

Natalie Waissmann Szyfman

Estudo de complexos de Cobre(II) e Zinco(II) com algumas poliaminas e a fosfocreatina ou o ATP

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Química da PUC-Rio como requisito parcial para obtenção do título de Doutor em Química.

Orientadora: Prof. Judith Felcman

Natalie Waissmann Szyfman

Estudo de complexos de Cobre(II) e Zinco(II) com algumas poliaminas e a fosfocreatina ou o ATP

Tese apresentada ao Programa de Pós-graduação em Química do Departamento de Química do Centro Técnico Científico da PUC-Rio como requisito parcial para obtenção do título de Doutor em Química. Aprovada pela Comissão Examinadora abaixo assinada

Prof. Judith Felcman Orientadora Departamento de Química – PUC-Rio

> Prof. Andrea de Moraes Silva IFRJ

> > Prof. Annelise Casellato UFRJ

Prof. Nicolás Adrián Rey Departamento de Química – PUC-Rio

> Prof. Ana Lucia Ramalho Mercê UFPR

Dra. Tatiana Santanna Ribeiro Departamento de Química - PUC-Rio

Dra. Cristiane Maria de Mello Alves Portella Departamento de Química - PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial de Pós-Graduação do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 22 de fevereiro de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e da orientadora.

Natalie Waismann Szyfman

Graduou-se em Engenharia Química na Pontifícia Universidade Católica do Rio de Janeiro. Durante o mestrado foi bolsista CNPq, desenvolvendo trabalho em química bioinorgânica, na Pontifícia Universidade Católica do Rio de Janeiro.

Ficha Catalográfica

Szyfman, Natalie Waissmann

Estudo de complexos de cobre(II) e zinco(II) com algumas poliaminas e a fosfocreatina ou ATP / Natalie Waissmann Szyfman ; orientador: Judith Felcman. – 2011.

269 f.: il. (color.); 30 cm

Tese (doutorado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, 2011. Inclui bibliografia

1. Química – Teses. 2. Complexos binários. 3. Complexos ternários. 4. Cobre(II). 5. Zinco(II). 6. Poliaminas. 7. Fosfocreatina. 8. ATP. 9. Modos de coordenação. 10. Interações intermoleculares. I. Felcman, Judith. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Química. III. Título.

CDD: 540

Agradecimentos

À toda minha família pelo apoio.

Meu marido Alexandre pelo apoio e ajuda sempre.

À Professora Judith pela orientação e apoio.

À todos meus amigos do laboratório pela ajuda em diversos momentos.

À Thaís Tenório pelos cálculos teóricos e modelagem molecular.

À Dra. Tatiana Santanna Ribeiro pelas análises de RMN.

Ao Prof. Dr. António Sávio Mangrich e à Dra. Ana Lucia Ramalho Mercê da Universidade Federal do Paraná pelas análises de RPE.

Ao Professor Dr. Nicolás A. Rey pela ajuda na análise da espectroscopia Raman.

Ao CNPq, pelo apoio financeiro através da bolsa de doutorado.

Resumo

Szyfman, Natalie Waissmann, Felcman Judith; **Estudo de complexos de Cobre(II) e Zinco(II) com algumas poliaminas e a fosfocreatina ou o ATP.** Rio de Janeiro, 2011. 269 p. Tese de Doutorado — Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro.

Foram estudados alguns sistemas binários de Cu(II) e Zn(II) formados com as poliaminas (PA= En, Tn, Put, Spd e Spm) e os complexos ternários (MLPA), onde L foi a PCr ou o ATP e PA uma das cinco poliaminas. O estudo foi realizado em solução aquosa por potenciometria, espectroscopia de ultravioleta-visível, Raman, RMN e RPE e cálculos de menor energia de estabilização e modelagem molecular. As constantes de estabilidade foram determinadas pela potenciometria. Os valores das constantes dos complexos com as poliaminas apresentam um comportamento bastante diferenciado entre os sistemas formados com o Cu(II) e Zn(II). A ordem dos valores das constantes de estabilidade dos sistemas com o Cu(II) é:CuPut<CuTn<CuEn<CuSpd<CuSpm, e dos sistemas com Zn(II) é: ZnPut<ZnEn<ZnTn<ZnSpm<ZnSpd. Esse comportamento diferenciado se deve a estrutura formada nos complexos. Enquanto o anel de 5 membros formado pelo complexo CuEn é mais estável do que o anel de 6 e 7 membros formados pelos complexos CuTn e CuPut, respectivamente, nos sistemas com o Zn(II) o complexo que forma anel de 6 membros (ZnTn) é mais estável do que o complexo que forma anel de 5 membros (ZnEn). Já o complexo ZnPut é o menos estável pela coordenação monodentada da poliamina ao Zn(II). Os complexos formados com Cu(II) e Zn(II) com a Spd e Spm também apresentam comportamento diferenciado. Com o Cu(II) as poliaminas Spd e Spm formam complexos se coordenando com três e quatro grupamentos amino, respectivamente. Com o Zn(II) a coordenação deve ser por três grupamentos amino nos dois complexos formados. Interações entre as poliaminas protonadas e os dois ligantes são observadas de um modo geral exceto no sistema Zn:ATP:Spd, e isso se deve a conformação que a molécula formada sofre que desfavorece a interação entre os ligantes. Interações entre as triamina (Spd) e tetramina (Spm) e a PCr, são observadas nos complexos ternários, para ambos os íons, mesmo quando estas não

