

Jelitza Luz Ceballos Infantes

Determinação de Áreas de Controle de Tensão com Base na Interdependência dos Equipamentos Controladores

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Prof. Ricardo Bernardo Prada Co-Orientador: Prof. João Alberto Passos Filho

Jelitza Luz Ceballos Infantes

Determinação de Áreas de Controle de Tensão com Base na Interdependência dos Equipamentos Controladores

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ricardo Bernardo Prada Orientador

Departamento de Engenharia Elétrica - PUC-Rio

Prof. João Alberto Passos Filho Co-Orientador UFJF

Prof. Ricardo Mota HenriquesCEPEL

Prof. Luiz Cláudio de Araujo Pereira ONS

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 17 de março de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Jelitza Luz Ceballos Infantes

Graduada em Engenharia Elétrica na Universidade Nacional de San Agustín (UNSA - Arequipa, Peru) em 2009. Dedicada a tempo integral à pesquisa em Sistemas de Energia Elétrica na PUC-Rio, Brasil.

Ficha Catalográfica

Ceballos Infantes, Jelitza Luz

Determinação de áreas de controle de tensão com base na interdependência dos equipamentos controladores / Jelitza Luz ; orientadores: Ricardo Bernardo Prada , João Alberto Passos Filho. – 2011.

207 f.: il. (color.); 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2011.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Controle de tensão. 3. Áreas de controle de tensão. 4. Equipamentos controladores de tensão. 5. Autovalores e autovetores. I. Prada, Ricardo Bernardo. II. Passos Filho, João Alberto. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

Dedico este trabalho à memória de meus amados avôs: Juan e Rosário.

Agradecimentos

A Deus, por sua presença e direção em cada instante de minha vida, por todas as bondades e privilégios com que abençoa minha existência.

A minha amada família: meus pais Amparo e Leoncio, minha irmã Militza, meus tios Mario e Vladimir, pelo amor, bons conselhos, apoio constante e por acreditar em mim, sempre.

Meu profundo agradecimento aos meus queridos orientadores: Ricardo Bernardo Prada e João Alberto Passos Filho, pela confiança, permanente apoio, orientação e paciência durante as diferentes etapas do desenvolvimento desta Dissertação.

Aos respeitados membros da Comissão Julgadora: Ricardo Mota Henriques e Luiz Cláudio de Araujo, pelas inestimáveis colaborações nesta Dissertação.

À CNPq e à PUC-Rio, pela oportunidade de estudar meu Mestrado no Brasil e pelos auxílios financeiros concedidos.

Ao CEPEL pela licença de uso do programa computacional ANAREDE.

Meu reconhecimento e gratidão aos professores do DEE, especialmente ao Professor Eduardo Pires de Souza, pelos ensinamentos e ajuda.

A todos meus amigos do curso de Pós-Graduação, muito especialmente ao Carlos Portugal, Javier Ortega, Josué Uscata, Omar Gálvez, Maritza Arapa, Edwin Valderrama Silvino da Costa, Fabio Bicalho, e outros tantos que, de alguma forma, estiveram presentes com sua colaboração e amizade.

Resumo

Ceballos Infantes, Jelitza Luz; Prada, Ricardo Bernardo; Passos Filho, João Alberto. **Determinação de Áreas de Controle de Tensão com Base na Interdependência dos Equipamentos Controladores**. Rio de Janeiro, 2011. 207p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Após a incidência de inúmeros problemas relacionados a fenômenos de instabilidade de tensão, o controle de potência reativa em sistemas elétricos de potência tornou-se um assunto importante os últimos anos. Um adequado controle do perfil de tensão em uma área pode contribuir para evitar este tipo de problema. Com esse objetivo, determinam-se áreas de controle de tensão a partir da análise dos autovalores e autovetores das matrizes de sensibilidade: VCS "Voltage Control Sensitivity Matrix" e QV. A matriz de sensibilidade [VCS] é constituída por elementos diagonais que relacionam a grandeza controladora de cada equipamento com a respectiva tensão controlada (variável controlada), e a análise do sinal desses elementos estabelece se uma determinada ação de controle será adequada ou não, isto é, se terá efeito esperado ou oposto. Os elementos fora da diagonal representam a interdependência existente entre os equipamentos controladores de tensão. A matriz de sensibilidade QV, nomeada como [J_{SOV}] é obtida a partir da matriz Jacobiana do sistema linearizado das equações de fluxo de carga. As áreas de controle de tensão determinadas da análise por autovalores e autovetores usando-se cada uma das matrizes de sensibilidade são coerentes. Adicionalmente, obtêm-se áreas de controle de tensão diretamente das matrizes de sensibilidade. Estas áreas foram comparadas encontrando-se resultados coerentes.

