

Ronald Marcos Arcos Padilla

Estudo de Transporte de Carga de Polímeros de Polianilina

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Prof. Marco Aurélio C. Pacheco Co-Orientador: Prof. Enrique Victoriano Anda

Rio de Janeiro Abril de 2011

Ronald Marcos Arcos Padilla

Estudo de Transporte de Carga de Polímeros de Polianilina

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Marco Aurélio Cavalcanti Pacheco Orientador Departamento de Engenharia Elétrica – PUC-Rio

> > **Prof. Enrique Victoriano Anda** Co-Orientador Departamento de Física – PUC-Rio

> > Prof. Omar Paranaiba Vilela Neto UFMG

> > > Prof. Ronaldo Giro INMETRO

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 15 de abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ronald Marcos Arcos Padilla

Formado em Engenharia Eletrônica pela Pontifícia Universidade Católica do Perú em 2006

Ficha Catalográfica

Arcos Padilla, Ronald Marcos

Estudo de Transporte de Carga de Polímeros de Polianilina / Ronald Marcos Arcos Padilla ; orientadores: Marco Aurélio C. Pacheco, Enrique Victoriano Anda. – 2011.

88 f.; 30 cm

Dissertação (mestrado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2011.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Polímeros conjugados. 3. Polianilina. 4. Transporte de carga. 5. Funções de Green. I. Pacheco, Marco Aurélio C. II. Anda, Enrique Victoriano. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

PUC-Rio - Certificação Digital Nº 0912923/CB

A meus pais

Agradecimentos

Ao Deus.

Ao meu orientador Marco Aurélio C. Pacheco.

Ao meu co-orientador Enrique Victoriano Anda.

Ao Departamento de Engenharia Elétrica - PUC-Rio.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES.

A todos os amigos e familiares que de uma forma ou de outra me estimularam ou me ajudaram.

Resumo

Padilla, Ronald Marcos Arcos; Pacheco, Marco Aurélio C. **Estudo de Transporte de Carga de Polímeros de Polianilina.** Rio de Janeiro, 2011. 88p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

O desenvolvimento de materiais com propriedades elétricas incomuns, como é o caso dos polímeros condutores, vem sendo estudado por muito tempo. Este tipo de sistema orgânico apresenta característica isolante pura, mas quando são introduzidas impurezas por meio da dopagem variam a sua condutividade de forma significativa em comparação com os metais.

No presente trabalho, investigamos o transporte de carga eletrônica no sistema molecular do polímero Polianilina (PAN), através de cálculos quânticos mediante o método de Hückel e acoplado com a metodologia das funções de Green de não equilíbrio (FGNE) foram obtidas expressões para a condutância e densidade local de estados (LDOS). Realiza-se o estudo da estrutura eletrônica da PAN conformada de 200 anéis apresentando algum tipo de defeito estrutural tipo polaron o bipolaron onde os efeitos provocados pela desordem desempenham um papel fundamental.

Investigamos assim a LDOS e a condutância para formações de cadeias de PAN tanto protonadas e não protonadas, verificando assim que a rede bipolarônica presente na estrutura do sistema apresenta um deslocamento da energia de Fermi para dentro da banda de valência, região de estados espacialmente estendidos onde a condutância é finita, comprovando assim a transição metal-isolante para este material.

Palavras - chave

Polímeros conjugados; Polianilina; Transporte de Carga; Funções de Green

Abstract

Padilla, Ronald Marcos Arcos; Pacheco, Marco Aurélio C. **Study of Transport of Polymer Polyaniline**. Rio de Janeiro, 2011. 88p. MSc. Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The development of materials with unusual electrical properties as is the case of conducting polymers has been studied for a long time. This type of organic system provides insulation characteristic pure, but when impurities are introduced by doping the conductivity varies significantly in comparison with metals.

In this study, we investigated the transport of electronic charge in the system polymer molecular Polyaniline (PAN) through quantum calculations by the Hückel method and coupled with the methodology of Green functions of nonequilibrium (FGNE) were obtained expressions for the conductance and local density of states (LDOS). Is carried out to study the electronic structure of PAN conformed to 200 rings showing some type of structural defect type polaron bipolaron where the effects of the disorder play a key role. Thus investigated the LDOS and conductance to PAN formation of chains of both protonated and non protonated, thus verifying that the structure of the bipolaron in this system has a displacement of the Fermi energy into the valence band region of spatially extended states where conductance is finite, thus proving the metal-insulator transition for this material.

