

Marcelo Teixeira Silveira

Detecção e Extração 3D de Edificações em Áreas de Assentamentos Informais

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Elétrica.

Orientador: Prof. Raul Queiroz Feitosa Co-orientador: Prof. Jorge Luís Nunes e Silva Brito

Rio de Janeiro, abril de 2011

Pontifícia Universidade Católica do Rio de Janeiro

Marcelo Teixeira Silveira

Detecção e Extração 3D de Edificações em Áreas de Assentamentos Informais

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Raul Queiroz Feitosa

Orientador Departamento de Engenharia Elétrica – PUC-Rio

Prof. Jorge Luís Nunes e Silva Brito

Co-orientador UERJ

Prof. Aluir Porfírio Dal Poz Universidade Estadual Paulista Julio de Mesquita Filho

> Profa. Carla Liberal Pagliari IME

Prof. Iris Pereira Escobar UERJ

Prof. Gilson Alexandre Ostwald Pedro da Costa Departamento de Engenharia Elétrica – PUC-Rio

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 13 de abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marcelo Teixeira Silveira

Graduou-se em Engenharia de Sistemas e Computação na Universidade do Estado do Rio de Janeiro em 2003. Obteve o título de Mestre em Engenharia Computação com ênfase em Geomática pela Universidade do Estado do Rio de Janeiro em 2005. Trabalhou no projeto E-FOTO, participando do desenvolvimento dos principais módulos do projeto.

Ficha Catalográfica

Silveira, Marcelo Teixeira

Detecção e extração 3D de edificações em áreas de assentamentos informais / Marcelo Teixeira Silveira ; orientador: Raul Queiroz Feitosa ; co-orientador: Jorge Luís Nunes e Silva Brito. – 2011.

136 f. il. (color.) ; 30 cm

Tese (doutorado)–Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2011. Inclui bibliografia

 Engenharia elétrica – Teses. 2. Processamento digital de imagens. 3. Fotogrametria. 4. Modelo digital de superfícies. 5. Segmentação. 6. Correlação de imagens. 7. Assentamentos informais. I. Feitosa, Raul Queiroz. II. Brito, Jorge Luís Nunes e Silva. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

Agradecimentos

Aos meus orientadores Raul Feitosa e Jorge Nunes por estarem sempre presentes e me apoiando no que fosse necessário.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Ao Instituto Pereira Passos (IPP) e a Agencia Espacial da Alemanha (DLR) pelas imagens aéreas e orbitais cedidas para a realização de experimentos ao longo do curso.

Aos professores Christian Heipke e Karsten Jacobsen do Instituto de Fotogrametria da Universidade de Hannover pelo carinho e atenção que me receberam na Alemanha durante as 4 semanas de visita técnica.

Ao professor Sönke Müller e ao Marcus Rieche do Instituto de Fotogrametria da Universidade de Hannover por gentilmente cederem o material necessário para o estudo e implementação do Detector de Edificações.

Aos amigos do LVC, em especial ao Patrick e Rodrigo que me deram o auxílio necessário para o uso do segmentador do InterIMAGE.

A minha família que representa tudo para mim.

A todos os meus professores ao longo da vida.

E principalmente a Deus, por estar sempre iluminando meu caminho.

Resumo

Silveira, Marcelo Teixeira; Feitosa, Raul Queiroz (Orientador); Brito, Jorge Luís Nunes e Silva (Co-orientador). **Detecção e Extração 3D de Edificações em Áreas de Assentamentos Informais**. Rio de Janeiro, 2011, 136p. Tese de Doutorado – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

