

Samuel Rodrigues Cruz

Estudo da Deposição da Parafina em Escoamento Multifásico em Dutos

Dissertação de Mestrado

Dissertação apresentada ao programa de Pósgraduação em engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do titulo de Mestre em Engenharia Mecânica.

Orientador: Profa. Angela Ourivio Nieckele

Co-Orientador: Prof. Sidney Stuckenbruck

Rio de Janeiro Abril de 2011

Samuel Rodrigues Cruz

Estudo da Deposição da Parafina em Escoamento Multifásico em Dutos

Dissertação apresentada como requisito parcial para obtenção do grau de mestre pelo programa de Pósgraduação em engenharia Mecânica da PUC-Rio aprovada pela Comissão Examinadora abaixo assinada.

Profa. Angela Ourivio Nieckele

Orientador

Departamento de Engenharia Mecânica-PUC-Rio

Prof. Sidney Stuckenbruck

Co-orientador

Departamento de Engenharia Mecânica-PUC-Rio

Geraldo Afonso Spinelli Martins Ribeiro

Exploração e Produção - Petrobrás

Ricardo Marques de Toledo Camargo

Exploração e Produção - Petrobrás

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da Universidade, do autor e do orientador.

Samuel Rodrigues Cruz

Graduou-se em Engenharia Química na Universidade Federal do Rio de Janeiro - UFRJ em 1988

Ficha Catalográfica

Cruz, Samuel Rodrigues

Estudo da deposição da parafina em escoamento multifásico em dutos / Samuel Rodrigues Cruz ; orientador: Angela Ourivio Nieckele ; co-orientador: Sidney Stuckenbruck. – 2011.

113 f.: il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica, 2011.

Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. Deposição de parafina. 3. Difusão molecular. 4. Escoamento multifásico. 5. Simulação numérica. 6. Modelo de deslizamento. I. Nieckele, Angela Ourivio. II. Stuckenbruck, Sidney. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Agradecimentos

A minha orientadora, Professora Angela Ourivio Nieckele pelo apoio, orientação e compreensão ao longo do desenvolvimento deste trabalho.

Ao meu co-orientador Professor Sidney Stuckenbruk pelo apoio, orientação e por ter gentilmente cedido o programa Transflux para o desenvolvimento deste trabalho

A toda a minha família, em especial, para a minha esposa e filha pelo apoio, amor e compreensão.

Aos professores da PUC-Rio pelo ensino excelente, e pelos conhecimentos adquiridos.

Ao departamento de Engenharia Mecânica da PUC-Rio e seus funcionários pela colaboração.

Aos Gerentes Carlos Eduardo Costa Valle Longo e Ricardo Pereira Abrunhosa pela minha indicação ao curso de mestrado na Petrobras e todo apoio que me deram ao longo do curso.

Aos meus colegas da Petrobras pelo companheirismo e ajuda diária.

Resumo

Cruz, Samuel Rodrigues; Nieckele, Angela Ourivio; Stuckenbruk, Sidney **Estudo da Deposição da Parafina em Escoamento Multifásico em Dutos.** Rio de Janeiro 2011.113p. Dissertação de Mestrado-Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O Petróleo é formado por um conjunto de hidrocarbonetos. No reservatório, devido à altas pressões e temperaturas, encontra-se na forma de líquido. Conforme o petróleo escoa, a pressão cai assim como a temperatura, devido a perda de calor para o ambiente marinho, causando a liberação do gás dissolvido no petróleo tornando o escoamento bifásico. Adicionalmente, caso a temperatura caia abaixo da temperatura inicial de cristalização (TIAC), ocorre precipitação dos cristais, formando uma fase sólida que se deposita na parede interna das tubulações. Deposição de parafinas é um dos mais críticos problemas operacionais na produção e transporte de petróleo em linhas submarinas. O presente trabalho analisa numericamente a deposição de parafina em escoamento multifásico no interior de dutos para diversos padrões de fluxo. Investiga-se ainda a influência da presença da água e dos ângulos de inclinação da tubulação com a horizontal nas taxas de deposição. Para prever o escoamento multifásico utilizou-se o modelo de deslizamento e a deposição da parafina foi determinada baseada no modelo de difusão molecular. A modelagem desenvolvida foi validada com a simulação do escoamento ao longo de um duto curto, reproduzindo condições experimentais de laboratório. Os resultados obtidos para a espessura do depósito apresentaram excelente concordância com os dados experimentais e com os dados obtidos com o simulador comercial OLGA. Analisou-se o escoamento entre um poço produtor e uma plataforma na Bacia de Campos, onde determinou-se o impacto na perda de carga devido a diminuição do diâmetro interno da tubulação causada pelo aumento da espessura dos depósitos. Os resultados obtidos destes estudos apresentaram boa coerência física e razoável concordância com relação aos dados experimentais.

