2 Modelagem Matemática

Neste capítulo é apresentada a modelagem matemática utilizada para prever a deposição de parafina em escoamento multifásico. Uma vez que os dutos de interesse são muito longos, considerou-se o escoamento como unidimensional, adotando-se propriedades médias na seção transversal. O escoamento pode possuir duas fases distintas escoando ao longo do duto, como por exemplo, gás e líquido, sendo que o líquido pode ser uma mistura de água e óleo. O modelo permite ainda avaliar a saída de solução de gás associado.

Para determinar o campo de velocidade, pressão, temperatura e fração volumétrica de cada fase utilizou-se o Modelo de Deslizamento escrito na forma de correlações sugeridas por Wallis (1969), juntamente com correlações empíricas para cálculo da perda carga no duto e caracterização das propriedades dos fluidos pelo modelo *black oil* (Beggs e Brill; 1984). A deposição de parafina foi modelada através do mecanismo de difusão molecular, considerado como um dos principais mecanismos de deposição de acordo com Burger *et al.* (1981).

2.1 Modelo de Deslizamento

O modelo de deslizamento consiste de um conjunto de equações de conservação para a mistura (massa, quantidade de movimento linear e energia), juntamente com a equação de massa para uma das fases (em geral, a fase gasosa), o que permite determinar velocidade, pressão e energia interna da mistura e fração volumétrica das fases.

As equações de conservação de acordo com o Modelo de Deslizamento são apresentadas a seguir, considerando somente duas fases (líquida e gasosa representadas pelo subscritos l e g). Para a mistura de líquido e gás, utilizou-se o subscrito *m*.

As equações de conservação de massa da fase gasosa e líquida são:

$$\frac{\partial(\alpha_{g}\rho_{g})}{\partial t} + \frac{\partial(\alpha_{g}\rho_{g}v_{g})}{\partial x} = m_{gl}$$
(2.1)

$$\frac{\partial(\alpha_l \rho_l)}{\partial t} + \frac{\partial(\alpha_l \rho_l v_l)}{\partial x} = -m_{gl}$$
(2.2)

onde para cada fase, α é a fração volumétrica, ρ é a massa específica e v é a velocidade, sendo t e x, o tempo e a coordenada axial ao longo do duto e m_{gl} representa o fluxo interfacial de massa entre as fases.

Considerando-se somente a presença de duas fases, as frações volumétricas do gás e líquido devem respeitar a seguinte equação de restrição

$$\alpha_l + \alpha_g = 1 \tag{2.3}$$

Combinando as equações de conservação de massa de cada fase, pode-se obter a equação de conservação da mistura

$$\frac{\partial(\rho_m)}{\partial t} + \frac{\partial(\rho_m v_m)}{\partial x} = 0$$
(2.4)

onde a massa específica e velocidade da mistura são definidas de acordo com

$$\rho_m = (\alpha_g \rho_g + \alpha_l \rho_l) \tag{2.5}$$

$$v_m = (\alpha_g \rho_g v_g + \alpha_l \rho_l v_l) / \rho_m \tag{2.6}$$

A equação de conservação de quantidade de movimento linear para a mistura também pode ser obtida a partir da soma das equações de conservação de movimento para as duas fases, resultando em

$$\frac{\partial(\rho_m v_m)}{\partial t} + \frac{\partial(\rho_m v_m v_m)}{\partial x} = -\frac{\partial J}{\partial x} - \frac{\partial p}{\partial x} - \rho_m g \sin \theta - \frac{\tau_w S_w}{A}$$
(2.7)

onde θ é a inclinação do duto com a horizontal, *p* a pressão média da mistura, τ_w a tensão cisalhante na parede, S_w e *A* são respectivamente o perímetro molhado da parede e a área transversal da seção transversal do duto. *J* é o fluxo de deslizamento ("drift"), sendo definido de acordo com

$$J = \frac{\alpha_g \alpha_l \rho_g \rho_l v_r^2}{\rho_m}$$
(2.8)

onde v_r é a velocidade relativa entre as fases

$$v_r = (v_g - v_l) \tag{2.9}$$

A equação de conservação de energia da mistura também pode ser obtida a partir da soma das equações de conservação de energia térmica para cada uma das duas fases, resultando em

$$\frac{\partial(\rho_m u_m)}{\partial t} + \frac{\partial(\rho_m v_m u_m)}{\partial x} = -\frac{\partial}{\partial x} \left[\frac{\alpha_g \alpha_l \rho_g \rho_l}{\rho_m} (u_g - u_l) v_r \right] - p \frac{\partial}{\partial x} \left[\frac{\alpha_g \alpha_l (\rho_l - \rho_g)}{\rho_m} v_r \right] + p \frac{\partial v_m}{\partial x} - \frac{1}{2} m_{gl} (v_g^2 - v_l^2) - \frac{q_c S_w}{A}$$
(2.10)

onde u é a energia interna e q_c é fluxo de calor entre o escoamento interno e o exterior. A energia interna específica da mistura é definida como

$$u_m = (\alpha_g \ \rho_g \ u_g + \alpha_l \ \rho_l \ u_l) / \rho_m \tag{2.11}$$

Para ser possível resolver o conjunto de equações apresentado, diversas equações de fechamento adicionais são necessárias, pois o número de incógnitas é bem superior ao número de equações. Por exemplo, para resolver a equação de conservação de massa do gás é necessário introduzir um modelo para avaliar a transferência interfacial entre as fases, m_{gl} . Neste trabalho m_{gl} foi determinado a partir do modelo *black oil* para o óleo.

Para a solução da equação de conservação de quantidade de movimento, torna-se necessário introduzir um modelo para determinar o atrito da mistura com a parede do duto τ_w , assim como o fluxo de deslizamento *J*, sendo que ambos dependem do padrão de escoamento. Para a equação da energia, é necessário introduzir um modelo para avaliar a perda de calor para o ambiente q_c . Finalmente é preciso introduzir equações de estado para a determinação das propriedades termofísicas.