A ocupação informal nas periferias dos centros urbanos brasileiros cresce de modo acelerado. O Sensoriamento Remoto provê técnicas eficientes para medir esta expansão. Em cidades com topografia acidentada, como o Rio de Janeiro, a expansão inicial, preponderantemente horizontal, acaba dando lugar à expansão vertical, à medida que novos pavimentos vão sendo construídos sobre edificações já existentes. Para estimar o crescimento de assentamentos deste tipo requerem-se, portanto, técnicas de medição 3D. Esta pesquisa propõe um método para produção de Modelos Digitais de Superfície (MDS) a partir de pares estereoscópicos de imagens fotogramétricas digitais. O método tem como entrada um MDS inicial calculado a partir de um par de imagens estereoscópicas sem qualquer conhecimento a priori da semântica da cena imageada. O MDS de entrada é então refinado levando-se em conta informação relativa à geometria das edificações identificadas. O método baseia-se no conhecimento a priori de que edificações em assentamentos informais de grandes centros urbanos no Brasil têm em geral altura aproximadamente constante. O processo envolve três passos principais: primeiramente são identificados os topos das edificações em cada par de imagens estereoscópicas. Em seguida, as regiões de topo homólogas são pareadas. O terceiro passo envolve a extração 3D das edificações. Ao final, obtém-se um MDS mais exato do que o inicial, além de uma imagem rotulada com a semântica dos objetos identificados. Os resultados obtidos com base nos experimentos realizados sobre imagens aéreas de uma área teste do município do Rio de Janeiro apresentaram uma melhora significativa de acurácia relativamente ao MDS de entrada.

Palavras-chave

Processamento Digital de Imagens; Fotogrametria; Modelo Digital de Superfícies; segmentação; correlação de imagens; assentamentos informais.

Abstract

Silveira, Marcelo Teixeira; Feitosa, Raul Queiroz (Advisor); Brito, Jorge Luís Nunes e Silva (Co-advisor). **Building 3D Detection and Extraction in Informal Settlement Areas**. Rio de Janeiro, 2011, 136p. DSc Thesis – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Informal settlements in many Brazilian urban centers are growing up quickly. Remote Sensing techniques provide a cost-effective mean to measure such an expansion. In cities with rough topography, like the city of Rio de Janeiro, the initial expansion, predominantly horizontal, is gradually being shifted to vertical, as new floors are being built on the existing buildings. To estimate the changing of such type of buildings, 3D measuring techniques are required. This research proposes a method for generating Digital Surface Model (DSM) from digital photogrammetry techniques. The method takes an initial DSM calculated from a pair of stereoscopic images as input. These models have no knowledge of image scenes semantics. The input DSM is refined taking into account the information about the geometry of buildings identified by a process of segmentation and interpretation applied to both images of the stereo pair. The method is based on a *priori* knowledge that buildings from informal settlements in large urban centers in Brazil generally have their roof tops at approximately constant height (flat roofs). The process involves three main steps: firstly the tops of buildings are identified in each pair of stereoscopic images. Then, the regions corresponding to the top of the buildings are matched. The third step involves the 3D extraction of those buildings. Finally, the method generates a more accurate DSM plus an image label with the semantics of the identified buildings. The results obtained in the experiments on airborne imagery of a test area in the city of Rio de Janeiro showed a significant improvement in the original DSM, as it takes into account the semantics of the 3D reconstructed buildings.

Keywords

Digital Image Processing; Photogrammetry; Digital Surface Model; segmentation; image matching, informal settlements.

Sumário

1. Introdução	16
1.1. Motivação	17
1.2. Objetivos	19
1.3. Inovações da Tese	20
1.4. Organização da Tese	21
2. Trabalhos Relacionados	22
2.1. Reconstrução 3D baseada em telhados	22
2.2. Detecção de edificações	24
2.3. Reconstrução 3D a partir do MDS e de dados cadastrais	24
2.4. Extração 3D em assentamentos informais	26
2.5. Trabalhos de reconstrução de edificações 3D no Brasil	27
2.6. O método proposto	29
3. Fundamentos Teóricos	30
3.1. Processamento de imagens digitais	30
3.1.1. Segmentação	30
3.1.2. Pós-processamento	32
3.1.3. Extração de atributos	35
3.1.4. Classificação e reconhecimento	36
3.2. Fotogrametria	36
3.2.1. Orientação interior	37
3.2.2. Orientação exterior	38
3.2.3. As equações da colinearidade	39
3.2.4. Paralaxe estereoscópica	41
3.2.5. A interseção espacial	42
3.2.6. Extração do Modelo Digital de Superfícies	44
3.2.6.1 Tipos de representação dos dados 3D do terreno	45
3.2.6.2 Extração manual de feições	46
3.2.6.3 Extração automática de feições	49