estão protonadas. Esta interação deve ser pelo átomo de nitrogênio não coordenado da poliamina e o átomo de oxigênio não coordenado da PCr. Neste trabalho foi possível esclarecer o modo de coordenação do Cu(II) com a PCr em solução, que é pelos grupamentos guanidino e fosfato do ligante, tanto no complexo binário como nos complexos ternários. Também para o Zn(II) a PCr se complexa do mesmo modo. O modo de coordenação do ATP ao Zn(II) tanto nos complexos binários como ternários, deve ser através dos grupamentos fosfatos P_{β} e P_{γ} .

Palavras-chave

Complexos binários; complexos ternários; Cobre(II); Zinco(II); poliaminas; fosfocreatina; ATP; modos de coordenação; interações intermoleculares.

Abstract

Szyfman, Natalie Waismann, Felcman Judith (Advisor); **Study of Copper(II) and Zinc(II) complexes with some polyamines and phosphocreatine or ATP.** Rio de Janeiro, 2011. 269 p. DoctorateThesis – Departamento de Química, Pontifícia Universidade Católica so Rio de Janeiro.

Some binary systems of Cu(II) and Zn(II) with polyamines (PA=En, Tn, Put, Spd and Spm), and ternary complexes (MLPA) of Cu(II) and Zn(II), where L is PCr or ATP, and PA is one of the five polyamines, were studied. The study was performed in aqueous solution using potentiometry, ultraviolet-visible, Raman, NMR and EPR spectroscopies, and, calculations of the lowest stabilization energy for formed complexes and molecular modeling. The stability constants were determined by potentiometry. The order of the values of stability constants of the systems with Cu(II) is: CuPut<CuTn<CuEn<CuSpd<CuSpm. For systems with Zn(II) it is: ZnPut<ZnEn< ZnTn<ZnSpm<ZnSpd. This different behavior is due to the structures formed by the complexes. While the 5-membered ring formed by CuEn complex is more stable than the 6- and 7-membered ring complexes formed by CuTn and CuPut, respectively, in systems with Zn(II) the complex that forms the 6-membered ring (ZnTn) is more stable than 5-membered ring (ZnEn). The complex ZnPut is less stable than systems formed with other diamines, suggesting a monodentate coordination of this polyamine with Zn(II). The complexes formed by Cu(II) and Zn(II) with Spd and Spm also have a peculiar behavior. With Cu(II) the polyamines Spd and Spm form complexes by coordinating with three and four amino groups, respectively. With Zn(II) coordination should be through three amino groups in both complexes. Interactions between protonated polyamines and the two ligands are generally observed, except in the system Zn:ATP:Spd. This can be because of the conformation suffered by the molecule, hindering the interaction between the ligands. Interactions between the tridentate (Spd) and tetradentate (Spm) polyamines and PCr are observed in the ternary complexes for both ions, even when the PA's are not protonated. This interaction should be between the non-coordinated nitrogen atom from the PA and the non-coordinated oxygen atom from PCr. It was possible to clarify the coordination mode of Cu(II) with PCr in solution, which occurs through the guanidine and phosphate groups of PCr, both in the binary and ternary complexes. The ion Zn(II) also coordinates in the same way. The coordination mode of ATP with Zn(II) in the binary and ternary complexes probably takes place through the P_{β} and P_{γ} phosphates groups.

Keywords

Binary complexes; ternary complexes; Copper(II); Zinc(II); polyamines; phosphocreatine; ATP; modes of coordination; intermolecular interactions.

Sumário

1 Introdução	28
1.1 As Poliaminas	28
1.1.a Funções biológicas das poliaminas no sistema nervoso	
central	30
1.2 A fosfocreatina e o ATP	32
1.2.1 Funções biológicas da PCr e ATP no sistema nervoso	
central	34
1.3 Interações intermoleculares	36
1.4 Os íons metálicos estudados: Cu(II) e Zn(II)	37
2 Objetivo do trabalho	41
3 Sistemas a serem estudados	42
3.1 Íons metálicos a serem estudados	42
3.2 Ligantes metálicos a serem estudados	42
4 Procedimento experimental	43
4.1 Reagentes utilizados	43
4.2 Metodologia e equipamentos	44
4.2.1 Potenciometria	44
4.2.2 Espectrofotometria no Ultravioleta e visível	45
4.2.3 Ressonância paramagnética eletrônica (RPE)	46
4.2.4 Raman	47
4.2.5 Ressonância Magnética Nuclear (RMN)	48
5 Programas computacionais	50
5.1 Hyperquad	50
5.2 Hyss 2006	52
5.3 Gaussian	53