2.2 Fluxo de Deslizamento J

Para avaliar o fluxo de deslizamento J é comum introduzir a definição da velocidade de deslizamento ou escorregamento ("drift") v_{drift} . Antes, porém, vamos introduzir a definição de algumas velocidades relativas.

A velocidade v_{gm} é a velocidade relativa entre a velocidade real da fase gasosa e a velocidade média da mistura

$$v_{gm} = v_g - v_m = \alpha_\ell \frac{\rho_\ell}{\rho_m} v_r \tag{2.12}$$

Introduzindo a definição de fluxo volumétrico total j

$$j = \alpha_g v_g + \alpha_l v_l \quad \text{ou} \quad j = v_{sg} + v_{sl} \tag{2.13}$$

onde v_{sg} e v_{sl} são as velocidades superficiais de cada fase, definidas pela razão entre a vazão volumétrica Q_k da fase k e a área da seção transversal, como

$$v_{sg} = \frac{Q_g}{A} = \alpha_g v_g \qquad ; \qquad v_{sl} = \frac{Q_l}{A} = \alpha_l v_l \qquad (2.14)$$

podemos definir a velocidade relativa entre a fase gasosa e o fluxo volumétrico total *j* como

$$v_{gj} = v_g - j = \alpha_\ell (v_g - v_\ell) = \alpha_\ell v_r$$
 (2.15)

De acordo com Zuber e Findlay (1965) e Ishii (1975), Hibiki e Ishii (2002, 2003), a velocidade da fase gás pode ser relacionada com o fluxo volumétrico total por

$$v_g = C_o \ j + v_{drift} \tag{2.16}$$

onde C_o é um coeficiente de distribuição e v_{drift} é a velocidade de deslizamento. Estas grandezas dependem do regime de escoamento e geralmente são estimadas a partir de correlações empíricas. Combinando as Equações. (2.15) e (2.16) tem-se

$$v_{gj} = v_{drift} + (C_o - 1) j$$
(2.17)

O fluxo de "drift" pode então ser rescrito como

$$J = \frac{\alpha_s}{\alpha_\ell} \frac{\rho_s \rho_\ell}{\rho_m} v_{gj}^2$$
(2.18)

As velocidades das fases podem ser obtidas a partir da velocidade média da mistura pelas expressões,

$$v_g = v_m + \frac{\rho_l}{\rho_m} v_{gj} \qquad ; \qquad v_l = v_m - \frac{\alpha_g}{1 - \alpha_g} \frac{\rho_g}{\rho_m} v_{gj}$$
(2.19)

enquanto C_o e v_{drift} o são a partir de equações empíricas, dependente do padrão do escoamento, conforme indicado a seguir. Como neste trabalho investigaram-se o padrão intermitente, estratificado e bolhas, as correlações empíricas para estes padrões são especificadas na próxima seção.

2.2.1 Padrão Intermitente e Estratificado

Para o escoamento vertical emprega-se o valor de $C_o = 1,2$ e v_{drift} pela proposta de Hibiki e Ishii (2002)

$$v_{drift} = 0.35 \left(g D \frac{\rho_l - \rho_g}{\rho_l} \right)^{1/2}$$
 (2.20)

onde g é a aceleração da gravidade e D diâmetro interno do duto.

Para escoamento horizontal ou inclinado com ângulo θ com a horizontal, com o escoamento totalmente desenvolvido e com comprimento de golfada muito grande (>10 D) foram utilizados para v_{drift} e C_o as expressões proposta por Bendiksen (1984),

Para
$$Fr \le 3.5$$
 $v_{drift} = 0.35\sqrt{g} D \operatorname{sen} \theta + 0.54\sqrt{g} D \cos \theta$ (2.21)

$$C_O = 1,05 + 0,15 \,\mathrm{sen}^2 \,\theta \tag{2.22}$$

Para
$$Fr > 3,5$$
 $v_{drift} = 0,35\sqrt{g D}\cos\theta$ (2.23)

$$C_o = 1,20$$
 (2.24)

onde Fr é o número de Froude baseado no fluxo volumétrico j

$$Fr = \frac{j}{\sqrt{g D}}$$
(2.25)

2.2.2 Padrão de Bolhas

Para o padrão de bolhas adotou-se o mesmo coeficiente de distribuição $C_o = 1,2$ para o escoamento horizontal e inclinado.

A velocidade de deslizamento v_{drift} para escoamento vertical deve ser avaliada pela expressão proposta por Malnes (1983)

$$v_{drift} = 1.53 \left(g \sigma \frac{\rho_l - \rho_g}{\rho_l^2} \right)^{1/4}$$
(2.26)

Para o escoamento horizontal ou inclinado com ângulo θ com a horizontal utilizou-se a expressão proposta por Malnes (1983)

$$v_{drift} = 1,18 \left(g \sigma \frac{\rho_l - \rho_g}{\rho_l^2} \right)^{1/4} \left(\alpha_l | \mathbf{sen} \theta | \right)^{1/2}$$
(2.27)

2.3 Atrito com a Parede

O fator de atrito foi modelado assumindo escoamento hidrodinâmicamente desenvolvido. Para o escoamento multifásico vertical em regime turbulento, o fator de atrito da mistura f_m foi determinado pelo método proposto por Hagedorn and Brown (Beggs e Brill, 1 984). Este método utiliza as expressões propostas por Jain em 1976 para a solução da equação de Colebrook-White de 1939 (Beggs e Brill, 1984).

$$f_m = \left[1,14 - 2,0 \log \left(\frac{\varepsilon}{D_h} + \frac{21,25}{\text{Re}_m^{0,9}} \right)^2 \right]^{-1}$$
(2.28)

onde $D_h=4A/S_w$ é o diâmetro hidráulico e Re_m é o número de Reynolds da mistura

$$\operatorname{Re}_{m} = \frac{\rho_{m} \mid v_{m} \mid D_{h}}{\mu_{m}}$$
(2.29)

sendo μ_m a viscosidade da mistura determinada pela equação

$$\mu_m = \mu_g^{\alpha_g} \quad \mu_l^{\alpha_l} \tag{2.30}$$

onde μ_l é a viscosidade do líquido e μ_g a viscosidade do gás.

