6 Referências

ALSWAIDAN, H. M. Determination of vanadium and nickel in oil products from saudi-arabia by inductively coupled plasma mass-spectrometry (ICP/MS). *Analytical letters* [s.i.], v. 26, n. 1, p. 141-146, 1993.

ALVES, L. C. *et al.* Removal of organic-solvents by cryogenic desolvation in inductively-coupled plasma-mass spectrometry. *Journal of analytical atomic spectrometry* [s.i.], v. 9, n. 3, p. 399-403, mar 1994.

AMORIM, F. A. C. *et al.* Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. *Talanta* [s.i.], v. 72, n. 2, p. 349-359, 2007.

AUCELIO, R. Q. *et al.* The determination of trace metals in lubricating oils by atomic spectrometry. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 62, n. 9, p. 952-961, 2007.

BANDURA, D. R. *et al.* **Reaction chemistry and collisional processes in multipole devices for resolving isobaric interferences in ICP-MS.** *Fresenius journal of analytical chemistry* [s.i.], v. 370, n. 5, p. 454-470, jul 2001.

BARROS N. B; SCARMÍNIO, I. S; BRUNS, R.E. **Como fazer** experimentos – 2 ed. Campinas: editora da UNICAMP, 2003. 401p.

BARROS N. B *et al.* **25 years of chemometrics in brazil.** *Quimica nova* [s.i.], v. 29, n. 6, p. 1401-1406, nov-dec 2006.

BETTINELLI, M. *et al.* Determination of trace-elements in fuel oils by inductively-coupled plasma-mass spectrometry after acid mineralization of the sample in a microwave-oven. *Journal of analytical atomic spectrometry* [s.i.], v. 10, n. 8, p. 555-560, aug 1995.

BJORN, E.; FRECH, W. Non-spectral interference effects in inductively coupled plasma mass spectrometry using direct injection high efficiency and microconcentric nebulisation. *Journal of analytical atomic spectrometry* [s.i.], v. 16, n. 1, p. 4-11, 2001.

BJORN, E.; FRECH, W. Introduction of high carbon content solvents into inductively coupled plasma mass spectrometry by a direct injection high efficiency nebuliser. Analytical and bioanalytical chemistry [s.i.], v. 376, n. 2, p. 274-278, 2003.

BJORN, E. *et al.* Investigation and quantification of spectroscopic interferences from polyatomic species in inductively coupled plasma mass spectrometry using electrothermal vaporization or pneumatic nebulization for sample introduction. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 53, n. 13, p. 1765-1776, nov 1998.

BONNEFOY, C. *et al.* Determination of chromium in whole blood by drc-icp-ms: spectral and non-spectral interferences. *Analytical and bioanalytical chemistry* [s.i.], v. 383, n. 2, p. 167-173, sep 2005.

BOSS C.B., FREDEEN K.J. - Concepts, Instrumentation And Techniques In Inductively Coupled Plasma Optical Emission Spectrometry – 2^a edição. Perkin elmer. 1997

BOUYSSIERE, B. *et al.* Determination of mercury in organic solvents and gas condensates by mu flow-injection - inductively coupled plasma mass spectrometry using a modified total consumption micronebulizer fitted with single pass spray chamber. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 61, n. 9, p. 1063-1068, 2006.

BRANDAO, G. P. *et al.* Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 60, n. 5, p. 625-631, jun 2005.

BRENNER, I. B. *et al.* Direct determination of lead in gasoline using emulsification and argon and argon-oxygen inductively coupled plasma atomic emission spectrometry. *Journal of analytical atomic spectrometry* [s.i.], v. 11, n. 2, p. 91-97, feb 1996.

CAMPOS, R. C. *et al.* Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 64, n. 6, p. 506-512, jun 2009.

CAUMETTE, G. *et al.* **Element speciation analysis of petroleum and related materials**. *Journal of analytical atomic spectrometry* [s.i.], v. 24, n. 3, p. 263-276, 2009.

CAUMETTE, G. et al. Sensitivity improvement in ICP-MS analysis of fuels and light petroleum matrices using a microflow nebulizer and heated spray chamber sample introduction. Talanta [s.i.], v. 80, n. 2, p. 1039-1043, dec 2009.