Palavras – chave

Controle de tensão; áreas de controle de tensão; equipamentos controladores de tensão; autovalores e autovetores.

Abstract

Ceballos Infantes, Jelitza Luz; Prada, Ricardo Bernardo (Advisor); Passos Filho, João Alberto. **Determination of Voltage Control Areas based on Interdependent Controller Equipments**. Rio de Janeiro, 2011. 207p. MSc Dissertation – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

After of the incidence of innumerable problems related to voltage instability phenomena, the control of reactive power in electrical power systems became an important issue in the last years. The adequate control of the voltage for a specific area can prevent this kind of problem. With this objective, voltage control areas are established from an eigenvalues and eigenvectors analysis of the sensitivity matrixes: VCS "Voltage Control Sensitivity Matrix" and QV. The sensitive matrix [VCS] is form by diagonal elements that relate to the controlling variables and to the controlled voltage (controlled variable), and the analysis of the sign of each diagonal element indicate if a specific control action is adequate or not. The off-diagonal elements represent the interdependence among the voltage controller equipments. The sensitivity matrix QV, called [J_{SQV}] is obtained from the Jacobean matrix from the linear load flow equations. The voltage control areas recognized from the eigenvalues and eigenvectors analysis to each sensitivity matrix are coherent. Also, voltage control areas were identified directly from sensitivity matrixes. These areas were compared founded coherent results.

Keywords

Voltage control; voltage control areas; voltage controller equipments; eigenvalues and eigenvectors.

Sumário

1	Intro	odução		24
	1.1	Consid	lerações Gerais	24
	1.2	Objetiv	/0	25
	1.3	Estrutu	ıra da Dissertação	26
2			Sensibilidade dos Controles de Tensão	
	2.1	Introdu	ıção	28
	2.2	Matriz	de Sensibilidade dos Controles de Tensão Incluindo Modelo	
		Clássic	co de Gerador	28
		2.2.1	Modelo do Gerador	28
		2.2.2	Sistema de Equações Linearizadas	29
		2.2.3	Aplicação em Sistemas-Teste	30
			2.2.3.1 Introdução	30
			2.2.3.2 Sistema-Teste de 5 Barras	30
	2.3	Matriz	de Sensibilidade dos Controles de Tensão Incluindo Novo	
		Model	o de Gerador	38
		2.3.1	Introdução	38
		2.3.2	Modelo da Rede	38
		2.3.3	Modelo do Gerador	39
		2.3.4	Sistema de Equações Linearizadas	39
		2.3.5	Aplicação em Sistemas-Teste	42
			2.3.5.1 Introdução	42
			2.3.5.2 Sistema-Teste de 5 Barras	42
	2.4	Compa	aração entre as Matrizes de Sensibilidade dos Controles de	
		Tensão	o obtidas com os Dois Modelos de Gerador	48
	2.5	Detern	ninação de Áreas de Controle de Tensão com Base na Matriz de	
		Sensib	ilidade dos Controles de Tensão	49
		2.5.1	Análise Modal de uma Matriz	49
			2.5.1.1 Autovalores	49
			2.5.1.2 Autovetores	50
			2.5.1.3 Fatores de Participação	51
	2.6	Result	ados da Definição de Áreas de Controle de Tensão	54
		2.6.1	Sistema 10 Barras	55