6 Resultados e discussão dos ligantes	56
6.1 Potenciometria dos Ligantes	56
6.1.1 Interação entre as Poliaminas e os ligantes PCr e ATP	58
7 Descrite des la dispusa Fig. des piete mass Cu/II). DOMDA	0.4
7 Resultados e discussão dos sistemas Cu(II):PCr:PA	64
7.1 Potenciometria	64
7.1.1 Sistemas binários – Cu(II):L	64
7.1.2 Sistemas ternários - Cu:PCr:PA	68
7.1.2.a Sistema Cu:PCr:en	69
7.1.2.b Sistema Cu:PCr:tn	71
7.1.2.c Sistema Cu:PCr:Put	73
7.1.2.d Sistema Cu:PCr:Spd	74
7.1.2.e Sistema Cu:PCr:Spm	76
7.1.3 Análise geral dos resultados de potenciometria para os	
sistemas Cu:PCr:PA	78
7.2 Espectrofotometria no Ultravioleta e visível	80
7.2.1 Sistemas binários	81
7.2.1.a Sistema Cu:Put	81
7.2.1.b Sistema Cu:Spm	82
7.2.2 Sistemas ternários	83
7.2.2.a Sistema Cu:PCr:en	83
7.2.2.b Sistema Cu:PCr:tn	84
7.2.2.c Sistema Cu:PCr:Put	85
7.2.2.d Sistema Cu:PCr:Spd	86
7.2.2.e Sistema Cu:PCr:Spm	87
7.2.3 Cálculo da absortividade molar aparente dos sistemas	
Cu:PCr:PA	88
7.3 Ressonância Paramagnética Eletrônica (RPE)	90
7.4 Raman	91
7.4.1 Raman dos ligantes puros	92
7.4.2 Raman dos sistemas binários e ternários	95
7.5 Cálculo do mínimo de energia de formação e Modelagem	
molecular	100

7.5.1 Sistema Cu:PCr	100
7.5.2 Sistema Cu:PCr:en	103
7.6 Discussão geral dos resultados dos sistemas binários e	
ternários Cu(II):PCr:PA	104
8 Resultados e discussão dos sistemas Zn(II):PCr:PA	107
8.1 Potenciometria	107
8.1.1 Sistemas binários – Zn(II):L	107
8.1.1.a Sistema Zn:PCr	108
8.1.1.b Sistema Zn:en	109
8.1.1.c Sistema Zn:tn	110
8.1.1.d Sistema Zn:Put	112
8.1.1.e Sistema Zn:Spd	113
8.1.1.f Sistema Zn:Spm	114
8.1.2 Sistemas ternários - Zn:PCr:PA	118
8.1.2.a Sistema Zn:PCr:en	118
8.1.2.b Sistema Zn:PCr:tn	120
8.1.2.c Sistema Zn:PCr:Put	122
8.1.2.d Sistema Zn:PCr:Spd	124
8.1.2.e Sistema Zn:PCr:Spm	126
8.1.3 Análise geral dos resultados de potenciometria para os	
sistemas Zn:PCr:PA	128
8.2 Raman	131
8.2.1 Raman dos sistemas binários e ternários	132
8.3 Cálculo do mínimo de energia de formação global e	
Modelagem molecular	138
8.3.1 Sistema Zn:PCr	139
8.3.2 Sistema Zn:Put	141
8.3.3 Sistema Zn:PCr:Put	142
8.4 RMN ¹ H	144
8.4.1 Sistemas binários	144
8.4.1.a Sistema Zn:PCr	144
8.4.1.b Sistema Zn:Put	145

8.4.2 Sistemas ternários	146
8.4.2.a Sistema Zn:PCr:en	146
8.4.2.b Sistema Zn:PCr:tn	147
8.4.2.c Sistema Zn:PCr:Put	148
8.4.2.d Sistema Zn:PCr:Spd	148
8.4.2.e Sistema Zn:PCr:Spm	149
8.5 Discussão geral dos resultados dos sistemas binários e	
ternários Zn(II):PCr:PA	151
9 Resultados e discussão dos sistemas Zn:ATP:PA	153
9.1 Potenciometria	153
9.1.1 Sistema binário – Zn(II):ATP	153
9.1.2 Sistemas ternários Zn:ATP:PA	154
9.1.2.a Sistema Zn:ATP:en	155
9.1.2.b Sistema Zn:ATP:tn	157
9.1.2.c Sistema Zn:ATP:Put	159
9.1.2.d Sistema Zn:ATP:Spd	160
9.1.2.e Sistema Zn:ATP:Spm	162
9.1.3 Análise geral dos resultados de potenciometria para os	
sistemas Zn:ATP:PA	164
9.2 Cálculo do mínimo de energia de formação global e	
Modelagem molecular	167
9.3 Estudo das interações de ZnATPPA através da geometria	
fornecida pelo programa Gaussian	168
9.4 Raman	174
9.4.1 Raman dos sistemas binários e ternários	174
9.4.2 Espectro vibracional Raman experimental e calculado	
DFT:B3LYP/6-311G para o complexo [Zn(ATP)(H ₂ O) ₂]	179
9.5 Discussão geral dos resultados dos sistemas binários e	
ternários Zn(II):ATP:PA	185
10 Conclusão	187