CHAVES, E. S. *et al.* Determination of Co, Cu, Fe, Mn, Ni and V in diesel and biodiesel samples by ETV-ICP-MS. *Journal of environmental monitoring* [s.i.], v. 10, n. 10, p. 1211-1216, 2008.

CHAVES,E.S. Determinação de elementos traço em diesel e biodiesel por espectrometria de emissão atômica em chama e por espectrometria de massa com plasma indutivamente acoplado com introdução da amostra por vaporização eletrotérmica. Florianóplis : UFRGS, 2008. Dissertação de mestrado.

D'ILIO, S. *et al.* Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. *Analytica chimica acta* [s.i.], v. 624, n. 1, p. 59-67, aug 2008.

D'ILIO, S. et al. Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system. Analytica chimica acta [s.i.], v. 579, n. 2, p. 202-208, oct 2006.

DE ALMEIDA, C. M. S. *et al.* Studies on the origin and transformation of selenium and its chemical species along the process of petroleum refining. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 64, n. 6, p. 491-499, 2009.

DE JESUS, A. *et al.* The use of microemulsion for determination of sodium and potassium in biodiesel by flame atomic absorption spectrometry. *Talanta* [s.i.], v. 74, n. 5, p. 1378-1384, 2008.

DE SOUZA, R. M. *et al.* Determination of Mo, Zn, Cd, Ti, Ni, V, Fe, Mn, Cr and Co in crude oil using inductively coupled plasma optical emission spectrometry and sample introduction as detergentless microemulsions. *Microchemical journal* [s.i.], v. 82, n. 2, p. 137-141, apr 2006.

DITTERT, I. M. *et al.* Direct and simultaneous determination of cr and fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 64, n. 6, p. 537-543, 2009.

DOS SANTOS, E. J. *et al.* Simultaneous determination of ca, p, mg, k and na in biodiesel by axial view inductively coupled plasma optical emission spectrometry with internal standardization after multivariate optimization. *Journal of analytical atomic spectrometry* [s.i.], v. 22, p. 1300-1303, 2007.

DUYCK, C. *et al.* The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 62, n. 9, p. 939-951, 2007.

DUYCK, C. et al. Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions. Spectrochimica acta part b-atomic spectroscopy [s.i.], v. 57, n. 12, p. 1979-1990, 2002.

DUYCK, C. et al. Trace element distributions in biodegraded crude oils and fractions from the potiguar basin, Brazil. Journal of the brazilian chemical society [s.i.], v. 19, n. 5, p. 978-986, 2008.

EDLUND, M. *et al.* Analysis of biodiesel by argon-oxygen mixed-gas inductively coupled plasma optical emission spectrometry. *Journal of analytical atomic spectrometry* [s.i.], v. 17, n. 3, p. 232-235, 2002.

FERREIRA, H. B. P.; BARBEIRA, P. J. S. Voltammetric determination of zinc in lubricating oils. *Energy & fuels* [s.i.], v. 23, p. 3048-3053, may-jun 2009.

GROTTI, M. et al. Determination of sub-nanomolar levels of iron in sea-water using reaction cell inductively coupled plasma mass spectrometry after Mg(OH)₂ coprecipitation. Journal of analytical atomic spectrometry [s.i.], v. 24, n. 4, p. 522-527, 2009.

EURACHEM / CITAC guide CG 4 – **Measurement uncertainty in analytical measurement**. Second edition, 2000

HEILMANN, J. *et al.* Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution icp-ms with direct sample injection and microwave-assisted digestion. *Analytical and bioanalytical chemistry* [s.i.], v. 380, n. 2, p. 190-197, 2004.

Http://www.grupotecnoclub.com.br. <acessado em 3 de abril de 2010> Http://www.br.com.br <acessado em 12 de julho de 2010>

HUTTON, R. C. Application of inductively coupled plasma sourcemass spectrometry (ICP-MS) to the determination of trace-metals in organics. Journal of analytical atomic spectrometry [s.i.], v. 1, n. 4, p. 259-263, aug 1986.

IGLESIAS, M. *et al.* Evaluation of an icp-collision/reaction cell-ms system for the sensitive determination of spectrally interfered and non-interfered elements using the same gas conditions. *Journal of analytical atomic spectrometry* [s.i.], v. 17, n. 10, p. 1240-1247, 2002.

