	106
Figura 56 – Distribuição granulométrica para o produto	
da moagem a 2 minutos	107
Figura 57 – Distribuição granulométrica para o produto	
da moagem a 4 minutos	107

Figura 58 – Distribuição granulométrica para o produto	
da moagem a 8 minutos	108
Figura 59 – Distribuição granulométrica para o produto	
da moagem a 16 minutos	108
Figura 60 – Distribuição granulométrica para o produto	
da moagem a 32 minutos	109
Figura 61 – Curva tempo de moagem vs P80	109
Figura 62 – Fotografia das pelotas quebradas no	
teste de resistência à compressão	124
Figura 63 – Pelota AF I; posição: núcleo; aumento: 100x	131
Figura 64 – Pelota AF I; posição: meio raio; aumento: 100x	131
Figura 65 – Pelota AF I; posição: superfície; aumento: 100x	132
Figura 66 – Pelota RD; posição: núcleo; aumento: 100x	133
Figura 67 – Pelota RD; posição: meio raio; aumento: 100x	134
Figura 68 – Pelota RD; posição: superfície; aumento: 100x	134

Lista de tabelas

Tabela 1 – Características da hematita vs magnetita	20
Tabela 2 – Produção e reservas de minério de ferro por país ^(3,4)	21
Tabela 3 – Ranking das 10 maiores empresas produtoras mundiais	
de minério de ferro (2010) ⁽⁴⁾	22
Tabela 4 – Evolução da importação e exportação	
de minério de ferro por país ⁽⁸⁾	24
Tabela 5 – Recursos & reservas de minério de ferro brasileiro ⁽⁵⁾	26
Tabela 6 – Capacidade atual de produção de pelotas ⁽⁵⁾	30
Tabela 7 – Capacidade adicional de produção de pelotas (até 2015) ⁽⁵⁾	31
Tabela 8 – Distribuição dos diâmetros das bolas da carga moedora ⁽¹⁷⁾	45
Tabela 9 – Correlação das escalas Tyler, Richards e a abertura da peneira ⁽²¹⁾	50
Tabela 10 – Critério de concentração e separação gravítica ⁽²²⁾	52
Tabela 11 – Produtividade e consumo específico de combustível	
na pelotização por tipo de minério ⁽²⁵⁾	66
Tabela 12 – Mecanismo controlador em função da redução	
do óxido de ferro ^(29,32)	74
Tabela 13 – Análise química do minério ROM (Amostra G)	76
Tabela 14 – Amostras de ROM	77
Tabela 15 – Massa e análise química (%) dos concentrados magnetíticos	79
Tabela 16 – Análise química do calcário calcítico	80
Tabela 17 – Análise química do carvão antracito	80
Tabela 18 – Análise química da bentonita	80
Tabela 19 – Distribuição das bolas de moagem	86
Tabela 20 – Tempo de moagem vs P80	86
Tabela 21 – Análise química (%) dos <i>pellet feed</i> para pelotização	88
Tabela 22 – Análise comparativa dos <i>pellet feed</i> produzidos	
com os de duas grandes mineradoras nacionais e uma estrangeira	88
Tabela 23 – Massa em kg dos insumos de cada mistura	89
Tabela 24 – Especificações químicas calculadas para as misturas	90
Tabela 25 – Análises químicas da basicidade binária das misturas	90
Tabela 26 – Análise granulométrica das misturas	90
Tabela 27 – Análise química do minério <i>ROM</i> (Amostra G)	101
Tabela 28 – Distribuição granulométrica corrigida	102

Tabela 29 – Distribuição %Fe por faixa granulométrica	103
Tabela 30 – Dados para determinação do índice de trabalho	
para moagem de Bond	104
Tabela 31 – Dados para determinação do índice de britagem de Bond	105
Tabela 32 – Distribuição granulométrica P80 = 35#	110
Tabela 33 – Distribuição granulométrica P80 = 42#	111
Tabela 34 – Distribuição granulométrica P80 = 60#	111
Tabela 35 – Distribuição granulométrica P80 = 100#	112
Tabela 36 – Distribuição granulométrica P80 = 150#	112
Tabela 37 – Resultado separação meio denso (Amostra G, P80 = 35#)	113
Tabela 38 – Resultado separação meio denso (Amostra G, P80 = 42#)	113
Tabela 39 – Resultado separação meio denso (Amostra G, P80 = 60#)	114
Tabela 40 – Comparação de produtos leves e pesados até	
a fração +150# para diferentes P ₈₀	114
Tabela 41 – Resumo da mineralogia da fração de pesado do <i>ROM</i>	
(Amostra G, P80 = 35#)	115
Tabela 42 – Resumo da mineralogia da fração de leve do ROM	
(Amostra G, P80 = 35#)	116
Tabela 43 – Separação magnética "Frantz" da fração de pesado	
do <i>ROM</i> (Amostra G, P80 = 35#)	117
Tabela 44 – Distribuição granulométrica do sinter feed	117
Tabela 45 – Análise química das pelotas queimadas	119
Tabela 46 – Umidade (pelota crua)	119
Tabela 47 – Número de quedas (pelota crua)	120
Tabela 48 – Resistência à compressão (pelota crua)	120
Tabela 49 – Resistência à compressão (pelota seca)	121
Tabela 50 – Resistência à compressão – Pelotas AF I (-12,5 mm +9,5 mm)	122
Tabela 51 – Resistência à compressão – Pelotas AFII (-12,5 mm +9,5 mm)	122
Tabela 52 – Resistência à compressão – Pelotas RD (-12,5 mm +9,5 mm)	122
Tabela 53 – Variação do teor de FeO na pelota com a queima	123
Tabela 54 – Porosidade das pelotas	125
Tabela 55 – Distribuição granulométrica das pelotas	126
Tabela 56 – Índice de abrasão e tamboramento das pelotas	126
Tabela 57 – Grau de redução das pelotas AF I	128
Tabela 58 – Grau de redução das pelotas AF II	128
Tabela 59 – Grau de redução das pelotas RD	129

Tabela 60 – Grau de redução das pelotas RD	
(diferente condição operacional)	129
Tabela 61 – Grau de metalização das pelotas	129
Tabela 62 – Grau de metalização da pelota AF I (não magnética)	130
Tabela 63 – Análise comparativa das <i>pelotas</i> produzidos	
com as de duas grandes pelotizadoras nacionais e uma estrangeira	136