11 Referências bibliográficas e webográficas	190
Apêndice	197
A.1 Dados potenciométricos	197
A.2 Espectros Ultravioleta- Visível	214
A.3 Espectros Raman	218
A.4 Espectros RMN ¹ H	263

Lista de figuras

Figura 1 – Estrutura das poliaminas: (a) en, (b) tn, (c) Put, (d)	
Spd e (e) Spm	30
Figura 2 - Receptor NMDA e seus sítios de ligação	31
Figura 3 – Estrutura da PCr	33
Figura 4 – Estrutura do ATP	34
Figura 5 – Transferência do grupo fosfato da PCr para o ADP.	
Produção de ATP	34
Figura 6 – Estrutura do DNA	36
Figura 7 – Exemplos de possibilidades da união preferencial, da	
espermidina e da espermina, à seqüência do DNA	37
Figura 8 – Curvas de titulação potenciométricas da poliaminas	
(en,tn, Put, Spd, Spm) e PCr (com adição de 1 mL de HCl 0,1	
mol L ⁻¹) e ATP	56
Figura 9- Distribuição de espécies das interações entre os	
ligantes	60
Figura 10 – Curva de titulação potenciométrica (a) e validação	
(b) do sistema Cu:Put	65
Figura 11 – Curva de titulação potenciométrica (a) e validação	
(b) do sistema Cu:Spm	65
Figura 12 – Distribuição de espécie em função do pH para o	
sistema Cu:Put (1:1)	66
Figura 13 – Distribuição de espécie em função do pH para o	
sistema Cu:Spm (1:1)	67
Figura 14 – Curvas de Titulação potenciométrica dos sistemas	
ternários Cu:PCr:PA (PA= en, tn, Put, Spd, Spm) (1:1:1)	69
Figura 15 – Curvas de Titulação potenciométrica dos sistemas	
binários Cu:en (1:1) e Cu:PCr (1:1) e do sistema.ternário	
Cu:PCr:en (1:1:1)	69
Figura 16 - Curva de validação do sistema ternário Cu:PCr:en	
(1:1:1)	70

rigura 17 – Distribuição de especies do sistema ternano	
Cu:PCr:en (1:1:1)	70
Figura 18- Curvas de Titulação potenciométrica do sistemas	
binários Cu:tn e Cu:PCr e do sistema ternário Cu:PCr:tn (1:1:1)	71
Figura 19 - Curva de validação do sistema ternário Cu:PCr:tn	
(1:1:1)	72
Figura 20 – Distribuição de espécies do sistema ternário	
Cu:PCr:tn (1:1:1)	72
Figura 21- Curvas de Titulação potenciométrica dos sistemas	
binários Cu:Put e Cu:PCr e do sistema.ternário Cu:PCr:Put	
(1:1:1)	73
Figura 22 – Curva de validação do sistema ternário Cu:PCr:Put	
1:1:1	73
Figura 23 – Distribuição de espécies do sistema ternário	
Cu:PCr:Put 1:1:1	74
Figura 24 - Curvas de Titulação potenciométrica dos sistemas	
binários Cu:Spd e Cu:PCr e do sistema ternário Cu:PCr:Spd	
(1:1:1)	75
Figura 25 – Curva de validação do sistema ternário Cu:PCr:Spd	
(1:1:1)	75
Figura 26 – Distribuição de espécies do sistema ternário	
Cu:PCr:Spd (1:1:1)	76
Figura 27- Curvas de Titulação potenciométrica dos sistemas	
binários Cu:Spm e Cu:PCr e do sistema ternário Cu:PCr:Spm	
(1:1:1)	77
Figura 28- Curva de validação do sistema ternário Cu:PCr:Spm	
(1:1:1)	77
Figura 29 – Distribuição de espécies do sistema ternário	
Cu:PCr:Spm (1:1:1)	78
Figura 30- Espectros na região do visível em diferentes valores	
de pH do sistema Cu:Put	81
Figura 31- Espectros na região do visível em diferentes valores	
de pH do sistema Cu:Spm	82

rigura 32- Espectios na região do visivei em diferentes valores	
de pH do sistema Cu:PCr:en	83
Figura 33- Espectros na região do visível em diferentes valores	
de pH do sistema Cu:PCr:tn	84
Figura 34- Espectros na região do visível em diferentes valores	
de pH do sistema Cu:PCr:Put	85
Figura 35 - Espectros na região do visível em diferentes valores	
de pH do sistema Cu:PCr:Spd	86
Figura 36- Espectros na região do visível em diferentes valores	
de pH do sistema Cu:PCr:Spm	87
Figura 37 - Estrutura proposta para o complexo CuPCr	
(DFT:B3LYP/3-21G) - Ligante PCr bidentado coordenando-se	
pelo oxigênio do grupo fosfato e pelo nitrogênio do guanidino	101
Figura 38 - Estrutura proposta para o complexo CuPCrenH	
(DFT:B3LYP/6-311G) - Ligante PCr monodentado	
coordenando-se pelo oxigênio do fosfato e ligante en bidentado	
coordenando-se pelos dois grupamentos aminos existentes na	
molécula.	103
Figura 39 - Curvas de Titulação potenciométrica dos sistemas	
binários Zn:en, Zn:tn, Zn:Put, Zn:Spd, Zn:Spm e Zn:PCr (Zn:L	
1:1)	107
Figura 40 – Curva de validação do sistema binário Zn:PCr (1:1)	108
Figura 41 – Distribuição de espécies do sistema binário Zn:PCr	
(1:1)	108
Figura 42 – Curva de validação do sistema binário Zn:en (1:1)	109
Figura 43 - Distribuição de espécies do sistema binário Zn:en	
(1:1)	110
Figura 44 – Curva de validação do sistema binário Zn:tn (1:1)	111
Figura 45 - Distribuição de espécies do sistema binário Zn:tn	
(1:1)	111
Figura 46 – Curva de validação do sistema binário Zn:Put (1:1)	112
Figura 47 – Distribuição de espécies do sistema binário Zn:Put	
(1:1)	112