KAHEN, K. *et al.* Direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry for analysis of petroleum samples. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 58, n. 3, p. 397-413, mar 2003.

KNOTHE, G et al. *Manual de biodiesel.* S.I. : edgard blucher, 2006.

KOPPENAAL, D. W. *et al.* Collision and reaction cells in atomic mass spectrometry: development, status, and applications. *Journal of analytical atomic spectrometry* [s.i.], v. 19, n. 5, p. 561-570, 2004.

MAESSEN, F. *et al.* Experimental control of the solvent load of inductively coupled argon plasmas and effects of the chloroform plasma load on their analytical performance. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 41, n. 1-2, p. 3-25, 1986.

MONTGOMERY, D.C. Design and analisys of experiments – 5^a edição.

Arizona state university, 1997. 684pp

OLESIK, J. W.; JONES, D. R. Strategies to develop methods using ionmolecule reactions in a quadrupole reaction cell to overcome spectral overlaps in inductively coupled plasma mass spectrometry. *Journal of analytical atomic spectrometry* [s.i.], v. 21, n. 2, p. 141-159, 2006.

PEREIRA, J. S. F. *et al.* Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion. *Microchemical journal* [s.i.], v. 96, n. 1, p. 4-11, 2010.

AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Portaria ANP nº 80 de 30.4.1999 - DOU 3.5.1999

REDDY, M. S. *et al.* Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during

combustion. Journal of hazardous materials [s.i.], v. 123, n. 1-3, p. 242-249, aug 2005.

SAINT'PIERRE, T. D. *et al.* The development of a method for the determination of trace elements in fuel alcohol by ETV-ICP-MS using isotope dilution calibration. *Talanta* [s.i.], v. 68, n. 3, p. 957-962, jan 2006.

SAINT'PIERRE, T. D. *et al.* **Determination of cd and pb in fuel ethanol by filter furnace electrothermal atomic absorption spectrometry**. Quimica nova [s.i.], v. 31, n. 7, p. 1626-1630, 2008.

SANTELLI, R. E. *et al.* Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions. Spectrochimica acta part b-atomic spectroscopy [s.i.], v. 63, n. 7, p. 800-804, 2008.

TANNER, S. D.; BARANOV, V. I. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell. *Journal of the american society for mass spectrometry* [s.i.], v. 10, n. 11, p. 1083-1094, nov 1999.

TANNER, S. D. *et al.* **Reaction cells and collision cells for ICP-MS: a tutorial review**. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 57, n. 9, p. 1361-1452, sep 2002.

TODOLI, J. L.; MERMET, J. M. Acid interferences in atomic spectrometry: analyte signal effects and subsequent reduction. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 54, n. 6, p. 895-929, jun 1999.

TODOLI, J. L.; MERMET, J. M. Sample introduction systems for the analysis of liquid microsamples by ICP-AES and ICP-MS. Spectrochimica acta part b-atomic spectroscopy [s.i.], v. 61, n. 3, p. 239-283, 2006.

VAN,D.K. – **Fundamentals of Petroleum** – 4^aedição. The university of Texas at austin,1997.

VANVEEN, E. H. *et al.* Spectral interpretation and interference correction in inductively-coupled plasma-mass spectrometry. *Spectrochimica acta part b-atomic spectroscopy* [s.i.], v. 49, n. 12-14, p. 1347-1361, oct-dec 1994.

WANG, T. B. *et al.* Direct determination of metals in organics by inductively coupled plasma atomic emission spectrometry in aqueous matrices. *Journal of pharmaceutical and biomedical analysis* [s.i.], v. 33, n. 4, p. 639-646, nov 2003.

WOODS, G. D.; FRYER, F. I. Direct elemental analysis of biodiesel by inductively coupled plasma-mass spectrometry. *Analytical and bioanalytical chemistry* [s.i.], v. 389, p. 753-761, 2007.

YABUTANI, T. *et al.* Simultaneous determination of trimethyl- and triethyllead in urban dust by species-specific isotope dilution/gas chromatography-inductively coupled plasma mass spectrometry. *Analytical sciences* [s.i.], v. 24, n. 6, p. 791-794, jun 2008.

7 Anexos

Anexo I: Gráficos de superfície de resposta para o micronebulizador PFA-100[™] Anexo II: Gráficos de superfície de resposta para o micronebulizador Miramist[™] Anexo III: Espectro de emissão das vizinhanças dos analitos estudados em ICP OES.