			2.6.1.1 Baixa Impedância de Interligação	56		
			2.6.1.2 Alta Impedância de Interligação	58		
		2.6.2	Sistema 18 Barras	61		
			2.6.2.1 Baixa Impedância de Interligação	62		
			2.6.2.2 Alta Impedância de Interligação	66		
		2.6.3	Sistema New England 39 Barras	71		
		2.6.4	Sistema IEEE 118 Barras	75		
		2.6.5	Sistema S/SE Brasileiro 730 Barras	78		
	2.7	Identif	icação de Áreas de Controle Diretamente da Matriz de			
		Sensib	oilidade dos Controles de Tensão	82		
		2.7.1	Sistema 10 Barras	82		
			2.7.1.1 Baixa Impedância de Interligação	82		
			2.7.1.2 Alta Impedância de Interligação	83		
		2.7.2	Sistema 18 Barras	84		
			2.7.2.1 Baixa Impedância de Interligação	84		
			2.7.2.2 Alta Impedância de Interligação	85		
		2.7.3	Sistema New England 39 Barras	87		
		2.7.4	Sistema IEEE 118 Barras	88		
	2.8	Conclu	usões do Capítulo	89		
3			Sensibilidade QV			
			JÇÃO			
		3.2 Cálculo da Matriz de Sensibilidade [JSQV]				
	3.3		ninação de Áreas de Controle de Tensão com Base na Matriz de			
		Sensib	bilidade QV			
		3.3.1	Método de Determinação de Áreas de Controle de Tensão			
		3.3.2	Algoritmo de Busca de Áreas de Controle de Tensão			
	3.4		ados da Definição de Áreas de Controle de Tensão			
		3.4.1	Sistema 10 Barras			
			3.4.1.1 Baixa Impedância de Interligação			
			3.4.1.2 Alta Impedância de Interligação			
		3.4.2	Sistema 18 Barras			
			3.4.2.1 Baixa Impedância de Interligação			
			3.4.2.2 Alta Impedância de Interligação			
		3.4.3	Sistema New England 39 Barras			
		3.4.4	Sistema IEEE 118 Barras	119		

		3.4.5	Sistema	S/SE Brasileiro 730 Barras	123
	3.5	Identif	icação d	e Áreas de Controle de Tensão Diretamente da Matriz	
		de Ser	nsibilidad	e QV	128
		3.5.1	Sistema	10 Barras	128
			3.5.1.1	Baixa Impedância de Interligação	128
			3.5.1.2	Alta Impedância de Interligação	129
		3.5.2	Sistema	18 Barras	130
			3.5.2.1	Baixa Impedância de Interligação	130
			3.5.2.2	Alta Impedância de Interligação	130
		3.5.3	Sistema	New England 39 Barras	131
		3.5.4	Sistema	118 Barras	132
	3.6	Conclu	ısões do	Capítulo	133
4	Cor	nparaç	ão entre	os Métodos de Determinação de Áreas de Controle de	
	Ten	são co	m Base r	nas Matrizes de Sensibilidade [VCS] e [J _{SQV}]	134
	4.1	Introdu	ıção		134
	4.2	Compa	aração ei	ntre os Métodos	134
		4.2.1	Primeiro	Critério de Comparação: Autovalores Críticos	134
			4.2.1.1	Autovalores Críticos na Matriz [VCS]	134
			4.2.1.2	Autovalores Críticos na Matriz [J _{SQV}]	138
		4.2.2	Segund	o Critério de Comparação: Tipo de Barras que Compõem	
			as Área	s de Controle de Tensão	142
			4.2.2.1	Tipos de Barras na Matriz [VCS]	142
			4.2.2.2	Tipos de Barras na Matriz [J _{SQV}]	143
		4.2.3	Terceiro	Critério de Comparação: Sensibilidade entre as Barras	145
		4.2.4	Quarto	Critério de Comparação: Quantidade de Barras Analisadas	145
		4.2.5	Quinto	Critério de Comparação: Algoritmo de Busca de Áreas de	
			Control		145
			4.2.5.1	Valor da Variável σ	147
			4.2.5.2	Valor das Variáveis ϵ_1 e ϵ_2	149
			4.2.5.3	Subáreas de Controle de Tensão	151
			4.2.5.4	Barras que Não Pertencem a Nenhuma Área de Controle	155
			4.2.5.5	Incoerência de Barras que Aparecem Incluídas em uma	
				Área de Controle	158
			4.2.5.6	Barras que se Repetem em Duas Áreas de Controle	161
		4.2.6	Sexto C	ritério de Comparação: Áreas de Controle de Tensão	163

4.2.6.	1 Áreas de Controle de Tensão no Sistema 10 Barras	164
4.2.6.2	2 Áreas de Controle de Tensão no Sistema 18 Barras	165
4.2.6.3	3 Áreas de Controle de Tensão no Sistema New England	
	39 Barras	166
4.2.6.4	4 Áreas de Controle de Tensão no Sistema IEEE 118	
	Barras	168
4.2.6.5	5 Áreas de Controle de Tensão no Sistema S/SE Brasileiro	
	730 Barras	168
4.3 Conclusões d	lo Capítulo	170
5 Conclusões e Pro	postas para Trabalhos Futuros	172
5.1 Conclusões		172
5.2 Trabalhos Fu	turos	174
Referências Bibliogra	áficas	175
•	to do Método de <i>Newton-Raphson</i> para Solução do Fluxo de	
Potê	ncia	177
Andreading D. Annoche	and Dada de Estado anos e ANADEDE (Matric (1/00))	400
•	os de Dados de Entrada para o ANAREDE (Matriz [VCS])	
B.1	Sistema-Teste 10 Barras	
B.2	Sistema-Teste 18 Barras	
B.3	Sistema-Teste New England 39 Barras	
B.4	Sistema-Teste IEEE 118 Barras	189
Anândiaa C Arquiy	on do Dadon do Entrada para o ANADEDE (Matriz [] 1)	100
	os de Dados de Entrada para o ANAREDE (Matriz [J _{SQV}]) Sistema-Teste 10 Barras	
C.1		
C.2	Sistema-Teste 18 Barras	
C.3	Sistema-Teste New England 39 Barras	
C 4	Sistema-Teste IEEE 118 Barras	201