Para o escoamento multifásico horizontal ou levemente inclinado o fator de atrito f_m foi obtido pelo método proposto por Dukler *et al.*, (Beggs e Brill, 1984). Desenvolvida para um determinado campo de dados e normalizado pelo fator f/f_m onde

$$f_m = 0,0056 + 0.5 \,\mathrm{Re}_m^{-0.32} \tag{2.31}$$

sendo a normalização do fator função da fração volumétrica do líquido α_l

$$\frac{f_m}{f} = 1 + \frac{x}{1,281 - 0,478x + 0,444x^2 - 0,094x^3 + 0,00843x^4}$$
(2.32)

onde

$$x = -\ln(\alpha_1) \tag{2.33}$$

2.4 Transferência de Calor para o Ambiente Externo

A perda de calor para o ambiente, q_c , é determinada a partir do coeficiente global de transferência de calor U, ou seja,

$$q_c = U \left(T - T_\infty \right) \tag{2.34}$$

sendo *T* temperatura de mistura e T_{∞} a temperatura do meio externo ao duto. Por outro lado, a temperatura de mistura é determinada a partir da energia interna u_m , da solução da Eq. (2.10).

O coeficiente global de troca de calor U é determinado a partir da resistência térmica total com base na área interna de troca de calor A_{si} , a qual é composta pela

soma da resistência à transferência de calor por convecção interno a tubulação, R_i , e externo a tubulação, R_e , com a resistência a transferência de calor devido à condução pela parede da tubulação R_t e pelo depósito de parafina R_{wax}

$$U A_{si} = \frac{1}{R_i + R_e + R_i + R_{wax}}$$
(2.35)

onde as resistências à condução de calor são,

$$R_t = \frac{\ln(r_{ex} / r_{in})}{2\pi k_s dz}$$
(2.36)

$$R_{wax} = \frac{\ln(r_{in}/r_i)}{2\pi k_{wax} dz}$$
(2.37)

onde r_{ex} e r_{in} representam os raios externo e interno do duto e r_i o raio interno do depósito. k_s e k_{wax} são as condutividades térmicas da parede do duto e da parafina sólida.

As resistências à transferência de calor por convecção interna e externa dependem dos coeficientes de película interno h_i e externo h_e , respectivamente,

$$R_i = \frac{1}{h_i A_{si}} \qquad ; \qquad R_e = \frac{1}{h_e A_{se}} \tag{2.38}$$

onde as áreas superficiais de troca de calor são $A_{si} = S_w dz = 2 \pi r_i d z$ e $A_{se} = 2 \pi r_{ex} d z$.

O coeficiente de película depende das condições do escoamento, e as correlações empíricas utilizadas para determiná-los são apresentadas a seguir.

2.4.1 Coeficiente de Película Externo

Dois tipos de escoamento foram investigados no presente trabalho. Inicialmente, visando reproduzir os dados experimentais de Matzain (1999), utilizou-se o mesmo tipo de escoamento externo que o empregado em suas experiências. Para resfriar a tubulação Matzain (1999) empregou um trocador de calor anular. Neste caso, o coeficiente de película externo h_e foi determinado considerando a situação de escoamento longitudinal, utilizando-se a correlação de Petukhov de 1970 (Matzain, 1999)

$$Nu_e = \frac{h_e \ 2r_{ex}}{k_{\infty}} \tag{2.39}$$

$$Nu_{e} = \left[\left(\frac{f_{\infty}}{8} \right) \mathbf{Re}_{\infty} \mathbf{Pr}_{\infty} \right] \left[1,07 + 12,7 \left(\frac{f_{\infty}}{8} \right)^{1/2} \left(\mathbf{Pr}_{\infty}^{2/3} - 1 \right) \right]^{-1} \left(\frac{\mu_{\infty}}{\mu_{\infty,w}} \right)^{\eta}$$

onde para η utilizou-se o valor 0,25 e para $\mu_{\infty}/\mu_{\infty,w}$ o valor de 1,25. O subscrito ∞ significa propriedades do fluido externo, baseadas na temperatura de mistura. $\mu_{\infty,w}$ é a viscosidade do fluido externo baseada na temperatura da parede externa. Para avaliar o fator de atrito do escoamento externo empregou-se a seguinte expressão

$$f_{\infty} = (1,82\log \mathbf{Re}_{\infty} - 1,64)^{-2} \tag{2.40}$$

com

$$\mathbf{R}\mathbf{e}_{\infty} = \frac{\rho_{\infty} |v_{\infty}| 2 r_{ex}}{\mu_{\infty}} \qquad ; \qquad \mathbf{P}\mathbf{r}_{\infty} = \frac{\mu_{\infty} c p_{\infty}}{k_{\infty}}$$
(2.41)

onde k_{∞} , ρ_{∞} , μ_{∞} e cp_{∞} , representam a condutividade térmica, massa específica, viscosidade absoluta e calor específico à pressão constante do fluido externo escoando no espaço anular.