Anexo IV: Tabela dos parâmetros empíricos para o cálculo da pressão de vapor Anexo V: Gráficos da otimização das condições da célula de reação dinâmica Anexo VI: Superfície de resposta e gráfico de Pareto para planejamento composto central em DRC-ICP-MS

Anexo VII: Comparativo entre as técnicas ICP OES e DRC-ICP-MS

Anexo I: Gráficos de superfície de resposta para o micronebulizador PFA-100[™]

Anexo II: Gráficos de superfície de resposta para o micronebulizador Miramist[™]

Fitted Surface; Variable: P 213 axial 2**(2-0) design; MS Pure Error=,0070968 DV: P 213 axial

1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2

40 30 20

Fitted Surface, Variable, Ni 221,648 2**(2-0) design; MS Pure Error=.0286903 DV. Ni 221,648

Anexo III: Espectro de emissão das vizinhanças dos analitos estudados em ICP OES.

$$\log p = A - \frac{B}{C+T}$$

Substância	Fórmula	Α	В	С
Acetona	C ₃ H ₆ O	7.02447	1161.00	224.00
Ácido acético	$C_2H_4O_2$	7.18807	1416.70	211.00
Água	H ₂ O	7.96681	1668.21	228.00
Anilina	C_6H_7N	7.24179	1675.30	200.00
Benzeno	C_8H_6	6.90565	1211.03	220.79
i-Butano	C_4H_{10}	6.74808	882.80	240.00
n-Butano	C_4H_{10}	6.83029	945.90	240.00
Estireno	C_8H_8	6.92409	1420.00	206.00
Etanol	C_2H_6O	8.04494	1554.30	222.65
Éter dietílico	$C_4H_{10}O$	6.78574	994.20	220.00
Etilbenzeno Etilenoglicol	C_8H_{10}	6.95719 7.88080	1424.26 1957.00	213.21 193.80
n-Heptano	C_7H_{16}	6.90240	1268.12	216.90
n-Hexano	C_6H_{14}	6.87776	1171.53	222.37
n-Octano	C_8H_{18}	6.92370	1355.13	209.52
i-Pentano	C_5H_{12}	6.78967	1020.01	233.10
n-Pentano	C_5H_{12}	6.85221	1064.63	232.00
Tolueno	C_7H_8	6.95464	1344.80	219.48
o-Xileno	C_8H_{10}	6.99891	1474.68	213.69
m-Xileno	C_8H_{10}	7.00908	1462.27	215.11
p-Xileno	C_8H_{10}	6.99052	1453.43	215.31

Anexo V: Gráficos da otimização das condições da célula de reação dinâmica

Anexo VI: Superfície de resposta e gráfico de Pareto para planejamento composto central em DRC-ICP-MS

Para comparação dos resultados e conseqüente validação dos mesmos, foi realizado um teste estatístico de hipótese baseado na distribuição de t de *Student.* Para aplicar-se este teste de hipóteses, primeiramente deve-se realizar o teste F de *Snedecor* para verificar se as variâncias dos métodos são diferentes, segundo a seguinte fórmula:

$$F = \frac{s_1^2}{s_2^2}$$

Onde s_{1}^{2} e s_{2}^{2} são as variâncias dos resultados obtidos por ICP OES e DRC-ICP-MS, sendo que a maior variância deve ser colocada no numerador. O valor de F tabelado com n₁-1 graus de liberdade no numerador e n₂-1 graus de liberdade no denominador, é obtido através da distribuição F.

Se o teste F não for significante, isto é, o valor do F_{calculado} for menor do que o F_{Tabelado}, pode-se considerar que as variâncias são iguais e a aplicação do teste t pode ser efetuada empregando-se o s_{combinado} através da fórmula:

$$t_{calculado} = \frac{\left|\overline{x_1} - \overline{x_2}\right|}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Onde $s^2 = [(n_1-1) x s_1^2 + (n_2-1) x s_2^2] / (n_1+n_2-2)$