Palavras - Chave

Deposição de Parafina; Difusão Molecular; Escoamento Multifásico; Simulação Numérica; Modelo de Deslizamento

Abstract

Cruz, Samuel Rodrigues; Nieckele, Angela Ourivio (Advisor); Stuckenbruk, Sidney (Co-Advisor). **Wax Deposition Study in a Multiphase Pipe Flow.** Rio de Janeiro, 2011. 113p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Crude oil is formed by several hydrocarbons. At the reservoir, due to high pressures and temperatures, it is found in the liquid form. As the oil flows, its pressure drops as well as its temperature, due to a heat loss to the ambient, causing liberation of the gas dissolved in the oil and it becomes a two-phase flow. Further, if the temperature drops below the initial crystallization temperature, crystals precipitation occurs, forming a solid phase deposit at the inner pipeline walls. Wax deposition is one of the most critical operational problems regarding oil flow through subsea pipelines. This work, wax deposition in a multiphase flow is numerically predicted. The influence of a water phase and pipe inclination angle in the deposition rate is investigated. The Drift Flux Model was employed to predict the multiphase flow and the wax deposition was determined based on a Molecular Diffusion Model. The methodology was validated by investigating the flow in a short pipe, reproducing laboratory experimental conditions. The wax deposit thickness presented a excellent agreement with the experimental data and against results of commercial code OLGA. An existing oil production well in Campos Basin was modeled, and the impact in pressure drop due to cross section area reduction caused by progressive wax deposition on the pipe wall. The results obtained in this study demonstrated good physical consistency and a reasonable agreement with the compared experimental database.

Keywords

Wax Deposition; Molecular Diffusion; Multiphase Flow; Numerical Simulation; Drift Flux Model

Sumário

1.	Introdução	16
	1.1 Escoamento Multifásico	18
	1.2 Mecanismo de Deposição	20
	1.3 Objetivos	23
	1.4 Revisão Bibliográfica	23
	1.4.1 Modelos de deposição	24
	1.4.2 Deposição em sistema Multifásico	26
	1.5 Organização do Manuscrito	29
2.	Modelagem Matemática	31
	2.1 Modelo de Deslizamento	31
	2.2 Fluxo de Deslizamento J	34
	2.2.1 Padrão Intermitente e Estratificado	35
	2.2.2 Padrão de Bolhas	36
	2.3 Atrito com a Parede	36
	2.4 Transferência de Calor para o Ambiente externo	38
	2.4.1 Coeficiente de Película Externo	39
	2.4.2 Coeficiente de Película Interno	40
	2.4.3 Energia Interna e Temperatura	42
	2.5 Modelo de Deposição de Parafina	44
	2.6 Propriedades dos Fluidos	47
	2.6.1 Massa específica	48
	2.6.2 Viscosidade Dinâmica	52
	2.6.3 Calor Especifico e Condutividade térmica	53
	2.6.4 Condutividade Térmica da Parafina	53
	2.6.5 Curva de Solubilidade	54
	2.6.6 Coeficiente de Difusão Molecular	55
3.	Método Numérico	56
	3.1 Discretizaçao Numérica das Equações	56

	3.2 Solução do Sistema Algébrico	58
	3.3 Procedimento Solução para Deposição de Parafina	60
4.	Analise de Casos	62
	4.1 Geometria e Condições de Contorno	62
	4.2 Caracterização do Fluido	63
	4.3 Estudo de Casos	66
	4.3.1 Analise de Sensibilidade das Constantes Empíricas	
	$C_1 e C_2$	68
	4.3.2 Padrão Intermitente Horizontal	71
	4.3.3 Padrão Intermitente Inclinado e Vertical	75
	4.3.4 Padrão Bolha Vertical	78
	4.3.5 Padrão Estratificado	80
	4.3.6 Influencia da Presença de Água	81
	4.3.7 Porosidade	82
	4.3.8 Caso2-Distribuição de Pressão, Temperatura e	
	Fração Volumétrica	83
5.	Poço Produtor	87
	5.1 Geometria	87
	5.2 Caracterização do Fluido	88
	5.3 Condições de Contorno	91
	5.4 Resultados Numéricos	94
	5.4.1 Espessura do Depósito	98
	5.4.2 Comparação Dados de Campo	101
6.	Comentários Finais	103
7.	Referências Bibliográficas	107