O outro tipo de escoamento considerado consistiu na análise de um caso real, sendo a tubulação resfriado pela corrente marinha. O coeficiente de película externo h_e utilizado neste caso corresponde a convecção forçada em escoamento transversal ao duto e fluido externo com velocidade V_{∞} .O número de Nusselt externo Nu_e é determinado a partir da correlação de Hilpert (Incropera e DeWitt, 2002)

$$Nu_{e} = \frac{h_{e} (2 r_{ex})}{k_{\infty}} = C_{1} \mathbf{R} \mathbf{e}_{\infty}^{m} \mathbf{P} \mathbf{r}_{\infty}^{0,36}$$
(2.42)

com

$$\mathbf{Re}_{\infty} = \frac{\rho_{\infty} \, V_{\infty} \, \mathbf{sen} \, \theta \, (2 \, r_{ex})}{\mu_{\infty}} \qquad ; \qquad \mathbf{Pr}_{\infty} = \frac{\mu_{\infty} \, cp_{\infty}}{k_{\infty}} \tag{2.43}$$

onde k_{∞} , ρ_{∞} , μ_{∞} e cp_{∞} , representam a condutividade térmica, massa específica, viscosidade absoluta e calor específico à pressão constante da água do mar, respectivamente. As constantes C_1 e *m* dependem do número de Reynolds **Re**_{∞}, como ilustrado na Tabela 2.1.

	C_1	т
$\mathbf{Re}_{\infty} < 4$	0,989	0,330
$4 < \mathbf{Re}_{\infty} < 40$	0,911	0,385
$40 < \mathbf{Re}_{\infty} < 4\ 000$	0,683	0,466
$4\ 000 < \mathbf{Re}_{\infty} < 40\ 000$	0,193	0,618
$40\ 000 < \mathbf{Re}_{\infty}$	0,027	0,805

Tabela 2.1 - Constante da correlação de transferência de calor externa

2.4.2 Coeficiente de Película Interno

O coeficiente de película interno pode ser estimado a partir de diferentes correlações com diferentes níveis de aproximação. No presente trabalho, considerou-se a possibilidade de utilizar correlações que independem do padrão de escoamento, assim como de particularizar para cada padrão, conforme apresentado abaixo. Como os casos de interesse neste trabalho encontram-se no regime de escoamento turbulento, somente correlações para este regime de escoamento foram consideradas.

<u>Coeficiente de Película de Mistura.</u> Neste caso, o coeficiente de transferência de calor interno é baseado nas propriedades da mistura, utilizando a correlação para convecção em escoamento turbulento em dutos circulares devido a Sieder e Tate (Incropera e DeWitt, 2002), independendo do padrão e da inclinação do duto

$$Nu_{i} = \frac{h_{i} (2 r_{i})}{k_{m}} = 0,027 \operatorname{Re}_{m}^{0,8} \operatorname{Pr}_{m}^{1/3}$$
(2.44)

com

$$\mathbf{Re}_{m} = \frac{\rho_{m} | v_{m} | (2 r_{i})}{\mu_{m}} \qquad ; \qquad \mathbf{Pr}_{m} = \frac{\mu_{m} c p_{m}}{k_{m}}$$
(2.45)

Sendo as propriedades de viscosidade, massa da específica e calor específico a pressão constante da mistura obtida a partir das equações

$$\mu_m = \alpha_g \ \mu_g + \ \alpha_l \ \mu_l \qquad ; \qquad \rho_m = \alpha_g \ \rho_g + \ \alpha_l \ \rho_l \tag{2.46}$$

$$cp_m = \alpha_g \ cp_g + \alpha_l \ cp_l \tag{2.47}$$

Para a condutividade térmica da mistura k_m utilizou-se a expressão proposta por Eucken de 1949 (Salomon Lewy, 1999)

$$\frac{k_m}{k_l} = \frac{1 - [1 - 3k_g / (2k_l + k_g)]\alpha_g}{1 - [1 - 3k_l / (2k_l + k_g)]\alpha_g}$$
(2.48)

<u>Coeficiente de Película para Padrão Intermitente em Duto Horizontal e Inclinado.</u> Para o regime turbulento no padrão intermitente para duto horizontal e inclinado utilizou-se a correlação proposta por Kudirka *et al.* em 1965 (Matzain, 1999).

$$Nu_{i} = \frac{h_{i} (2 r_{i})}{k_{m}} = 125 \left(\frac{v_{sg}}{v_{sl}}\right)^{1/8} \left(\frac{\mu_{g}}{\mu_{l}}\right)^{0,6} \mathbf{Re}_{sl}^{1/4} \mathbf{Pr}_{l}^{1/3} \left(\frac{\mu_{l,m}}{\mu_{l,w}}\right)^{0,14}$$
(2.49)

com o número de Reynolds Resl

$$\operatorname{Re}_{sl} = \frac{\rho_l |v_{sl}| (2r_l)}{\mu_l}$$
(2.50)

 $\mathbf{Pr}_{l} = \mu_{l} cp_{l} / k_{l}$ é o número de Prandtl do líquido, $\mu_{l,m}$ e $\mu_{l,w}$ correspondem à viscosidade absoluta do líquido avaliada na temperatura de mistura e na temperatura da parede interna. Porém, no presente trabalho, esta razão foi considerada igual à unidade.

<u>Coeficiente de Película para Padrão Intermitente em Duto Vertical.</u> Para o regime turbulento no padrão intermitente para duto na vertical utilizou-se a correlação proposta por Rezkallah and Sims em 1987 (Matzain, 1999).

Modelagem Numérica

$$\frac{h_i}{h_l} = (\alpha_l)^{-0.9}$$
(2.51)

onde h_l é estimado pela correlação de Sieder Tate (Eq. 2.44) para escoamento monofásico, baseado nas propriedade do líquido.