Compara-se o valor de t_{calculado} com o valor de t_{Tabelado}, que é obtido para $n_1+n_2 - 2$ graus de liberdade. Se o valor do t_{calculado} é menor do que o t_{Tabelado} no nível de confiança 95%, então, não há evidência estatística de que as médias são diferentes. Se o teste F for significante em relação ao F_{Tabelado}, então, não pode-se considerar as variâncias das médias em estudo como sendo iguais e, dessa forma, o teste de hipótese segue a seguinte fórmula:

$$t_{calculado} = \frac{\left|\overline{x}_{1} - \overline{x}_{2}\right|}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$

Elemento	NIST 1085b		ICP OES (PFA-100)		Rec (%)	Teste F snedecor			Teste T σ^2 iguais		
	Media	IC	Media	Media IC		$\sigma^2 MRC$	σ ² PFA-100	Fcalculado	Scombinado	t _{calculado}	
AI	300,4	9,30	301,60	8,20	100,4	86,49	67,24	1,29	76,87	-0,17	
Ag	304,6	8,90	288,80	14,40	94,8	79,21	207,36	2,62	143,29	1,62	
Cu	295,6	8,50	291,00	6,90	98,4	72,25	47,61	1,52	59,93	0,73	
Cd	302,9	5,10	288,69	6,18	95,3	26,01	38,19	1,47	32,10	3,07	
Mn	289		291,70	4,70	100,9						
V	297,8	4,60	298,80	9,80	100,3	21,16	96,04	4,54	58,60	-0,16	
Р	299,9	7,20	305,60	12,40	101,9	51,84	153,76	2,97	102,80	-0,69	
Pb	297,7	6,80	277,40	14,00	93,2	46,24	196,00	4,24	121,12	2,26	
Ni	295,9	7,40	290,50	5,82	98,2	54,76	33,87	1,62	44,32	0,99	
Мо	296		285,00	6,15	96,3						
Zn	296,8	6,80	293,46	4,40	98,9	46,24	19,36	2,39	32,80	0,71	
Fe	301,2	5,00	296,10	6,00	98,3	25,00	36,00	1,44	30,50	1,13	
Ti	301,1	2,90	291,43	4,00	96,8	8,41	16,00	1,90	12,21	3,39	
Ва	314		294,80	2,50	93,9						
Ca	298		292,90	4,90	98,3						
Mg	297,3	4,10	293,60	5,70	98,8	16,81	32,49	1,93	24,65	0,91	
Cr	302,9	3,90	301,70	5,80	99,6	15,21	33,64	2,42	24,43	0,02	

Tabela 17: Teste de hipótese para validação dos resultados obtidos pela técnica ICP OES empregando micronebulizador PFA-100

 $\overline{t_{tab}}$ para amostras com variâncias iguais a 4 graus de liberdade = 2,78

* t_{tab} para amostras com variâncias diferentes a 3,25 graus de liberdade = 3,18

Elemento	NIST1085b		ICP OES (Miramist)		Rec	Teste F snedecor			Teste t o	Teste t σ ² diferentes	
	Media	IC	Media	IC	- (/0)	σ ² MRC	σ ² PFA-100	$F_{calculado}$	S _{combinado}	t _{calculado}	t _{calculado}
AI	300,4	9,3	293,5	1,7	98	86,5	2,8	31,1	44,6		1,3
Ag	304,6	8,9	295,2	3,3	97	79,2	11,2	7,1	45,2	1,7	
Cu	295,6	8,5	282,5	6,7	95	72,3	45,3	1,6	58,8	2,1	
Cd	302,9	5,1	288,9	2,8	95	26,0	7,8	3,3	16,9	4,2	
Mn	289		289,5	10,3	100	0,0					
V	297,8	4,6	294,7	6,0	99	21,2	36,0	1,7	28,6	0,7	
Р	299,9	7,2	309,5	3,0	103	51,8	8,8	5,9	30,3	-2,1	
Pb	297,7	6,8	266,8	11,4	90	46,2	130,0	2,8	88,1	4,0	
Ni	295,9	7,4	279,2	3,7	94	54,8	13,5	4,1	34,1	3,5	
Мо	296		280,0	2,9	95	0,0	8,3		4,2		
Zn	296,8	6,8	293,4	3,7	99	46,2	13,4	3,5	29,8	0,8	
Fe	301,2	5	292,6	2,3	97	25,0	5,2	4,8			2,7
Ti	301,1	2,9	285,6	4,9	95	8,4	24,4	2,9	16,4	4,7	
Ва	314		285,8	4,5	91						
Ca	298		284,9	6,9	96						
Mg	297,3	4,1	290,5	5,2	98	16,8	26,7	1,6	21,8		
Cr	302,9	3,9	296,0	2,0	98	15,2	4,0	2,4	9,6	0,02	