Lista de Tabelas

Tabela 2.1 – Dados do Sistema-Teste de 5 Barras	31
Tabela 2.2 – Valores de Eg Calculados com (2.5), (2.6) e (2.7)	32
Tabela 2.3 – Dados do Sistema-Teste de 7 Barras	34
Tabela 2.4 – Dados do Sistema-Teste de 7 Barras / Região B	35
Tabela 2.5 – ΔE Após Aumento de 0,01 pu nas Barras 1 e 2	36
Tabela 2.6 – ΔE Após Redução de 0,01 pu nas Barras 1 e 2	36
Tabela 2.7 – ΔE Após Aumento de 0,01 pu nas Barras 1 e 2 / Região B	37
Tabela 2.8 – ΔE Após Redução de 0,01 pu nas Barras 1 e 2 / Região B	38
Tabela 2.9 – Dados do Sistema-Teste de 5 Barras	44
Tabela 2.10 – Dados do Sistema-Teste de 5 Barras / Região B	45
Tabela 2.11 – ΔEq Após Aumento de 0,01 pu na Tensão de Referência das Barras	
1 e 2	46
Tabela 2.12 – ΔEq Após Redução de 0,01 pu na Tensão de Referência das Barras	
1 e 2	46
Tabela 2.13 – ΔEq Após Aumento de 0,01 pu na Tensão de Referência das Barras	
1 e 2 / Região B	47
Tabela 2.14 – ΔEq Após Redução de 0,01 pu na Tensão de Referência das Barras	
1 e 2 / Região B	48
Tabela 2.15 – Autovalores da Matriz [VCS] do Sistema 10 Barras (jX=0,01%)	56
Tabela 2.16 - Autovalores da Matriz [VCS] do Sistema 10 Barras (jX=10000%)	59
Tabela 2.17 - Autovalores da Matriz [VCS] do Sistema 18 Barras (jX=0,01%)	63
Tabela 2.18 - Autovalores da Matriz [VCS] do Sistema 18 Barras (jX=10000%)	67
Tabela 2.19 – Características Principais do Sistema New England 39 Barras	71
Tabela 2.20 – Autovalores da Matriz [VCS] do Sistema 39 Barras	72
Tabela 2.21 – Características Principais do Sistema IEEE 118 Barras	75
Tabela 2.22 – Autovalores da Matriz [VCS] do Sistema IEEE 118 Barras	76
Tabela 2.23 – Características Principais do Sistema S/SE Brasileiro 730 Barras	79
Tabela 2.24 – Autovalores da Matriz [VCS] do Sistema S/SE Brasileiro 730 Barras	79
Tabela 2.25 – Áreas de Controle do Sistema S/SE Brasileiro 730 Barras	79
Tabela 2.26 – Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 10 Barras (jX=0,01%)	83
Tabela 2.27 – Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 10 Barras (iX=10000%)	84