<u>Coeficiente de Película para Padrão Bolha.</u> Para o regime turbulento no padrão bolha para duto na vertical utilizou-se a correlação proposta por Aggour em 1978 (Matzain, 1999).

$$\frac{h_i}{h_l} = (\alpha_l)^{-0.83}$$
(2.52)

$$Nu_{l} = \frac{h_{l} (2 r_{l})}{k_{l}} = 0,0155 \operatorname{Re}_{sl}^{0,83} \operatorname{Pr}_{l}^{0,5} \left(\frac{\mu_{l,m}}{\mu_{l,w}}\right)^{0,33}$$
(2.53)

<u>Coeficiente de Película para Padrão Estratificado.</u> O padrão estratificado só pode existir em dutos horizontais ou levemente inclinado. Nesses casos, a correlação proposta por Sieder and Tate (Incropera e DeWitt; 2002) para o regime turbulento também pode ser utilizada, porém, os números de Reynolds e Prandtl devem ser baseados nas propriedades do líquido

$$Nu_{i} = \frac{h_{i} (2 r_{i})}{k_{m}} = 0,027 \ \mathbf{Re}_{sl}^{0,80} \ \mathbf{Pr}_{l}^{0,33} \left(\frac{\mu_{l,m}}{\mu_{l,w}}\right)^{0,14}$$
(2.54)

 $\mu_{l,m}$ e $\mu_{l,w}$ correspondem à viscosidade absoluta do líquido avaliada na temperatura de mistura e na temperatura da parede interna. Porém, no presente trabalho, esta razão foi considerada igual à unidade para a todas as correlações

2.4.3 Energia Interna e Temperatura

Como já mencionado, a temperatura pode ser avaliada a partir do conhecimento da energia interna. Qualquer propriedade termodinâmica pode ser avaliada em função de quaisquer duas propriedades. No caso de líquidos é conveniente considerar u=u(T, p), onde *T* a temperatura e *p* é a pressão. Então a variação de energia interna pode ser obtida a partir de

$$d u = \frac{\partial u}{\partial T} \bigg|_{p} dT + \frac{\partial u}{\partial p} \bigg|_{T} dp$$
(2.55)

onde o primeiro termo pode ser rescrito, lembrando que $u=h - p/\rho$, como

$$\left.\frac{\partial u}{\partial T}\right|_{p} = c_{p} - \frac{\beta p}{\rho}$$
(2.56)

onde c_p é o calor específico a pressão constante e β corresponde ao coeficiente de expansão térmica

$$c_p = \frac{\partial h}{\partial T} \Big|_p$$
 $e \qquad \beta = -\frac{1}{\rho} \frac{\partial \rho}{\partial T} \Big|_p$ (2.57)

A derivada parcial da energia interna com a pressão pode ser obtida em função da pressão e temperatura por

$$\left.\frac{\partial u}{\partial p}\right|_{T} = \left(k_T p - T \beta\right) \frac{1}{\rho}$$
(2.58)

onde k_T corresponde ao coeficiente de compressibilidade isotérmica

$$k_T = \frac{1}{\rho} \frac{\partial \rho}{\partial p} \bigg|_T$$
(2.59)

A variação de energia interna pode então ser escrita como

$$d u = \left(c_p - \frac{\beta p}{\rho}\right) dT + \left(k_T p - T \beta\right) \frac{d p}{\rho}$$
(2.60)

O calor específico a pressão constante pode ainda ser relacionado ao calor específico a volume constante com

$$c_p = c_v + \frac{T}{\rho} \frac{\beta^2}{k_T}$$
(2.61)

Para fluidos incompressíveis ou quase incompressíveis β e k_T podem ser desprezados. Para gás ideal, a energia interna só depende da temperatura.

Admitindo comportamento ideal para o gás, utilizou-se neste trabalho a seguinte expressão,

$$d u = c_v d T \tag{2.62}$$

Para obtermos o incremento da energia interna da mistura $d u_m$ conforme a equação 2.11

$$du_m = d[(\alpha_g \rho_g u_g + \alpha_l \rho_l u_l) / \rho_m]$$
(2.63)

Sendo necessária determinação do incremento das energias internas das fases gás e líquido presentes no escoamento

$$d u_g = c_{v_g} dT, \ d u_l = c_{v_l} dT$$
 (2.64)

O calor específico a volume constante das fases gasosa e líquida, $cv_g e cv_l$, foram determinados a partir do modelo composicional utilizando o programa PVTSIM 18 (Calsep, 2010) sendo função da composição, pressão e temperatura.

2.5 Modelo de Deposição de Parafina

O modelo de deposição de parafina selecionado para ser investigado no presente trabalho consiste no modelo de difusão molecular, governado pela lei de Fick. Apesar de não ser o único mecanismo de deposição (Azevedo e Teixeira, 2003), de acordo Burger et al (1981) o mecanismo de difusão molecular pode ser considerado como o mecanismo dominante de deposição. Sua adoção teve por base a simplicidade e por ter sido utilizado com sucesso por diversos autores como Matzain (1999), Nazar (2001), Romero *et al.* (2006) e Minchola *et al.* (2007).

A taxa de massa de parafina depositada pode ser avaliada a partir do fluxo difusivo da parafina dissolvida, cuja concentração é *w*, de acordo com a lei de Fick, como

$$\frac{dm_p}{dt} = -\rho_m D_w A_{si} \frac{\partial w}{\partial r} \bigg|_i$$
(2.65)

onde m_p é a massa de parafina depositada, ρ_m a massa específica da mistura, D_w o coeficiente de difusão da parafina líquida na mistura, $A_{si} = S_w dz$ a área superficial de deposição na interface $i \in \partial w/\partial r$, o gradiente de concentração de parafina dissolvida na mistura avaliado na interface do depósito.

Para avaliar o gradiente radial de concentração, um procedimento indireto foi utilizado de forma a evitar a determinação de mais uma variável (concentração). A metodologia consiste em avaliar o gradiente radial de concentração em função do gradiente radial de temperatura. O termo $\partial w/\partial r$)_i é assim obtido pela expressão,

$$\frac{\partial w}{\partial r}\Big|_{i} = \frac{\partial w}{\partial T}\frac{\partial T}{\partial r}\Big|_{i}$$
(2.66)

com $\partial w/\partial T$ obtido a partir da curva de solubilidade da parafina em função da temperatura.