Tabela 18: Teste de hipótese para validação dos resultados obtidos pela técnica ICP OES empregando micronebulizador Miramist

* t_{tab} para amostras com variâncias iguais a 4 graus de liberdade = 2,78

* t_{tab} para amostras com variâncias diferentes a 3,25 graus de liberdade = 3,18

Elemento	Miramist		Miramist PFA-100		Rec	Teste F snedecor			Teste T o	Teste T σ ² diferentes	
	Media	IC	Media	IC	(%)	σ ² Miramist	σ ² PFA- 100	Fcalculado	Scombinado	t _{calculado}	t _{calculado}
AI	293,5	1,7	301,6	8,2	103	2,8	67,2	24,2	35,0		-1,7
Ag	295,2	3,3	288,8	14,4	98	11,2	207,4	18,5	109,3	0,8	
Cu	282,5	6,7	291,0	6,9	103	45,3	47,6	1,1	46,4	-1,5	
Cd	288,9	2,8	288,7	6,2	100	7,8	38,2	4,9	23,0	0,1	
Mn	289,5	10,3	291,7	4,7	101						
V	294,7	6,0	298,8	9,8	101	36,0	96,0	2,7	66,0	-0,6	
Р	309,5	3,0	305,6	12,4	99	8,8	153,8	17,5	81,3	0,5	
Pb	266,8	11,4	277,4	14,0	104	130,0	196,0	1,5	163,0	-1,0	
Ni	279,2	3,7	290,5	5,8	104	13,5	33,9	2,5	23,7	-2,9	
Мо	280,0	2,9	285,0	6,2	102						
Zn	293,4	3,7	293,5	4,4	100	13,4	19,4	1,4	16,4	-0,02	
Fe	292,6	2,3	296,1	6,0	101	5,2	36,0	6,9	20,6	-1,0	
Ti	285,6	4,9	291,4	4,0	102	24,4	16,0	1,5	20,2	-1,6	
Ва	285,8	4,5	294,8	2,5	103						
Ca	284,9	6,9	292,9	4,9	103						
Mg	290,5	5,2	293,6	5,7	101	26,7	32,5	1,2	29,6	-0,7	
Cr	296,0	2,0	301,7	5,8	102	4,0	33,6	2,4	18,8	0,02	

Tabela 19: Teste de hipótese para comparação entre os micronebulizadores Miramist e PFA-100 pela técnica de ICP OES

* t_{tab} para amostras com variâncias iguais a 4 graus de liberdade = 2,78

* t_{tab} para amostras com variâncias diferentes a 3,25 graus de liberdade = 3,18

Isótono	tono Este Trabalho		MRC 1	085b	Teste	r	Teste	e T σ ² iais	Teste T σ ² diferentes	
	Média	IC	Média	IC	σ ² ICPMS	σ ² MRC	F _{calc}	Scomb	t _{calc}	t _{calc}
²⁷ AI	290,67	3,72	300,4	9,3	13,9	86,5	6	50	-1,68	
¹⁰⁷ Ag	467,83	20,9	304,6	8,9	437,0	79,2	6	258	12,44	
⁶³ Cu	277,37	11,17	295,6	8,5	124,8	72,3	2	99	-2,25	
¹¹¹ Cd	300,45	5,03	302,9	5,1	25,3	26,0	1	26	-0,59	
¹¹⁴ Cd	302,16	10,61	302,9	5,1	112,6	26,0	4	69	-0,11	
⁵⁵ Mn	313,05	3,63	289							
⁵¹ V	284,41	1,61	297,8	4,6	2,6	21,2	8	12	-4,76	
²³ Na	301,9	39,42	305,2	7,	1554,2	49,0	32			-0,14
²⁰⁸ Pb	281,03	12,67	297,7	6,8	160,6	46,2	3	103	-2,01	
⁶⁰ Ni	285,59	6,7	295,9	7,4	44,8	54,8	1	50	-1,79	
⁵⁸ Ni	286,4	2,14	295,9	7,4	4,6	54,8	12	30	-2,14	
⁹⁶ Mo	290,79	8,21	296							
⁹⁸ Mo	292,63	6,	296							
⁶⁴ Zn	267,49	8,95	296,8	6,8	80,0	46,2	2	63	-4,52	
⁶⁶ Zn	267,19	13,54	296,8	6,8	183,3	46,2	4	115	-3,38	
⁵⁶ Fe	292,67	,17	301,2	5,	0,03	25,0	827			-2,95
⁴⁸ Ti	275,36	1,1	301,1	2,9	1,2	8,4	7	5	-14,38	
¹³⁸ Ba	312,45	5,12	314							
⁴⁰ Ca	354,28	24,56	298							
²⁴ Mg	352,96	38,45	297,3	4,1	1478,7	16,8	88	748		2,49
⁵² Cr	301,73	4,35	302,9	3,9	13,9	15,2	1	115		-2,95