4. O Modelo Proposto	52
4.1. Detecção dos topos	53
4.1.1. Segmentação	55
4.1.2. Pós-processamento	56
4.1.3. Extração de atributos geométricos dos segmentos	56
4.1.4. Pré-classificação	59
4.1.4.1. Eliminação de segmentos situados em regiõe	s de
sombra	60
4.1.4.2. Faixa de aceitação para alguns atributos	60
4.1.5. Classificação final	61
4.2. Determinação de regiões homólogas	62
4.2.1. Restrição da área de busca	63
4.2.2. Determinação de regiões homólogas por correlação	67
4.3. Reconstrução 3D a partir dos segmentos	73
5. Implementação e Análise Experimental do Método	76
5.1. Descrição do protótipo	76
5.2. Descrição dos experimentos	78
5.2.1. Procedimentos preliminares	80
5.2.2. Obtenção dos dados de referência	81
5.2.3. Avaliação dos MDSe	83
5.2.4. Detecção dos topos das edificações	83
5.2.5. Determinação de regiões homólogas e reconstrução	3D a
partir de segmentos 2D	90
5.3. Análise e discussão dos resultados	95
5.3.1. Qualidade da segmentação	95
5.3.2. Análise de cobertura	97
5.3.3. Exatidão altimétrica	99
5.3.4. Discussão dos resultados	103
6. Conclusões e trabalhos futuros	105
6.1. Conclusões	105
6.2. Trabalhos futuros	106

Apêndice A: Procedimentos preliminares e formato dos dados	119
A.1. Obtenção do MDS	119
A.1.1. Criação do projeto	119
A.1.2. Orientação interior e exterior	120
A.1.3. Extração do MDS	120
A.2. Formato dos arquivos utilizados	122
A.2.1. Arquivo de MDS	122
A.2.2. Arquivo de dados de vôo	123
A.2.3. Arquivo de imagem rotulada	123
A.2.4. Arquivo de dados relativos à imagem rotulada	124
Apêndice B: Os segmentadores utilizados	126
B.1. Segmentação por Baatz & Schäpe	126
B.2. Segmentação por Watershed	128
Apêndice C: Informações adicionais	133
C.1. Resultados da orientação interior	133
C.2. Resultados da orientação exterior	134
C.3. Obtenção do MDSr	134

107

Lista de figuras

Figura 3.1: Fluxograma de PDI	30
Figura 3.2: Segmentação por crescimento de regiões	31
Figura 3.3: Exemplo de segmentação por Watershed	32
Figura 3.4: Exemplo de operação morfológica de dilatação	34
Figura 3.5: Exemplo de operação morfológica de erosão	34
Figura 3.6: Exemplo de operação morfológicas de abertura e de	
fechamento	35
Figura 3.7: Condição de colinearidade para uma imagem	39
Figura 3.8: Deslocamento devido à paralaxe	41
Figura 3.9: Interseção espacial	44
Figura 3.10: Tipos de modelagem de superfície	45
Figura 3.11: Tipos básicos de elementos geométricos utilizados na	
digitalização de imagens	46
Figura 3.12: Medição manual de polígonos	47
Figura 3.13: Extração manual utilizando o software livre E-FOTO	48
Figura 3.14: Geração do MDS no ambiente E-FOTO	48
Figura 3.15: Mecanismo de busca por pixels homólogos no método	
baseado em áreas	49
Figura 4.1: Modelo geral proposto.	53
Figura 4.2: Método proposto para detecção de tipos de edificações em	
assentamentos informais	54
Figura 4.3: Imagem rotulada e sua representação matricial	55
Figura 4.4: Segmento original e após as operações de abertura e	
fechamento	56
Figura 4.5: Re-rotulação de segmento fragmentado	56
Figura 4.6: Exemplo de detecção de sombras	60
Figura 4.7: Fluxograma das ações executadas para cada ponto do MDSe	
na etapa de restrição da área de busca	64
Figura 4.8: Localização de segmentos através do MDSe	67
Figura 4.9: Ressecção espacial no par estéreo em três iterações	67
Figura 4.10: Fluxograma que descreve as ações executadas para a	
correlação de regiões a partir da imagem da esquerda	69