Uma vez que na formulação unidimensional, todas as propriedades são consideradas uniformes na seção transversal, o gradiente radial de temperatura na interface *i* também precisa ser determinado de forma indireta, sendo obtido através do calor perdido para o ambiente,

$$q_c = U(T - T_{\infty}) = -k_m \frac{\partial T}{\partial r} \bigg|_i$$
(2.67)

onde k_m é a condutividade térmica da mistura, U é o coeficiente global de troca de calor entre o fluido interno com temperatura T e o ambiente externo com temperatura T_{∞} . O gradiente de concentração na interface é calculado como,

$$\frac{\partial w}{\partial r}\Big|_{i} = \frac{\partial w}{\partial T}\frac{\partial T}{\partial r}\Big|_{i} = -\frac{\partial w}{\partial T}\frac{q_{c}}{k_{m}} = -\frac{\partial w}{\partial T}\frac{U(T-T_{\infty})}{k_{m}}$$
(2.68)

A quantidade de massa depositada é,

$$m_p = \rho_p (1 - \phi) A_d \ dz \tag{2.69}$$

onde ρ_p é a massa específica da parafina sólida e ϕ é a porosidade, definida como sendo a razão entre o volume ocupado pelo líquido no depósito sólido e o volume do depósito sólido. A área A_d corresponde à área da seção transversal do depósito

$$A_d = \pi r_{in}^2 - A_i$$
; $A_i = \pi r_i^2$ (2.70)

Combinando as equações anteriores, determina-se a nova área da seção transversal de escoamento A_i por

$$A_i = A_i^o - \int \frac{d A_d}{dt} dt \tag{2.71}$$

sendo A_i^o a área da seção no instante de tempo anterior, e a taxa de aumento de área de depósito dada por

$$\frac{d A_d}{dt} = \frac{\rho_m}{\rho_p} \frac{D_w}{(1-\phi)} S_w \frac{\partial w}{\partial T} \frac{U(T-T_{\infty})}{k_m}$$
(2.72)

A espessura de depósito é então determinada pela diferença entre o raio interno do duto r_{in} e o novo raio de depósito r_i

$$\delta = r_{in} - r_i \tag{2.73}$$

Para introduzir a influência dos efeitos do cisalhamento na taxa de deposição, Matzain (1999) propôs um fator de correção empírico π_2 visando diminuir a quantidade de massa depositada. Este fator depende do padrão de escoamento e do número de Reynolds baseado na espessura do depósito. Matzain (1999) propôs ainda incluir mais um coeficiente empírico C_1 multiplicativo do coeficiente de difusão, para indiretamente corrigir eventuais afastamentos da taxa de deposição devido a outros mecanismos. Dessa forma a variação da área do depósito pode ser avaliada por

$$\frac{dA_d}{dt} = \frac{\rho_m}{\rho_p} \frac{C_1}{(1+\pi_2)} \frac{D_w}{(1-\phi)} S_w \frac{\partial w}{\partial T} \frac{U(T-T_\infty)}{k_m}$$
(2.74)

onde

Modelagem Numérica

$$\pi_2 = C_2 \operatorname{Re}_{\delta}^{C_3} \tag{2.75}$$

Os valores empíricos das constantes propostas por Matzain (1999) são: $C_1 = 15, C_2 = 0,055$ e $C_3 = 1,4$. **Re**_{δ} é número de Reynolds baseado na espessura de deposição e no padrão de escoamento, conforme ilustrado na Tabela 2.2. Na definição de **Re**_{δ} na Tabela 2.2, o subscrito *o* indica que a propriedade deve ser avaliada somente para o óleo.

padrão de escoamento	Re _δ
bolha e intermitente	$\mathbf{Re}_{\delta} = \frac{\rho_m v_l \delta}{\mu_o}$
estratificado	$\mathbf{Re}_{\delta} = \frac{\rho_o \ v_l \ \delta}{\mu_o}$

Tabela 2.2 - Número de Reynolds de depósito em função do padrão de escoamento

2.6 Propriedades dos Fluidos

Para complementar as informações apresentadas anteriormente e determinar os campos de velocidade, pressão e temperatura, é preciso definir claramente todas as propriedades dos fluidos. Para caracterizá-las utilizaram-se dois modelos: O modelo *black oil* onde as propriedades dos fluidos são determinadas através de expressões e correlações empíricas e o modelo composicional que consiste em avaliar as propriedades do fluido a partir das propriedades de cada componente, ponderando-os com a fração molar. Para determinar as massas específicas e viscosidades do óleo, gás e água utilizou-se o modelo *black oil* e para capacidades e condutividades térmicas do óleo, gás e água, assim como a solubilidade da parafina no óleo utilizou-se o modelo composicional.

A Figura 2.1 apresenta esquematicamente o comportamento da liberação de gás num processo de mudança de fase a partir de uma determinada pressão e temperatura até a condição padrão. Na indústria do petróleo foram convencionadas como condição padrão a pressão de 14, 696 psia (101,325 KPa) e Temperatura de 60 °F (288,71 °K). Pelo modelo *black oil* as expressões e correlações levam em conta esta mudança de fase e a conservação de massa.

Figura 2.1 Evolução de um sistema da condição P,T para condição padrão

2.6.1 Massa Específica

<u>Massa específica do óleo</u> Para a determinação da massa específica do óleo a determinada pressão e temperatura utilizou-se o seguinte balanço de massa

$$m_o = m_o^{std} + m_{gdo}^{std} \tag{2.76}$$

ou

$$\rho_o V_o = \rho_o^{std} V_o^{std} + \rho_{gdo}^{std} V_{gdo}^{std}$$
(2.77)

 $\rho_o^{std} V_o^{std}$ é o produto da massa específica do óleo com o volume de óleo na condição padrão e $\rho_{gdo}^{std} V_{gdo}^{std}$ corresponde ao produto da massa especifica do gás dissolvido no óleo pelo volume de gás dissolvido no óleo na condição padrão. Dividindo ambos os lados da Eq. 2.77 pelo termo V_o^{std} temos.

$$\frac{\rho_o V_o}{V_o^{std}} = \rho_o^{std} + \frac{\rho_{gdo}^{std} V_{gdo}^{std}}{V_o^{std}}$$
(2.78)