Figura 48 – Curva de validação do sistema binário Zn:Spd (1:1)	113
Figura 49 – Distribuição de espécies do sistema binário Zn:Spd	111
(1:1)	114
Figura 50 – Curva de validação do sistema binário Zn:Spm (1:1)	115
Figura 51 – Distribuição de espécies do sistema binário Zn:Spm	445
(1:1)	115
Figura 52 – Curvas de Titulação potenciométrica dos sistemas	440
ternários Zn:PCr:PA (PA= en, tn, Put, Spd, Spm) (1:1:1)	118
Figura 53 – Curvas de Titulação potenciométrica dos sistemas	
binários Zn:en e Zn:PCr e do sistema ternário Zn:PCr:en (1:1:1)	119
Figura 54 – Curva de validação do sistema ternário Zn:PCr:en	
(1:1:1)	119
Figura 55 – Distribuição de espécies do sistema ternário	
Zn:PCr:en (1:1:1)	120
Figura 56- Curvas de Titulação potenciométrica do sistemas	
binários Zn:tn e Zn:PCr e do sistema ternário Zn:PCr:tn (1:1:1)	121
Figura 57 - Curva de validação do sistema ternário Zn:PCr:tn	
(1:1:1)	121
Figura 58 - Distribuição de espécies do sistema ternário	
Zn:PCr:tn (1:1:1)	122
Figura 59- Curvas de Titulação potenciométrica dos sistemas	
binários Zn:Put e Zn:PCr e do sistema ternário Zn:PCr:Put	
(1:1:1)	123
Figura 60 – Curva de validação do sistema ternário Zn:PCr:Put	
(1:1:1)	123
Figura 61 – Distribuição de espécies do sistema ternário	
Zn:PCr:Put (1:1:1)	124
Figura 62 - Curvas de Titulação potenciométrica dos sistemas	
binários Zn:Spd e Zn:PCr e do sistema ternário Zn:PCr:Spd	
(1:1:1)	125
Figura 63- Curva de validação do sistema ternário Zn:PCr:Spd	
(1:1:1)	125
Figura 64 — Distribuição de espécies do sistema ternário	

Zn:PCr:Spd (1:1:1)	126
Figura 65- Curvas de Titulação potenciométrica dos sistemas	
binários Zn:Spm e Zn:PCr e do sistema.ternário Zn:PCr:Spm	
(1:1:1)	127
Figura 66- Curva de validação do sistema ternário Zn:PCr:Spm	
(1:1:1)	127
Figura 67 – Distribuição de espécies do sistema ternário	
Zn:PCr:Spm (1:1:1)	128
Figura 68 – Estrura proposta para a espécie ZnPCr(H ₂ O) ₂ , do	
sistema Zn:PCr (1:1) (base 6-311 + G *)	140
Figura 69 – Estrutura proposta para a espécie ZnPut, do	
sistema Zn:Put (1:1) (base 6-311 + G *)	142
Figura 70 – Estrutura proposta para a espécie ZnPCrPut, do	
sistema Zn:PCr:Put (1:1:1) (base 6-311+G)	143
Figura 71 – Estrura proposta para a espécie ZnPCrPutH,do	
sistema Zn:PCr:Put (1:1:1) (base 6-311 + G *)	144
Figura 72 -Curva de titulação potenciométrica (a) e validação	
(b) do sistema Zn:ATP (1:1)	153
Figura 73 – Distribuição de espécie em função do pH para o	
sistema Zn:ATP (1:1)	154
Figura 74 - Curvas de Titulação potenciométrica dos sistemas	
ternários Zn:ATP:PA (en, tn, Put, Spd, Spm) (1:1:1)	155
Figura 75 - Curvas de Titulação potenciométrica dos sistemas	
binários Zn:ATP e Zn:en e sistema ternário Zn:ATP:en (1:1:1)	155
Figura 76 – Curva de validação do Sistema ternário Zn:ATP:en	
(1:1:1)	156
Figura 77 – Distribuição de espécies do Sistema ternário	
Zn:ATP:en (1:1:1)	156
Figura 78- Curvas de Titulação potenciométrica do Sistemas	
binários Zntn e Zn:ATP e do Sistema ternário Zn:ATP:tn (1:1:1)	157
Figura 79 - Curva de validação do Sistema ternário Zn:ATP:tn	
(1:1:1)	158