Lista de Figuras

Figura 1.1-	Arranjo Submarino para a produção de petróleo no mar	16
Figura 1.2-	Bloqueio do duto por deposição de parafina.	
	Cortesia do CENPES/Petrobras	18
Figura 1.3-	Esquema gráfico representativo dos padrões de	
	escoamento	19
Figura 1.4-	Esquema gráfico representativo dos padrões de	
	escoamento	18
Figura 1.5-	Esquema gráfico do processo de difusão molecular	20
Figura 1.6-	Mecanismo de transporte radial de parafina (Merino-	
	Garcia et al,2007)	21
Figura 1.7-	Mapa do padrão de escoamento, representando a	
	espessura do depósito de parafina (Matzain, 1999)	27
Figura 2.1-	Evolução de um sistema da condição P,T para a	
	condição padrão	48
Figura 2.2-	Curva de Solubilização da parafina	54
Figura 3.1-	Malha de discretização deslocadas	57
Figura 3.2-	Fluxograma	61
Figura 4.1-	Condutividade Térmica do Liquido e do Gás	64
Figura 4.2-	Calor Especifico a pressão constante do liquido e do	65
Figura 4.3-	gás	66
Figura 4.4-	Curva de solubilização de parafina	68
Figura 4.5-	Teste de Malha e de Passo de Tempo	
	Evolução Temporal da Deposição em x=7 metros.	70
Figura 4.6-	Teste de Sensibilidade das constantes de Matzain	
	Evolução temporal da deposição em x=7 metros.	72
Figura 4.7-	Padrão Intermitente horizontal. Casos 1,2 e3	
	Distribuição Espacial da Espessura do depósito em	73
Figura 4.8-	t=24 horas. Padrão Intermitente horizontal. Casos	
	1,2 e3	
Figura 4.9-	Influência da Fração de gás na distribuição temporal	75

	intermitente inclinado e vertical. Casos 4 e 5.	76
Figura 4.10-	Distribuição Espacial da Espessura do depósito em	
	t=24 horas.Padrão Intermitente inclinado e Vertical.	
	Casos 4 e 5	78
Figura 4.11-	Caso 6: V_{sl} =1, 219m/s, V_{sg} =0, 152m/s. Vertical Θ =	
	90° Padrão bolha vertical.	79
Figura 4.12-	Evolução temporal da deposição em x=7 metros	
	Caso 7: V_{sl} =0,061m/s, V_{sg} =0, 305m/s. Horizontal	
	Padrão Estratificado	80
Figura 4.13-	Comparação da Evolução temporal da deposição em	
	x=7 metros. Casos 1 a 7.	81
Figura 4.14-	Influência da fração de água na evolução temporal	
	da deposição em x=7 metros. Padrão intermitente	
	horizontal. Caso 2.	82
Figura 4.15-	Evolução Temporal da Pressão ao longo do Duto.	84
Figura 4.16-	Evolução Temporal do Holdup do Liquido ao longo	
	do duto.	85
Figura 4.17-	Evolução Temporal das velocidades superficiais ao	
	longo do duto.	86
Figura 4.18-	Evolução Temporal da Temperatura Média ao longo	
	do duto.	87
Figura 5.1-	Geometria do poço produtor	88
Figura 5.2-	Curva de solubilização da parafina	91
Figura 5.3-	Variações de pressão no PDG no poço produtor	
	durante o ano de 2008.	92
Figura 5.4-	Evolução da pressão no fundo do poço, na ANM e	
	na chegada de plataforma com o tempo no período	
	de 30/10/2008 a 12/11/2008	93
Figura 5.5-	Variação da pressão e velocidades superficiais ao	
	longo da tubulação para o tempo de simulação de 1	
	hora.	96

Figura 5.7-	Variação da Massa Especifica e Viscosidade	
	Dinâmica com o comprimento.	97
Figura 5.8-	Distribuição espacial da espessura do depósito em	
	diferentes tempos de simulação.	99
Figura 5.9-	Evolução Temporal de deposição em s =7058	
	metros e $s = 7700$ metros.	100
Figura 5.10-	Variação da Porosidade com Comprimento.	100
Figura 5.11-	Pressão de chegada na plataforma (nó 4).	101

Lista de Tabelas

Tabela 2.1-	Constante da correlação de transferência de calor	
	externa	39
Tabela 2.2-	Número de Reynolds do depósito em função do	
	padrão de escoamento	47
Tabela 2.3-	Coeficientes para fator volume de formação	50
Tabela 4.1-	Composição do Fluido	64
Tabela 4.2-	Casos Estudados	67
Tabela 4.3-	Espessura de depósito no final do duto após 24	
	horas	74
Tabela 4.4-	Porosidade	83
Tabela 5.1-	Características Poço Produtor	88
Tabela 5.2-	Fluido no Reservatório	89
Tabela 5.3-	Composição do fluido poço produtor	89
Tabela 5.4-	Propriedades termofisicas do fluido no	90
Tabela 5.5-	reservatório	94
Tabela 5.6-	Condições de contorno da pressão e	
	Temperatura	94
Tabela 5.7-	Condições de contorno de vazão de fluido	94