Definindo

$$B_o = \frac{V_o}{V_o^{std}} \qquad \text{e} \qquad R_{So} = \frac{V_{gdo}^{std}}{V_o^{std}} \tag{2.79}$$

tem-se

$$\rho_o = \frac{\rho_o^{std} + \rho_{gdo}^{std} R_{So}}{B_o}$$
(2.80)

 $B_{\rm o}$ (fator volume de formação do óleo) é a relação entre o volume de óleo a P e Te o volume de óleo em condição padrão, levando-se em conta a saída do gás de solução, compressibilidade e expansão térmica e R_{So} (razão de solubilidade do gás no óleo) é a razão entre o volume de gás que está dissolvido no óleo expresso em condição padrão e o volume de óleo em condição padrão. A massa específica padrão ρ_o^{std} pode ser expressa pelo grau API do óleo e massa específica padrão da água ρ_w^{std} , de acordo com

$$\rho_o^{std} = d_o^{std} \rho_w^{std} \qquad ; \quad d_o^{std} = \frac{141,5}{(131,5+API)}$$
(2.81)

Lasater em 1958 (Beggs and Brill, 1984) a partir de amostras de petróleo com diferentes graus API e medidas experimentais de p_b (pressão de bolha) e γ_g (fração molar do gás dissolvido), propôs a seguinte correlação para obtenção de R_{so}

$$R_{so}\left(\frac{scf}{stbo}\right) = \frac{350d_{o}^{std} \, 379, 3\gamma_{g}}{M_{o}\left(1 - \gamma_{g}\right)} \tag{2.82}$$

onde M_o é peso molecular efetivo do óleo, e pode ser correlacionado com o seu grau API através das correlações

$$M_o = 630 - 10API$$
 $API \le 40$ (2.83)

$$M_{\rho} = 73,11API^{-1,562} \qquad API > 40 \qquad (2.84)$$

 γ_{g} é a fração molar do gás dissolvido no óleo e pode ser correlacionado com o fator fp_{b} (fator de pressão do bolha) e p_{b} (pressão de bolha)

$$\gamma_g = \frac{\ln(fp_b/0,2268)}{4,258} \qquad \qquad fp_b \le 5 \tag{2.85}$$

$$\gamma_g = \left(\frac{fp_b - 1,95}{8,26}\right)^{0,2809} \qquad \qquad fp_b \le 5 \tag{2.86}$$

$$fp_b = \frac{p_b \gamma_g}{(T + 459, 67)}$$
(2.87)

$$p_b(psia) = \frac{0.2268(T + 459,67)10^{4.258\gamma_g}}{\gamma_g} \qquad \gamma_g \le 0.7$$
(2.88)

$$p_b(psia) = \frac{(8,26 \,\gamma_g^{3,56} + 1,95)(T + 459,67)}{\gamma_g} \qquad \gamma_g > 0,7 \tag{2.89}$$

 B_o (fator volume de formação do óleo) foi determinado através da correlação de Vasquez e Beggs de 1976 (Beggs e Brill, 1984)

$$B_O(\frac{bbl}{stbo}) = 1,0 + C1R_{SO} + C2(T - 60)(\frac{API}{\gamma_{gs}}) + C3R_{SO}(T - 60)(\frac{API}{\gamma_{gs}}) \quad (2.90)$$

sendo os coeficientes C1, C2 e C3 definidos em função no grau API como apresentado na Tabela 2.3

Coeficiente	$API \leq 30$	<i>API</i> > 30
C1	4,677x10 ⁻⁴	4,670x10 ⁻⁴
C2	1,751x10 ⁻⁵	$1,100 \times 10^{-5}$
C3	-1,810x10 ⁻⁸	1,337x10 ⁻⁹

Tabela 2.3 - Coeficientes para fator volume de formação

Na Eq. 2.90, γ_{gs} é a fração molar do gás na pressão de 100 psig sendo obtido pela seguinte correlação

$$\gamma_{gs} = 1 + API\gamma_g T \log(\frac{p}{114,7}) \tag{2.91}$$

<u>Massa específica do gás</u> Para a caracterização da massa específica do gás a determinada pressão e temperatura utilizou-se o termo B_g (fator volume de formação do gás) definido como

$$B_g = \frac{V_{gf}^{p,t}}{V_{gf}^{std}} = \frac{\rho_{gf}^{std}}{\rho_{gf}^{p,t}}$$
(2.92)

Utilizando a equação de estado para gases

$$pV = zn\Re T$$
 , $n\Re = \frac{pV}{zT} = \left(\frac{pV}{zT}\right)^{std} = \text{constante}$ (2.93)

onde z, $n \in \Re$ correspondem ao fator de compressibilidade, número de moles, e constante universal dos gases, temos

$$B_g(\frac{ft^3}{scf}) = \frac{p^{std} zT}{T^{std} pz^{std}} = 0,0283\frac{zT}{p}$$
(2.94)

O fator de compressibilidade do gás z foi determinado através da correlação proposta por Standing em 1947 (Beggs e Brill, 1984)

$$z = a + (1 - a)\exp(-g) + (0,132 - 0,32\log(T_r))p_r^l$$
(2.95)

onde

$$a = 1,39(T_r - 0,92)^{0,5} - 0,36T_r - 0,1 , b = (0,62 - 0,23T_r)p_r$$
(2.96)

$$c = (0,066 / (T_r - 0,86) - 0,037) p_r^2$$
(2.97)

$$d = (0,32/10^e)p_r^6$$
, $e = 9(T_r - 1)$, $g = b + e + d$ (2.98)

$$l = 10^{h}$$
, $h = 0,3106 - 0,49T_r + 0,1824T_r^2$ (2.99)

 p_r e T_r são a pressão reduzida e temperatura reduzida do gás, sendo obtidos pelas seguintes expressões

$$p_r = p / p_c$$
 , $T_r = T / T_c$ (2.100)

onde p_c e T_c são a pressão crítica e temperatura crítica do gás obtidos pelas seguintes expressões.

$$p_c(psia) = 708,75 - 57,5d \frac{p,t}{gf}$$
 $T_c(psia) = 169 + 314d \frac{p,t}{gf}$ (2.101)

onde d_{gf}^{std} é densidade do gás nas condições padrão.