Figura 80 – Distribuição de especies do Sistema ternario	
Zn:ATP:tn (1:1:1)	158
Figura 81- Curvas de Titulação potenciométrica dos Sistemas	
binários Zn:Put e Zn:ATP e do sistema.ternário Zn:ATP:Put	
(1:1:1)	159
Figura 82 – Curva de validação do Sistema ternário Zn:ATP:Put	
(1:1:1)	159
Figura 83 - Distribuição de espécies do Sistema ternário	
Zn:ATP:Put (1:1:1)	160
Figura 84 - Curvas de Titulação potenciométrica dos sistemas	
binários Zn:Spd e Zn:ATP e do sistema ternário Zn:ATP:Spd	
(1:1:1)	161
Figura 85 – Curva de validação do Sistema ternário	
Zn:ATP:Spd (1:1:1)	161
Figura 86 - Distribuição de espécies do Sistema ternário	
Zn:ATP:Spd (1:1:1)	162
Figura 87- Curvas de Titulação potenciométrica dos sistemas	
binários Zn:Spm e Zn:ATP e do sistema ternário Zn:ATP:Spm	
(1:1:1)	163
Figura 88– Curva de validação do Sistema ternário	
Zn:ATP:Spm (1:1:1)	163
Figura 89 - Distribuição de espécies do Sistema ternário	
Zn:ATP:Spm (1:1:1)	164
Figura 90 – Estrutura proposta para a espécie ZnATP, do	
sistema Zn:ATP (1:1) (base 6-311 G)	168
Figura 91 - Estudo das interações de ZnATPen através da	
geometria fornecida pelo programa Gaussian	169
Figura 92 - Estudo das interações de ZnATPenH através da	
geometria fornecida pelo programa Gaussian	169
Figura 93 - Estudo das interações de ZnATPtn através da	
geometria fornecida pelo programa Gaussian	170
Figura 94 - Estudo das interações de ZnATPtnH através da	
geometria fornecida pelo programa Gaussian	170

Figura 95 - Estudo das interações de ZnATPPut através da	
geometria fornecida pelo programa Gaussian	171
Figura 96 - Estudo das interações de ZnATPPutH através da	
geometria fornecida pelo programa Gaussian	172
Figura 97 - Estudo das interações de ZnATPSpd através da	
geometria fornecida pelo programa Gaussian	172
Figura 98 - Estudo das interações de ZnATPSpdH através da	
geometria fornecida pelo programa Gaussian	173
Figura 99 - Estudo das interações de ZnATPSpmH ₃ através da	
geometria fornecida pelo programa Gaussian	173

Lista de tabelas

Tabela 1 - Sistemas binários a serem estudados: Cu:PA /	
Cu:PCr / Zn:PA / Zn:PCr / Zn:ATP/ (1:1)	42
Tabela 2 - Sistemas ternários a serem estudados: Cu:PCr:PA /	
Zn:PCr:PA / Zn:ATP:PA/ (1:1:1)	42
Tabela 3 - Logaritmos das constantes de formação (log β) dos	
ligantes (en, tn, Spd, PCr e ATP)	57
Tabela 4 – Constantes das dissociações dos ligantes (pK)	57
Tabela 5 - Logaritmos das constantes de formação (log β) dos	
adutos moleculares entre as poliaminas e a PCr e ATP	59
Tabela 6-Comparação da intensidade das interações entre as	
poliaminas e os ligantes PCr e ATP (Log Ke)	63
Tabela 7 – Logaritmos das constantes de formação (log β) dos	
complexos binários Cu:L	66
Tabela 8 – Avaliação da estabilidade dos complexos de	
cobre(II) com os ligantes nos complexos binários	67
Tabela 9 - Logaritmos das constantes de formação (log β) das	
espécies para o sistema ternário Cu:PCr:en	69
Tabela 10 -Logaritmos das constantes de formação (log β) das	
espécies para o sistema ternário Cu:PCr:tn	71
Tabela 11 - Logaritmos das constantes de formação (log β)	
das espécies para o sistema ternário Cu:PCr:Put	73
Tabela 12 - Logaritmos das constantes de formação (log β)	
das espécies para o sistema ternário Cu:Spd:PCr	75
Tabela 13 -Logaritmos das constantes de formação (log β) das	
espécies para o sistema ternário Cu:PCr:Spm	77
Tabela 14 – Avaliação da estabilidade dos complexos ternários	
de cobre com os ligantes	79
Tabela 15– Dados das absortividades molares para Cu(II) livre	88