Tabela 2.28 – Comparação entre as Areas de Controle de Tensão obtidas para o	
Sistema 18 Barras (jX=0,01%)	85
Tabela 2.29 – Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 18 Barras (jX=10000%)	87
Tabela 2.30 – Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 39 Barras	88
Tabela 2.31 – Comparação entre as Áreas de Controle de Tensão para o Sistema	
118 Barras	89
Tabela 3.1 – Autovalores da Matriz [J _{SQV}] do Sistema 10 Barras (jX=0,01%)	98
Tabela 3.2 - Autovalores da Matriz [J _{SQV}] do Sistema 10 Barras (jX=10000%)	102
Tabela 3.3 – Autovalores da Matriz [J _{SQV}] do Sistema 18 Barras (jX=0,01%)	106
Tabela 3.4 - Autovalores da Matriz [J _{SQV}] do Sistema 18 Barras (jX=10000%)	111
Tabela 3.5 – Características Principais do Sistema New England 39 Barras	115
Tabela 3.6 – Autovalores da Matriz [J _{SQV}] do Sistema 39 Barras	116
Tabela 3.7 – Características Principais do Sistema IEEE 118 Barras	120
Tabela 3.8 – Autovalores da Matriz [J _{SQV}] do Sistema IEEE 118 Barras	121
Tabela 3.9 – Características Principais do Sistema S/SE Brasileiro 730 Barras	124
Tabela 3.10 - Autovalores da Matriz [J _{SQV}] do Sistema S/SE Brasileiro 730 Barras	124
Tabela 3.11 – Áreas de Controle do Sistema S/SE Brasileiro 730 Barras	124
Tabela 3.12 - Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 10 Barras (jX=0,01%)	129
Tabela 3.13 – Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 10 Barras (jX=10000%)	129
Tabela 3.14 - Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 18 Barras (jX=0,01%)	130
Tabela 3.15 – Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 18 Barras (jX=10000%)	131
Tabela 3.16 – Comparação entre as Áreas de Controle de Tensão obtidas para o	
Sistema 39 Barras	131
Tabela 3.17 - Comparação entre as Áreas de Controle de Tensão para o Sistema	
118 Barras	132
Tabela 4.1 – Áreas de Controle a partir da Matriz [VCS] para o Sistema de 39	
Barras	142
Tabela 4.2 – Áreas de Controle a partir da Matriz [J _{SQV}] para o Sistema de 39 Barras.	144

Lista de Figuras

Figura 2.1 - Diagrama Unifilar do Modelo de Regime Permanente do Gerador	28
Figura 2.2 - Nomenclatura das Barras de Geração	29
Figura 2.3 – Diagrama Unifilar do Sistema-Teste de 5 Barras	31
Figura 2.4 – Circuito Elétrico do Modelo Clássico de Gerador	32
Figura 2.5 – Diagrama Unifilar do Sistema-Teste de 5 Barras incluindo o Modelo	
dos Geradores	32
Figura 2.6 – Diagrama Unifilar do Sistema-Teste de 5 Barras	42
Figura 2.7 – Fluxograma Simplificado da Busca de Áreas de Controle pelos Maiores	54
Figura 2.8 – Diagrama Unifilar do Sistema 10 Barras incluindo Modelo Clássico de Gerador	55
Figura 2.9 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema 10 Barras	
(jX=0,01%)	57
Figura 2.10 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema 10 Barras (jX=0,01%)	57
Figura 2.11 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema	
10 Barras que inclui Modelo Clássico de Gerador com jX=0,01%	58
Figura 2.12 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema 10 Barras (jX=10000%)	60
Figura 2.13 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema 10 Barras (jX=10000%)	
Figura 2.14 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema	60
10 Barras com jX=10000%, incluindo Modelo Clássico de Gerador	61
Figura 2.15 – Diagrama Unifilar do Sistema 18 Barras incluindo Modelo Clássico de	01
Gerador	62
Figura 2.16 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema 18 Barras	02
(jX=0,01%)	64
Figura 2.17 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema 18 Barras	
(jX=0,01%)	64
Figura 2.18 – Mode-Shape de λ ₃ da Matriz [VCS] para o Sistema 18 Barras	
(jX=0,01%)	65
Figura 2.19 – Mode-Shape de λ ₄ da Matriz [VCS] para o Sistema 18 Barras	
(jX=0,01%)	65
ν. •,• · · · · · · · · · · · · · · · · · ·	