Tabela 20: Teste de hipótese para validação dos resultados obtidos pela técnica DRC-ICP-MS

* t_{tab} para amostras com variâncias iguais a 4 graus de liberdade = 2,78

* t_{tab} para amostras com variâncias diferentes a 3,25 graus de liberdade = 3,18

Isótopo	DRC-ICP-MS IC (mg kg ⁻¹) (i			ICP OES (mg kg ⁻¹) Teste F snedecor					Teste T σ^2 iguais		
	Media	IC	Media	IC	σ^2 ICP-MS	σ^2 ICP OES	Fcalc	Scomb	t calc	Tcal	
²⁷ AI	290,67	3,72	301,6	8,2	13,87	67,24	4,85	40,56	-2,10		
¹⁰⁷ Ag	467,83	20,90	288,8	14,4	436,97	207,36	2,11	322,17	12,22		
⁶³ Cu	277,37	11,17	291,0	6,9	124,83	47,61	2,62	86,22	-1,80		
⁵⁹ Co	33,30	9,69									
¹¹¹ Cd	300,45	5,03	288,7	6,2	25,32	38,19	1,51	31,75	2,56		
¹¹⁴ Cd	302,16	10,61	288,7	6,2	112,65	38,19	2,95	75,42	1,90		
⁵⁵ Mn	313,05	3,63	291,7	4,7	13,21						
⁵¹ V	284,41	1,61	298,8	9,8	2,59	96,04	37,14			-2,51	
²⁰⁸ Pb	281,03	12,67	277,4	14,0	160,57	196,00	1,22	178,28	0,33		
⁶⁰ Ni	285,59	6,70	290,5	5,8	44,83	33,87	1,32	39,35	-0,96		
⁵⁸ Ni	286,40	2,14	290,5	5,8	4,56	33,87	7,43	19,22	-1,15		
⁹⁶ Mo	290,79	8,21	285,0	6,1	67,34	37,82	1,78	52,58	0,98		
⁹⁸ Mo	292,63	6,00	285,0	6,1	36,04	37,82	1,05	36,93	1,54		
⁶⁴ Zn	267,49	8,95	293,5	4,4	80,01	19,36	4,13	49,69	-4,51		
⁶⁶ Zn	267,19	13,54	293,5	4,4	183,33	19,36	9,47	101,34	-3,20		
⁵⁶ Fe	292,67	0,17	296,1	6,0	0,03	36,00	1191,10			-0,99	
⁴⁸ Ti	275,36	1,10	291,4	4,0	1,20	16,00	13,31	8,60	-6,71		
¹³⁸ Ba	312,45	5,12	294,8	2,5	26,20	6,25	4,19	16,23	5,37		
⁴⁰ Ca	354,28	24,56	292,9	4,9	603,39	24,01	25,13			4,24	
²⁴ Mg	352,96	38,45	293,6	5,7	1478,66	32,49	45,51			2,64	
⁵² Cr	301,74	4,35	301,7	5,8	13,87	33,64	2,42	8,60	0,02		

Tabela 21: Teste de hipótese para comparação entre as técnicas ICP OES e DRC-ICP-MS

* t_{tab} para amostras com variâncias iguais a 4 graus de liberdade = 2,78

* t_{tab} para amostras com variâncias diferentes a 3,25 graus de liberdade = 3,18