Tabela 16 -Dados dos espectros de UV Vis em diferentes	
valores de pH para os sistemas binários Cu:PCr e Cu:PA (1:1)	
e ternários Cu:PCr:PA (1:1:1) (T=25 °C, I=0,1 mol/L (KNO ₃)	
(PA= en, tn, Put, Spd and Spm))	89
Tabela 17 - Parâmetros isotrópicos de RPE, g_0 , λ_{max} e ϵ	
correspondente no espectro de UV Vis dos sistemas binários e	
ternários de cobre	90
Tabela 18- Comparação das principais absorções no Raman	
nos espectros de PCr nos pHs 7 e 9	93
Tabela 19 - Principais absorções no Raman nos espectros de	
en nos pHs 7 e 9	94
Tabela 20 - Principais absorções no Raman nos espectros de	
tn nos pHs 7 e 9	94
Tabela 21 - Principais absorções no Raman no espectro de	
Put nos pHs 7 e 9	94
Tabela 22 - Principais absorções no Raman nos espectros de	
Spd nos pHs 7 e 8,5	94
Tabela 23 - Principais absorções no Raman nos espectros de	
Spm, nos pHs 7 e 9	94
Tabela 24 - Principais absorções no Raman nos espectros de	
PCr e complexo Cu:PCr (1:1) no pH 7	96
Tabela 25 - Principais absorções no Raman nos espectros de	
en e complexo Cu:en (1:1) no pH 7	96
Tabela 26 - Principais absorções no Raman nos espectros de	
tn e complexo Cu:tn (1:1) no pH 7	97
Tabela 27 - Principais absorções no Raman nos espectros de	
Put e complexo Cu:Put (1:1) no pH 7	97
Tabela 28 - Principais absorções no Raman nos espectros de	
Spd e complexo Cu:Spd (1:1) no pH 8,5	97
Tabela 29 - Principais absorções no Raman nos espectros de	
Spm e complexo Cu:Spm (1:1) no pH 9	97
Tabela 30 - Principais absorções no Raman nos espectros de	
PCr, en e complexo Cu:PCr:en (1:1:1) no pH 9	98

Tabela 31 - Principais absorções no Raman nos espectros de	
PCr, tn e complexo Cu:PCr:tn (1:1:1) no pH 9	98
Tabela 32 - Principais absorções no Raman nos espectros de	
PCr, Put e complexo Cu:PCr:Put (1:1:1) no pH 7	99
Tabela 33 - Principais absorções no Raman nos espectros de	
PCr, Spd e complexo Cu:PCr:Spd (1:1:1) no pH 8,5	99
Tabela 34 - Principais absorções no Raman nos espectros de	
PCr, Spm e complexo Cu:PCr:Spm (1:1:1) no pH 9	100
Tabela 35 - E (RB + HF - LYP) em kJ.mol ⁻¹ para complexo	
CuPCr	102
Tabela 36 - E (RB + HF - LYP) em kJ.mol ⁻¹ para o complexo	
CuPCrenH	103
Tabela 37 – Logaritmos das constantes de formação (log β)	
das espécies para o sistema binário Zn:PCr	108
Tabela 38 – Logaritmos das constantes de formação (log β)	
das espécies para o sistema binário Zn:en	109
Tabela 39 – Logaritmos das constantes de formação (log β)	
das espécies para o sistema binário Zn:tn	110
Tabela 40 – Logaritmos das constantes de formação (log β)	
das espécies para o sistema binário Zn:Put	112
Tabela 41 – Logaritmos das constantes de formação (log β)	
das espécies para o sistema binário Zn:Spd	113
Tabela 42 – Logaritmos das constantes de formação (log β)	
das espécies para o sistema binário Zn:Spm	114
Tabela 43 – Logaritmos das constantes de formação (log β)	
das espécies para os sistemas binários Zn:L	116
Tabela 44 – Avaliação da estabilidade dos complexos de	
zinco(II) com os ligantes nos complexos binários	116
Tabela 45 – Logaritmo das constantes de formação (log β) das	
espécies para o sistema ternário Zn:PCr:en	119
Tabela 46 - Logaritmos das constantes de formação (log β)	
das espécies para o sistema ternário Zn:PCr:tn	121

Tabela 47 - Logaritmos das constantes de formação (log β)	
das espécies para o sistema ternário Zn:PCr:Put	123
Tabela 48 - Logaritmos das constantes de formação (log β)	
das espécies para o sistema ternário Zn:Spd:PCr	125
Tabela 49 - Logaritmos das constantes de formação (log β)	
das espécies para o sistema ternário Zn:PCr:Spm	127
Tabela 50 – Avaliação da estabilidade dos complexos ternários	
de zinco com os ligantes	129
Tabela 51 – Constantes da estabilidade (log β) dos complexos	
ternários de Cu(II) e Zn(II) nos complexos estudados CuPCrPA	
e ZnPCrPA	131
Tabela 52 - Principais absorções no Raman nos espectros de	
PCr e complexo Zn:PCr (1:1) no pH	134
Tabela 53 - Principais absorções no Raman nos espectros de	
en e complexo Zn:en (1:1) no pH 7	134
Tabela 54 - Principais absorções no Raman nos espectros de	
tn e complexo Zn:tn (1:1) no pH 8	134
Tabela 55 - Principais absorções no Raman nos espectros de	
Put e complexo Zn:Put (1:1) nos pHs 7 e 11	135
Tabela 56 - Principais absorções no Raman nos espectros de	
Spd e complexo Zn:Spd (1:1) no pH 9,5	135
Tabela 57 - Principais absorções no Raman nos espectros de	
Spm e complexo Zn:Spm (1:1) no pH 9	135
Tabela 58 - Principais absorções no Raman nos espectros de	
PCr, en e complexo Zn:PCr:en (1:1:1) no pH 8	136
Tabela 59 - Principais absorções no Raman nos espectros de	
PCr, tn e complexo Zn:PCr:tn (1:1:1) no pH 9	136
Tabela 60 - Principais absorções no Raman nos espectros de	
PCr, Put e complexo Zn:PCr:Put (1:1:1) no pH 7	137
Tabela 61 - Principais absorções no Raman nos espectros de	
PCr, Spd e complexo Zn:PCr:Spd (1:1:1) no pH 8,5	137
Tabela 62 - Principais absorções no Raman nos espectros de	
PCr, Spm e complexo Zn:PCr:Spm (1:1:1) no pH 9	138