Keywords

Conjugated polymers; Polyaniline; Transport Charge, Green's Functions

Sumário

1 Introdução	15
2 Polímeros Condutores	18
2.1. Introdução	18
2.2. Estrutura Molecular Orgânica	21
2.3. Propriedades Eletrônicas e Físicas em Polímeros	
Conjugados	22
2.4. Mecanismo de Condução em Polímeros Conjugados	26
3 . Polianilina	30
3.1. Introdução	30
3.2. Influência da Desordem na Transição Isolante – Metal	
da Polianilina	32
4 Teoria de Orbitais Moleculares	36
4.1. Introdução	36
4.2. A Equação de Schrödinger	36
4.3. Aproximação de Born – Oppenheimer	37
4.4. O Modelo do Elétron Independente	39
4.5. Estruturas de Camadas Fechadas	40
4.6. O Método de Hartree-Fock para Estruturas de	
Camadas Fechadas	42
4.7. O Método LCAO – as equações de Roothaan	44
4.8. O Método de Hückel Aplicado a Moléculas	46
5 Método das Funções de Green	52
5.1. Funções de Green e o Hamiltoniano	52
5.2. Calculo da Densidade de Estados	55
5.3. Funções de Green de Não-Equilíbrio: Condutância	56

5.4. Procedimento computacional	61
6 Trabalhos Experimentais de Interesse	63
7 Resultados	66
7.1. Leucoesmeraldina – Configuração A	68
7.2. Pernigranilina – Configuração B	69
7.3. Esmeraldina - Configuração A e B	71
7.4. Esmeraldina protonada considerando formação	
de Bipolaron – Configuração A e C	73
7.5. Esmeraldina protonada considerando formação	
de Polaron – Configuração A e D	75
7.6. Formação da PAN – Configuração A, C e D	
(Bipolaron e Polaron)	77
7.7. Formação da PAN – Configuração A, B e C	79
8 Conclusões e Perspectivas Futuras	82
9 Referências	84

Lista de figuras

Figura 1. Alguns tipos de polímeros conjugados.	19
Figura 2. Condutividade elétrica de diferentes tipos	
de materiais.	20
Figura 3. Hibridização sp^2 do átomo de carbono.	21
Figura 4. Orbitais híbridos do carbono formando as	
ligações σ e π	22
Figura 5. Diagrama de Energia de Bandas em um sólido.	23
Figura 6. A sobreposição entre os orbitais π e a	
sobreposição entre os orbitais π^* dos átomos de carbono	
produzem uma distribuição de estados eletrônicos que	
se assemelham a uma estrutura de bandas.	
Formação do HOMO e LUMO.	24
Figura 7. Diferentes tipos de polímeros conjugados	
apresentando seu respectivo gap característico.	25
Figura 8. Estrutura de bandas para a forma	
trans-poliacetileno, contendo as formas solitónicas:	
(a) carregada positivamente, (b) neutra e	
(c) carregada negativamente [14,17].	27
Figura 9. Oxidações do polipirrol e a criação dos	
estados de polaron e bipolaron.	28
Figura 10. Estrutura geral da Polianilina (PAN),	
mostrando as unidades reduzidas (ganha elétrons)	
e oxidadas (perde elétrons).	30
Figura 11. Esquema da composição geral da PAN	
indicando as unidades reduzidas e oxidadas	
repetitivas; (a) Leucoesmeraldina; (b) Pernigranilina;	
(c) Esmeraldina; (d) Esmeraldina protonada considerando	
se a formação de bipolarons.	31
Figura 12. Esquema da polianilina forma base	
esmeraldina dopada com acido protônico.	

Em (a) a cadeia antes da protonação; de (b) a (d)	
depois de 50 % de protonação com: (b) formação de	
bipolarons, (c) formação de polarons e (d) separação	
dos polarons resultando na rede polarônica [26].	34
Figura 13. Sistema considerado onde os dois sítios	
adjacentes são conectados pelo elemento de matriz t_{12}	57
Figura 14. Função degrau usada na distribuição	
Fermi – Dirac.	59
Figura 15. Ilustração esquemática das configurações	
da PAN tomadas para um número finito de amostras	
conectando-se cada uma delas com todas as	
amostras geradas, calculando-se desta forma a meia	
da LDOS e da condutância.	60
Figura 16. Diagrama mostrando o algoritmo utilizado na	
implementação do cálculo das quantidades físicas	
usadas para caracterizar o transporte eletrônico no sistema.	61
Figura 17. Condutividade da base esmeraldina em	
função do pH da solução dopante HCI, mediante	
dopagem de acido protônico (representam dois series	
independentes de experimentos)[62].	63
Figura 18. Variação da condutividade com a temperatura	
para diferentes amostras de PAN dopadas. Os resultados	
para a PAN dopada com HCI são tomados de resultados	
publicados anteriormente. [69, 70]	64
Figura 19. Possíveis configurações (A, B, C e D) dos	
monômeros que conformarão as respectivas cadeias de PAN.	66
Figura 20. Curva LDOS e Condutância obtida com o	
método das funções de Green com η = 10^{-2} , para	
os sítios Carbono e $-NH -$ na conformação da	
Leucoesmeraldina indicando a posição da energia de Fermi.	68
Figura 21. Curvas mais detalhadas mostrando a	
posição do último nível ocupado $arepsilon$ dentro da LDOS e	
Condutância obtida com o método das funções de	