Figura 4.11: Fluxograma que descreve as ações executadas para o	
processo de correlação	71
Figura 4.12: Exemplo de correlação de regiões	72
Figura 4.13: Fluxograma que descreve as ações executadas para a	
correlação de regiões, a partir da imagem da direita	73
Figura 4.14: Fluxograma de ações executadas para a reconstrução 3D	74
Figura 4.15: Reconstrução 3D de topos de edificações a partir dos	
segmentos homólogos	75
Figura 5.1: Janela do módulo de "Detecção de topos" desenvolvido	77
Figura 5.2: Janela do módulo de "Reconstrução 3D"	78
Figura 5.3: Par de imagens do vôo de 2000 utilizadas no experimento	79
Figura 5.4: Par de imagens do vôo de 2004 utilizadas no experimento	80
Figura 5.5: Geração do MDS e seleção de área de interesse	80
Figura 5.6: Áreas selecionadas como amostras da região de interesse	81
Figura 5.7: Restituição fotogramétrica para o vôo de 2000	82
Figura 5.8: Restituição fotogramétrica para o vôo de 2004	82
Figura 5.9: Histograma de erros altimétricos dos MDSe dos vôos de 2000	
e 2004	83
Figura 5.10: Processo de abertura e fechamento aplicado à imagem	
segmentada e o resultado obtido	84
Figura 5.11: Máscara de sombra obtidas a partir da imagem de 2000	85
Figura 5.12: Análise e comparação dos valores do atributo de	
compacidade das amostras de "topos de edificação" e "não-topos de	
edificação"	86
Figura 5.13: Resultado final da "Detecção dos topos" a partir da	
segmentação por Baatz & Schäpe	88
Figura 5.14: Resultado final da detecção de edificações a partir da	
segmentação por Watershed	88
Figura 5.15: Contribuição de cada etapa na "Detecção dos topos" das	
edificações, a partir do segmentador Baatz & Schäpe	89
Figura 5.16: Contribuição de cada etapa na "Detecção de topos" das	
edificações, a partir do segmentador Watershed	89
Figura 5.17: Número de segmentos encontrados na etapa "Detecção dos	
topos" das edificações para cada experimento realizado	90

Figura 5.18: Porcentagem de pares obtidos para todos os experimentos	91
Figura 5.19: Resultado da correspondência para o vôo de 2000,	
utilizando-se o segmentador Watershed	92
Figura 5.20: Número de edificações pareadas para cada experimento	
realizado	93
Figura 5.21: Resultado após a "Reconstrução 3D" para o vôo de 2000:	
MDSt e sua respectiva imagem rotulada, utilizando-se a segmentação	
por Baatz & Schäpe	93
Figura 5.22: Resultado após a "Reconstrução 3D" para o vôo de 2000:	
MDSt e sua respectiva imagem rotulada, utilizando-se a segmentação	
por Watershed	94
Figura 5.23: Resultado após a "Reconstrução 3D" para o vôo de 2004:	
MDSt e sua respectiva imagem rotulada, utilizando-se a segmentação	
por Baatz & Schäpe	94
Figura 5.24: Resultado após a "Reconstrução 3D" para o vôo de 2004:	
MDSt e sua respectiva imagem rotulada, utilizando-se a segmentação	
por Watershed	95
Figura 5.25: Argumentos da função de dissimilaridade	96
Figura 5.26: Resultados da função de dissimilaridade para vários	
experimentos	97
Figura 5.27: Sobreposição do MDSt ao MDSr para o vôo de 2000	98
Figura 5.28: Sobreposição do MDSt ao MDSr para o vôo de 2004	98
Figura 5.29: Cobertura do MDSt obtida para cada experimento	99
Figura 5.30: Histograma de comparação entre os erros altimétricos do	
MDSt e o MDSe para o vôo de 2000 utilizando-se o segmentador de	
Baatz & Schäpe	100
Figura 5.31: Histograma de comparação entre os erros altimétricos do	
MDSt e o MDSe para o vôo de 2000utilizando-se o segmentador de	
Watershed	100
Figura 5.32: Histograma de comparação entre os erros altimétricos do	
MDSt e o MDSe para o vôo de 2004 utilizando-se o segmentador de	
Baatz & Schäpe	101