2.6.2 Viscosidade Dinâmica

<u>Viscosidade dinâmica óleo</u> Para a determinação da viscosidade dinâmica óleo utilizou-se as correlações proposta por Beggs e Robinsom em 1975 (Beggs e Brill, 1984)

$$\mu_o(cp) = A\mu_{od}{}^B \tag{2.102}$$

onde μ_o é a viscosidade do óleo com a presença do gás em solução e *A* e *B* são funções da razão de solubilidade do gás no óleo

$$A = 10,715(R_{SO} + 100)^{-0,515}, \qquad B = 5,44(R_{SO} + 150)^{-0,338}$$
(2.103)

onde μ_{od} é a viscosidade do óleo crú (óleo sem gás em solução) na pressão padrão e obtida através da correlação.

$$\mu_{od}(cp) = 10^{x} - 1$$
 , $x = 10^{3,0324 - 0,02023API} (T^{-1,163})$ (2.104)

onde a temperatura em °F.

<u>Viscosidade dinâmica do gás</u> Para a determinação da viscosidade dinâmica do gás utilizou-se a correlação proposta por Lee *et al*.em 1966 (Beggs e Brill,1984)

$$\mu_{g}(cp) = k \, 10^{-4} \exp(x \, d_{gf}^{y}) \tag{2.105}$$

onde

$$k = \frac{(9,4+0,02M_g)T^{1,5}}{209+19M_g+T}$$
(2.106)

$$x = 3,5 + \frac{986}{T} + 0,01M_g \quad ; \quad y = 2,4 - 0,2x \tag{2.107}$$

sendo M_g o peso molecular do gás obtido pela seguinte expressão

$$M_g = 29d_{gf}^{std} \tag{2.108}$$

<u>Viscosidade dinâmica da água</u> Para a viscosidade dinâmica da água utilizou-se a correlação proposta por Van Wingen em 1950 (Beggs e Brill, 1984).

$$\mu_{W}(cp) = \exp(1,003 - 0,01479 \times 10^{-3} T + 1,982 \times 10^{-5} T^{2})$$
(2.109)

onde a temperatura em ^oF.

2.6.3 Calor Específico e Condutividade Térmica

O calor específico à pressão e volume constantes, e a condutividade térmica do óleo, gás e água foram determinados a partir do modelo composicional utilizando o programa PVTSIM 18 (Calsep, 2010). Para os casos investigados neste trabalho, analisou-se a variação destas propriedades no intervalo de pressão e temperatura de interesse. Dependendo do caso, utilizou-se um valor constante para as propriedades ou especificou-se uma função de ajuste.

2.6.4 Condutividade Térmica da Parafina

Para especificar a condutividade térmica do depósito de parafina na parede interna do duto utilizou-se a correlação proposta por Matzain (1999)

$$\frac{k_w}{k_o} = 1,83 - 0,82 \ \phi \tag{2.110}$$

onde k_o é a condutividade do óleo e ϕ a porosidade do depósito formado, preenchida com óleo, determinado pela correlação (Matzain, 1999),

Modelagem Numérica_

$$\phi = 1 - \frac{1}{8} R_{ef}^{0,15} \tag{2.111}$$

sendo R_{ef} o número de Reynolds da fase líquida,

$$R_{ef} = \frac{\rho_0 v_l \ (2 \ r_l)}{\mu_0} \tag{2.112}$$

 ρ_{o} , μ_{o} são massa específica e viscosidade absoluta do óleo.

2.6.5 Curva de Solubilidade

A curva de solubilidade da parafina $\partial w/\partial T$ é obtida a partir da curva de concentração de parafina em solução com a temperatura. A concentração w é o máximo de parafina dissolvida na solução para uma dada temperatura. Conhecendo a composição dos fluidos de interesse determina-se, com o modelo composicional, quanto de parafina sai de solução para dada temperatura. A concentração de parafina em solução é então a diferença entre a quantidade inicial e a que sai de solução.

A Figura 2.2 ilustra a curva de solubilidade do óleo determinada experimentalmente por de Matzain (1999). Para a faixa de temperatura investigada em cada caso, ajustou-se uma curva da solubilidade da parafina em função da temperatura.

Figura 2.2: Curva de solubilização da parafina.

2.6.6 Coeficiente de Difusão Molecular

Para determinação da difusividade molecular da parafinas em solventes parafínicos, foi utilizada a correlação proposta por Hayduk e Minhas, Singh (2000) dada por (erro médio de 3,4%)

$$D_{W} = 1,33 \times 10^{-11} \frac{T^{1,47} \mu_{o}^{\gamma}}{v_{A}^{0,71}} \quad ; \qquad \gamma = \frac{10,2}{v_{A}} - 0,791 \tag{2.113}$$

em m²/s , na qual *T* é a temperatura absoluta (Kelvin), μ_o é a viscosidade absoluta do solvente em (g/(cm s), v_A é o volume molar de parafina em (cm³ /mol), dado pela razão do peso molecular M_o em (g/mol) e da massa específica do óleo ρ_o em g/cm³

$$v_A = \frac{M_o}{\rho_o} \tag{2.114}$$

Para se estimar a ordem de grandeza do coeficiente de difusão considerou-se um fluido com peso molecular igual a 270 g/mol e massa específica igual a 0,816 g/cm³, o que resulta em $v_A = 330,88 \text{ cm}^3/\text{mol e } \gamma = -0,76$. Para uma temperatura de 313,75 K, com viscosidade absoluta do óleo igual a $\mu_o = 2,46$ cP, obtém-se o coeficiente de difusão molecular $D_w = 5,10 \times 10^{-10} \text{ m}^2/\text{s}$