Tabela 63 - E (RB + HF - LYP) em KJ.mol ⁻¹ para o complexo	
tetraédrico ZnPCr bidentado e tridentado	140
Tabela 64 - E (RB + HF - LYP) em KJ.mol ⁻¹ para a espécie do	
complexo tetraédrico ZnPut monodentado e bidentado	141
Tabela 65 - E (RB + HF - LYP) em kJ.mol ⁻¹ para o complexo	
tetraédrico ZnPutPCr monodentado e bidentado	143
Tabela 66- Deslocamentos químicos de RMN ¹ H da PCr e	
ZnPCr	145
Tabela 67 – Deslocamentos químicos de RMN ¹ H da Put e	
ZnPut	146
Tabela 68- Deslocamentos químicos de RMN ¹ H da PCr, en e	
ZnPCren	147
Tabela 69- Deslocamentos químicos de H ¹ RMN da PCr, tn e	
ZnPCrtn	147
Tabela 70 – Deslocamentos químicos de RMN ¹ H da PCr, Put	
e ZnCrPut	148
Tabela 71- Deslocamentos químicos de RMN ¹ H da PCr, Spd	
e ZnPCrSpd	149
Tabela 72- Deslocamentos químicos de RMN ¹ H da PCr, Spd	
e ZnPCrSpm	150
Tabela 73 - Logaritmo das constantes de formação (log $ \beta$) das	
espécies para o sistema binário Zn:ATP 1:1	154
Tabela 74 - Logaritmo das constantes de formação (log β) das	
espécies para o sistema ternário Zn:ATP:en	155
Tabela 75 - Logaritmo das constantes de formação (log β) das	
espécies para o sistema ternário Zn:ATP:tn	157
Tabela 76 - Logaritmo das constantes de formação (log β) das	
espécies para o sistema ternário Zn:ATP:Put	159
Tabela 77 - Logaritmo das constantes de formação (log β) das	
espécies para o sistema ternário Zn:ATP:Spd	161
Tabela 78 - Logaritmo das constantes de formação (log β) das	
espécies para o sistema ternário Zn:ATP:Spm	163

Tabela 79 – Avaliação da estabilidade dos complexos ternários	
de zinco com os ligantes	166
Tabela 80 –Constantes da estabilidade (log β) dos complexos	
ternários de Zn(II) nos complexos estudados ZnPCrPA e	
ZnATPPA	167
Tabela 81 - E (RB + HF - LYP) em kJ.mol ⁻¹ para o complexo	
tetraédrico ZnATP	168
Tabela 82 - Principais absorções no Raman nos espectros de	
ATP, e complexos Zn:ATP e Cu:ATP 1:1 no pH 7 e 6	176
Tabela 83 - Principais absorções no Raman nos espectros de	
ATP, en e complexos Zn:ATP:en no pH 8,1	176
Tabela 84- Principais absorções absorções no Raman nos	
espectros de ATP, tn e complexos Zn:ATP:tn no pH 9	177
Tabela 85 - Principais absorções no Raman nos espectros de	
ATP, Put e complexos Zn:ATP:Put no pH 9	177
Tabela 86 - Principais absorções no Raman nos espectros de	
ATP, Spd e complexos Zn:ATP:Spd no pH 8,1	178
Tabela 87 - Principais absorções no Raman nos espectros de	
ATP, Spm e complexos Zn:ATP:Spm no pH 8	178
Tabela 88– Comparação do espectro vibracional Raman	
experimental e calculado DFT:B3LYP/6-311G para o complexo	
[Zn(ATP)(H ₂ O) ₂] e espectro Raman experimental ATP	179

Lista de abreviaturas e símbolos

ε: absortividade molar

λ_{max}: comprimento de onda máximo

μ: força iônica

ADP: adenosina 5' difosfato

AMP: adenosina 5' monofosfato

ATP: adenosina 5' trifosfato

DA: doença de Alzheimer

DNA: ácido desoxirribonucléico

en: etilenodiamina

PA: poliamina

placas Aβ: placa β amilóide

PCr: fosfocreatina

Put: putrescina

RPE: ressonância paramagnética eletrônica

NMDA: N-Metil-D-aspartato

RMN: ressonância magnética nuclear

SNC: Sistema nervoso central

Spd: espermidina

Spm: espermina

tn: 1,3 diaminopropano

UV-Vis: ultravioleta visível

δ: deslocamento químico de RMN H¹ (em ppm)