Figura 2.20 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema	
18 Barras que inclui Modelo Clássico de Gerador com jX=0,01%	66
Figura 2.21 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema 18 Barras (jX=10000%)	68
Figura 2.22 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema 18 Barras (jX=10000%)	
Figura 2.23 – Mode-Shape de λ ₃ da Matriz [VCS] para o Sistema 18 Barras (jX=10000%)	69
Figura 2.24 – Mode-Shape de λ ₄ da Matriz [VCS] para o Sistema 18 Barras (jX=10000%)	69
Figura 2.25 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema 18 Barras que inclui Modelo Clássico de Gerador com jX=10000%	70
Figura 2.26 – Diagrama Unifilar do Sistema New England 39 Barras	71
Figura 2.27 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema <i>New England</i> 39 Barras	72
Figura 2.28 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema <i>New England</i> 39 Barras	73
Figura 2.29 – Mode-Shape de λ ₃ da Matriz [VCS] para o Sistema <i>New England</i> 39 Barras	
Figura 2.30 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema New England 39 Barras	
Figura 2.31 – Diagrama Unifilar do Sistema IEEE 118 Barras	
Figura 2.32 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema IEEE 118 Barras	
Figura 2.33 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema IEEE 118 Barras	77
Figura 2.34 – Mode-Shape de λ ₃ da Matriz [VCS] para o Sistema IEEE 118 Barras Figura 2.35 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema	
IEEE 118 BarrasFigura 2.36 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema S/SE Brasileiro 730 Barras	
Figura 3.1 – Fluxograma Simplificado da Busca de Áreas de Controle pelos Menores Autovalores da Matriz [J _{SQV}]	95
Figura 3.2 – Diagrama Unifilar do Sistema 10 Barras	96
Figura 3.3 – Mode-Shape de λ_1 da Matriz [J_{SQV}] para o Sistema 10 Barras (jX=0,01%)	99
Figura 3.4 – Mode-Shape de λ ₂ da Matriz [J _{SQV}] para o Sistema 10 Barras	99

Figura 3.5 – Areas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema	400
10 Barras com jX=0,01%	100
Figura 3.6 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema 10 Barras (jX=0,01%)	101
Figura 3.7 – Mode-Shape de λ ₄ da Matriz [J _{SQV}] para o Sistema 10 Barras (jX=0,01%)	
Figura 3.8 – Mode-Shape de λ ₁ da Matriz [J _{SQV}] para o Sistema 10 Barras (jX=10000%)	
Figura 3.9 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema 10 Barras (jX=10000%)	
Figura 3.10 – Áreas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema 10 Barras com jX=10000%	104
Figura 3.11 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema 10 Barras (jX=10000%)	104
Figura 3.12 – Mode-Shape de λ_4 da Matriz [J_{SQV}] para o Sistema 10 Barras (jX=10000%)	105
Figura 3.13 – Diagrama Unifilar do Sistema 18 Barras	106
Figura 3.14 – Mode-Shape de λ_1 da Matriz [J_{SQV}] para o Sistema 18 Barras (jX=0,01%)	107
Figura 3.15 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema 18 Barras (jX=0,01%)	108
Figura 3.16 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema 18 Barras (jX=0,01%)	
Figura 3.17 – Mode-Shape de λ_4 da Matriz [J_{SQV}] para o Sistema 18 Barras (jX=0,01%)	109
Figura 3.18 – Áreas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema 18 Barras com jX=0,01%	
Figura 3.19 – Mode-Shape de λ_1 da Matriz [J_{SQV}] para o Sistema 18 Barras (jX=10000%)	112
Figura 3.20 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema 18 Barras (jX=10000%)	112
Figura 3.21 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema 18 Barras (jX=10000%)	
Figura 3.22 – Mode-Shape de λ ₄ da Matriz [J _{SQV}] para o Sistema 18 Barras	113

Figura 3.23 – Areas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema	
18 Barras com jX=10000%	114
Figura 3.24 – Diagrama Unifilar do Sistema <i>New England</i> 39 Barras	115
Figura 3.25 – Mode-Shape de λ_1 da Matriz [J_{SQV}] para o Sistema 39 Barras	116
Figura 3.26 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema 39 Barras	117
Figura 3.27 – Mode-Shape de λ_3 da Matriz [VCS] para o Sistema 39 Barras	118
Figura 3.28 – Áreas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema	
39 Barras	119
Figura 3.29 – Diagrama Unifilar do Sistema IEEE 118 Barras	120
Figura 3.30 – Mode-Shape de λ_1 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	121
Figura 3.31 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	122
Figura 3.32 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	122
Figura 3.33 – Áreas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema	
IEEE 118 Barras	123
Figura 3.34 – Aproximação das Áreas de Controle de Tensão a partir da Matriz	
[J _{SQV}] para o Sistema S/SE Brasileiro 730 Barras	127
Figura 4.1 – Diagrama Unifilar do Sistema 10 Barras incluindo Modelo Clássico de	
Gerador	136
Figura 4.2 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema 10 Barras	
(jX=10000%)	136
Figura 4.3 – Mode-Shape de λ_2 da Matriz [VCS] para o Sistema 10 Barras	
(jX=10000%)	136
Figura 4.4 – Mode-Shape de λ_3 da Matriz [VCS] para o Sistema 10 Barras	
(jX=10000%)	137
Figura 4.5 – Mode-Shape de λ ₄ da Matriz [VCS] para o Sistema 10 Barras	
(jX=10000%)	137
Figura 4.6 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema	
10 Barras com jX=10000%, incluindo Modelo Clássico de Gerador	137
Figura 4.7 – Diagrama Unifilar do Sistema 10 Barras	139
Figura 4.8 – Mode-Shape de λ_1 da Matriz [J_{SQV}] para o Sistema 10 Barras	
(jX=10000%)	140
Figura 4.9 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema 10 Barras	
(jX=10000%)	140
Figura 4.10 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema 10 Barras	
(iX-10000%)	140