Figura 5.33: Histograma de comparação entre os erros altimétricos do	
MDSt e o MDSe para o vôo de 2004 utilizando-se o segmentador de	
Watershed	101
Figura 5.34: Recorte de uma mesma região das imagens dos vôos de	
2000 e 2004	102
Figura 5.35: Visualização 3D de um trecho do MDSe e sua respectiva	
orto-imagem para o vôo de 2000	102
Figura 5.36: Visualização 3D de um trecho do MDStc e sua respectiva	
orto-imagem para o vôo de 2000	103
Figura 5.37: Visualização 3D de um trecho do MDT e sua respectiva orto-	
imagem para o vôo de 2000	103
Figura A.1: Medição de pontos no LPS	120
Figura A.2: DSM extraído no LPS	121
Figura B.1: Detecção de contornos na imagem original e imagem	
"topográfica"	129
Figura B.2: Super-segmentação da imagem	130
Figura B.3: Supressão dos mínimos	131
Figura B.4: Segmentação Watershed resultante. Imagem segmentada e	
imagem rotulada correspondente	131

Lista de tabelas

Tabela 1.1: Tipos de Serviço, tempo de execução e custos das diversas	
etapas e tipos para a extração fotogramétrica 3D com base na área	
utilizada nos testes	19
Tabela 4.1: Atributos utilizados para descrever os segmentos	57
Tabela 5.1: Dados sobre o vôo de Rio das Pedras em 2000	79
Tabela 5.2: Dados sobre o vôo de Rio das Pedras em 2004	79
Tabela 5.3: Valores dos parâmetros utilizados nos segmentadores	84
Tabela 5.4: Faixa de valores dos atributos na etapa de pré-classificação	86
Tabela 5.5: Resultado dos ajustes dos pesos dos parâmetros de	
classificação	87
Tabela 5.6: Valores dos parâmetros utilizados na etapa de pareamento de	
regiões homólogas	90
Tabela A.1: Formato do arquivo de MDS	122
Tabela A.2: Formato do arquivo de imagem rotulada do protótipo	124
Tabela A.3: Formato do arquivo de dados relativos à imagem rotulada do	
protótipo	125
Tabela C.1: Avaliação da inclinação dos telhados das edificações	
restituídas	135
Tabela C.2: Avaliação das distorções geométricas dos telhados das	
edificações restituídas	136

Lista de símbolos e abreviações

- ASP American Society for Photogrammetry and Remote Sensing
- ERT Elemento de Resolução no Terreno
- IPP Instituto Pereira Passos
- LASER Light Amplification by Simulated Emission of Radiation
- LIDAR Light Detection and Ranging
- LSM Least-Squares Matching
- MDS Modelo Digital de Superfícies
- MDSe Modelo Digital de Superfícies de Entrada
- MDSr Modelo Digital de Superfícies de Referência
- MDSt Modelo Digital de Superfícies de Topos
- MDStc Modelo Digital de Superfícies de Topos composta com o MDT
- MDT Modelo Digital de Terreno
- PDI Processamento Digital de Imagens
- SIFT Scale-Invariant Feature Transform
- Zt Plano Z do topo da edificação detectada
- A Atributo de área
- α Atributo de anisometria
- B Atributo de robustez
- C Atributo de compacidade
- r Atributo de arredondamento
- P Atributo de perímetro
- M_{ij} Atributo de momento
- φ Atributo de ângulo da elipse envoltória
- Ra Atributo de semi-eixo maior da elipse envoltória
- R_b Atributo de semi-eixo menor da elipse envoltória