Lista de Símbolos

Α	Área da seção transversal do duto.
A_{si}	Área da superfície interna do duto.
A_i^{0}	Área da seção transversal do duto no instante de tempo
4	anterior.
A_d	Area da seção transversal do depósito.
B _o	Fator volume de Formação de óleo.
C_{p}	Calor específico a pressão constante.
C_{v}	Calor específico a volume constante.
Co	Coeficiente de distribuição.
D	Diâmetro interno do duto.
D_h	Diâmetro hidráulico.
D_w	Coeficiente de difusão da parafina líquida na mistura.
F_r	Número de Froude.
f	Fator de atrito.
f_{pb}	Fator pressão de bolha.
1	
g	Aceleração da gravidade.
g h	Aceleração da gravidade. Coeficiente de película.
_	, c
h	Coeficiente de película.
h J	Coeficiente de película. Fluxo de deslizamento ('drift').
h J k	Coeficiente de película. Fluxo de deslizamento ('drift'). Condutividade térmica.
h <i>J k</i> k _T	Coeficiente de película. Fluxo de deslizamento ('drift'). Condutividade térmica. Coeficiente de compressibilidade isotérmica.
h J k k _T m _{gl}	Coeficiente de película. Fluxo de deslizamento ('drift'). Condutividade térmica. Coeficiente de compressibilidade isotérmica. Fluxo interfacial de massa entre as fases.
h J k k _T m _{gl} m p	Coeficiente de película. Fluxo de deslizamento ('drift'). Condutividade térmica. Coeficiente de compressibilidade isotérmica. Fluxo interfacial de massa entre as fases. Fluxo mássico da parafina depositada.
h J k k _T m _{gl} m p Mo	Coeficiente de película. Fluxo de deslizamento ('drift'). Condutividade térmica. Coeficiente de compressibilidade isotérmica. Fluxo interfacial de massa entre as fases. Fluxo mássico da parafina depositada. Peso molecular efetivo do óleo
h J k k _T m _{gl} m p Mo Mg	Coeficiente de película. Fluxo de deslizamento ('drift'). Condutividade térmica. Coeficiente de compressibilidade isotérmica. Fluxo interfacial de massa entre as fases. Fluxo mássico da parafina depositada. Peso molecular efetivo do óleo Peso molecular do gás
h J k k _T m _{gl} m p Mo Mg Nu	Coeficiente de película. Fluxo de deslizamento ('drift'). Condutividade térmica. Coeficiente de compressibilidade isotérmica. Fluxo interfacial de massa entre as fases. Fluxo mássico da parafina depositada. Peso molecular efetivo do óleo Peso molecular do gás Número de Nusselt.

Pressão reduzida

Número de Prandtl.

p_r Pr q_c Fluxo de calor entre o escoamento interno e o exterior.

Re Número de Reynolds.

R_{ef} Número de Reynolds da fase líquida

R Resistência a transferência de calor.

Rso Razão de Solubilidade do gás no óleo

R Constante universal

r Raio da tubulação.

S_w Perímetro molhado na parede.

t Tempo.

T Temperatura.

T_c Temperatura critica

T_r Temperatura reduzida

u Energia interna.

U Coeficiente global de transferência de calor.

V Volume

x Coordenadas axial ao longo do duto.

z fator de compressibilidade

Símbolos gregos

α Fração volumétrica.

β Coeficiente de Expansão Térmica.

Yg Fração molar de gás dissolvido

Ygs Fração molar de gás dissolvido na pressão de 100 psig

δ Espessura do depósito de parafina.

ε Espessura da tubulação.

Angulo de Inclinação do duto.

 μ Viscosidade dinâmica.

v Velocidade.

ν_{gs} Velocidade superficial de gás.

 v_{gl} Velocidade superficial de liquido.

ν_r Velocidade relativa entre as fases.

 v_{gj} Velocidade relativa entre a fase gasosa e fluxo volumétrico

total.

 v_{gm} Velocidade entre a fase gasosa e a velocidade média da

mistura.

v_{drift} Velocidade de deslizamento.

 ρ Massa específica.

 τ_w Tensão cisalhante na parede.

 $v_{\scriptscriptstyle A}$ Volume molar

 ϕ Porosidade.

 $\omega_{\scriptscriptstyle m}$ Fração em massa da mistura óleo/parafina.

 ω_{sol} Fração da parafina saturada na interface.

Subscritos

g fase gasosa

l fase liquida

m mistura de liquido e gás

o óleo g gás w água

in interno a tubulação ex externo a tubulação

si superfície interna do duto se superfície externa do duto

std Condição padrão

∞ meio *externo*

i interface parafina-fluido