Figura 4.11 – Mode-Shape de λ ₄ da Matriz [J _{SQV}] para o Sistema 10 Barras (jX=10000%)	140
Figura 4.12 – Mode-Shape de λ_5 da Matriz [J_{SQV}] para o Sistema 10 Barras	
(jX=10000%)	140
Figura 4.13 – Mode-Shape de λ_6 da Matriz [J_{SQV}] para o Sistema 10 Barras	
(jX=10000%)	140
Figura 4.14 – Mode-Shape de λ_7 da Matriz [J_{SQV}] para o Sistema 10 Barras (jX=10000%)	141
Figura 4.15 – Mode-Shape de λ_8 da Matriz [J_{SQV}] para o Sistema 10 Barras	
(jX=10000%)	141
Figura 4.16 – Mode-Shape de λ_9 da Matriz [J_{SQV}] para o Sistema 10 Barras	
(jX=10000%)	141
Figura 4.17 – Mode-Shape de λ_{10} da Matriz [J_{SQV}] para o Sistema 10 Barras	
(jX=10000%)	141
Figura 4.18 – Áreas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema	
10 Barras com jX=10000%	142
Figura 4.19 – Áreas Identificadas pelos Maiores Autovalores da Matriz [VCS] para o	
Sistema de 39 Barras	143
Figura 4.20 – Áreas Identificadas pelos Menores Autovalores da Matriz [J _{SQV}] para o Sistema de 39 Barras	144
Figura 4.21 – Fluxogramas Simplificados dos Algoritmos de Busca de Áreas de	
Controle a partir das Matrizes [VCS] e [J _{SQV}]	146
Figura 4.22 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema IEEE 118 Barras	147
Figura 4.23 – Mode-shape da Figura 4.22 desprezando as barras com módulo	
inferior a $\sigma = 0.4$	148
Figura 4.24 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	148
Figura 4.25 – Mode-shape da Figura 4.24 desprezando as barras com módulo	
inferior a $\sigma = 0.5$	149
Figura 4.26 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema IEEE 118 Barras	150
Figura 4.27 – Mode-Shape de λ_3 da Matriz [VCS] para o Sistema IEEE 118 Barras	150
Figura 4.28 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	150
Figura 4.29 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	150
Figura 4.30 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema 18 Barras	
(jX=0,01%)	151
Figura 4.31 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema 18 Barras	
(iX-0.01%)	151