Green com $\eta = 10^{-4}$, para os sítios Carbono e $-NH$ –	
na conformação da Leucoesmeraldina.	69
Figura 22. Curva LDOS e Condutância obtida com o	
método das funções de Green com $\eta = 10^{-2}$, para	
os sítios Carbono e $-N =$ na conformação da	
Pernigranilina indicando a posição da energia de Fermi.	70
Figura 23. Curvas mais detalhadas mostrando a	
posição do ultimo nível ocupado $arepsilon$ dentro da LDOS	
e Condutância obtida com o método das funções de	
Green com $\eta = 10^{-4}$, para os sítios Carbono e $-N =$	
na conformação da Pernigranilina.	71
Figura 24. Curva LDOS e Condutância obtida com o	
método das funções de Green com $\eta = 10^{-2}$, para	
os sítios Carbono, $-NH - e - N = na$ conformação	
da Esmeraldina desordenada (50% de A e B) indicando	
a posição da energia de Fermi.	72
Figura 25. Curvas mais detalhadas mostrando a	
posição do ultimo nível ocupado $arepsilon$ dentro da LDOS e	
Condutância obtida com o método das funções de	
Green com $\eta = 10^{-4}$, para os sítios Carbono,	
-NH - e - N = na conformação da Esmeraldina	
desordenada em igual proporção (50% de A e B).	73
Figura 26. Curva LDOS e Condutância obtida com o	
método das funções de Green com $\eta = 10^{-2}$, para	
os sítios Carbono, $-NH - e - \oplus NH = na$ conformação	
da Esmeraldina protonada desordenada	
(rede bipolarônica com 50% de A e C.) indicando a	
posição da energia de Fermi.	74
Figura 27. Curvas mais detalhadas mostrando a	
posição do nível de Fermi dentro da LDOS e	
Condutância obtida com o método das funções de	
Green com $\eta = 10^{-4}$, para os sítios Carbono,	

$-NH - e - (\oplus NH) =$, na conformação da Esmeraldina	
desordenada em igual proporção (50% de A e C) com	
defeito estrutural tipo bipolaron.	75
Figura 28. Curva LDOS e Condutância obtida com o	
método das funções de Green com $\eta = 10^{-2}$, para os	
sítios Carbono, $-NH - e - \oplus NH =$ na conformação da	
Esmeraldina protonada desordenada (rede polaron	
com 50% de A e D) indicando a posição da energia	
de Fermi.	76
Figura 29. Curvas mais detalhadas mostrando a posição	
do nível de Fermi dentro da LDOS e Condutância obtida	
com o método das funções de Green com $\eta = 10^{-4}$,	
para os sítios Carbono, $-NH - e - (\oplus NH) = na$	
conformação da Esmeraldina desordenada em igual	
proporção (50% de A e D) com defeito estrutural do	
tipo polaron.	77
Figura 30. Curva LDOS e Condutância obtida com	
o método das funções de Green com $\eta = 10^{-2}$, para	
os sítios Carbono, $-NH - e - \oplus NH = na$	
conformação da PAN desordenada ACD (rede bipolaron	
e polaron com 33% de A, C e D) indicando a posição da	
energia de Fermi.	78
Figura 31. Curvas mais detalhadas mostrando a posição	
do nível de Fermi dentro da LDOS e Condutância	
obtida com o método das funções de Green com	
$\eta = 10^{-4}$ para os sítios Carbono, $-NH - e - (\oplus NH) =$	
na conformação da PAN desordenada ACD em igual	
proporção (33% de A, C e D) com defeito estrutural	
do tipo polaron e bipolaron.	79
Figura 32. Curva LDOS e Condutância obtida com o	
método das funções de Green com $\eta = 10^{-2}$, para	
os sítios Carbono, $-NH -$, $-N = e - \oplus NH =$ na	

conformação PAN desordenada ABC (rede esmeraldina + bipolaron com 33% de A, B e C) indicando a posição da energia de Fermi. 80 Figura 33. Curvas mais detalhadas mostrando a posição do nível de Fermi dentro da LDOS e Condutância obtida com o método das funções de Green com $\eta = 10^{-4}$, para os sítios Carbono, $-NH - , -N = e - (\bigoplus NH) =$ na conformação da PAN desordenada ABC em igual proporção (33% de A, B e C) com defeito estrutural do tipo bipolaron. 81

Lista de tabelas

Tabela 1. Parâmetros de Hückel para as PANs, em unidades de	
$\beta_0 = 2,5 eV$, obtidos da parametrização de Streitwieser.	51
Tabela 2. Condutividade da PAN para diferentes tipos de dopantes	65