Figura 4.32 – Mode-Shape de λ_3 da Matriz [VCS] para o Sistema 18 Barras	
(jX=0,01%)	152
Figura 4.33 – Mode-Shape de λ ₄ da Matriz [VCS] para o Sistema 18 Barras	150
(jX=0,01%)	152
Figura 4.34 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema	150
18 Barras com jX=0,01%	152
Figura 4.35 – Mode-Shape de λ ₁ da Matriz [J _{SQV}] para o Sistema 18 Barras (jX=0,01%)	153
Figura 4.36 – Mode-Shape de λ ₂ da Matriz [J _{SQV}] para o Sistema 18 Barras	
(jX=0,01%)	153
Figura 4.37 – Mode-Shape de λ ₃ da matriz [J _{SQV}] para o Sistema 18 Barras	
(jX=0,01%)	153
Figura 4.38 – Mode-Shape de λ ₄ da Matriz [J _{SQV}] para o Sistema 18 Barras	
(jX=0,01%)	153
Figura 4.39 – Áreas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema	
18 Barras com jX=0,01%	154
Figura 4.40 – Mode-Shape de λ ₁ da Matriz [VCS] para o Sistema IEEE 118 Barras	
Figura 4.41 – Mode-Shape de λ ₂ da Matriz [VCS] para o Sistema IEEE 118 Barras	
Figura 4.42 – Mode-Shape de λ ₃ da Matriz [VCS] para o Sistema IEEE 118 Barras	156
Figura 4.43 – Mode-Shape de λ_1 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	157
Figura 4.44 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	157
Figura 4.45 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	158
Figura 4.46 – Mode-Shape de λ_3 da Matriz [VCS] para o Sistema IEEE 118 Barras	159
Figura 4.47 – Áreas de Controle de Tensão a partir da Matriz [VCS] para o Sistema	
IEEE 118 Barras	159
Figura 4.48 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema IEEE 118 Barras	160
Figura 4.49 – Áreas de Controle de Tensão a partir da Matriz [J _{SQV}] para o Sistema	
IEEE 118 Barras	161
Figura 4.50 – Mode-Shape de λ_2 da Matriz [VCS] para o Sistema 39 Barras	162
Figura 4.51 – Mode-Shape de λ_3 da Matriz [VCS] para o Sistema 39 Barras	162
Figura 4.52 – Mode-Shape de λ_2 da Matriz [J_{SQV}] para o Sistema 39 Barras	163
Figura 4.53 – Mode-Shape de λ_3 da Matriz [J_{SQV}] para o Sistema 39 Barras	163
Figura 4.54 – Áreas de Controle de Tensão a partir das Matrizes [VCS] e [J _{SQV}] para	
o Sistema 10 Barras com jX=0,01%	164
Figura 4.55 – Áreas de Controle de Tensão a partir das Matrizes [VCS] e [J _{SQV}] para	
o Sistema 10 Barras com iX-10000%	164

Figura 4.56 – Areas de Controle de Tensão a partir das Matrizes [VCS] e [J _{SQV}] para	
o Sistema 18 Barras com jX=0,01%	165
Figura 4.57 – Áreas de Controle de Tensão a partir das Matrizes [VCS] e [J _{SQV}] para	
o Sistema 18 Barras com jX=10000%	166
Figura 4.58 – Áreas de Controle de Tensão a partir das Matrizes [VCS] e [J _{SQV}] para	
o Sistema New England 39 Barras	167
Figura 4.59 – Áreas de Controle de Tensão a partir das Matrizes [VCS] e [J _{SQV}] para	
o Sistema IEEE 118 Barras	168
Figura 4.60 - Áreas de Controle de Tensão a partir das Matrizes [VCS] e [J _{SQV}]	
para o Sistema S/SE Brasileiro 730 Barras	169

Abreviaturas e Siglas

CEPEL Centro de Pesquisas de Energia Elétrica

IEEE Institute of Electrical and Electronics Engineers

RAT ou AVR Regulador Automático de Tensão ou Automátic Voltage Regulator

S/SE Sul / Sudeste

WBE Weak Break Elimination

P Potência Ativa
 Q Potência Reativa
 S Potência Aparente
 θ Ângulo da Tensão
 V Módulo da Tensão

E Módulo da tensão interna do gerador

Xs Reatância Síncrona

ΔP Variação incremental de potência ativa
 ΔQ Variação incremental de potência reativa
 Δθ Variação incremental do ângulo da tensão
 ΔV Variação incremental do módulo da tensão

ΔE Variação incremental do módulo da tensão interna do gerador

[J] Matriz Jacobiana

[A] Submatriz da matriz Jacobiana expandida
 [B] Submatriz da matriz Jacobiana expandida
 [C] Submatriz da matriz Jacobiana expandida
 [D] Submatriz da matriz Jacobiana expandida

[VCS] Voltage control sensitivity matrix

 $\partial P/\partial \theta$ Derivada parcial da potência ativa em relação ao ângulo da tensão $\partial P/\partial V$ Derivada parcial da potência ativa em relação ao módulo da tensão $\partial P/\partial t$ Derivada parcial da potência ativa em relação ao tape de um LTC $\partial P/\partial E$ Derivada parcial da potência ativa em relação ao módulo da tensão

interna de um gerador ou compensador síncrono

∂Q/∂θ
 Derivada parcial da potência reativa em relação ao módulo da tensão
 ∂Q/∂V
 Derivada parcial da potência reativa em relação ao módulo da tensão
 ∂Q/∂t
 Derivada parcial da potência reativa em relação ao tape de um LTC
 ∂Q/∂E
 Derivada parcial da potência reativa em relação ao módulo da tensão

interna de um gerador ou compensador síncrono

nb Numero de barras do sistema

nc Número de equipamentos controladores de tensão

FP Fator de Participação

λ Autovalor

φ Autovetor à direita

ψ Autovetor à esquerda