

Sérgio Luiz Ruivace Cerqueira

Comparação de Projeto Baseado em Agentes e Orientação a Objetos na Plataforma GeoRisc

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio.

Orientador: Arndt von Staa

Sérgio Luiz Ruivace Cerqueira

Comparação de Projeto Baseado em Agentes e Orientação a Objetos na Plataforma GeoRisc

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Arndt von Staa Orientador Departamento de Informática - PUC-Rio

Prof. Alessandro Fabrício GarciaDepartamento de Informática - PUC-Rio

Prof. Carlos José Pereira de Lucena Departamento de Informática - PUC-Rio

> **Soeli Teresinha Fiorini** Pesquisadora – PUC-Rio

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 05 de Abril de 2011

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Sérgio Luiz Ruivace Cerqueira

Graduou-se em Bacharel em Sistemas de Informação pela Pontifícia Universidade Católica do Rio de Janeiro em 2008.

Ficha Catalográfica

Cerqueira, Sérgio Luiz Ruivace

Comparação de Projeto Baseado em Agentes e Orientação a Objetos na Plataforma GeoRisc / Sérgio Luiz Ruivace Cerqueira; orientador: Arndt von Staa - Rio de Janeiro: PUC. Departamento de Informática, 2011.

v., 108 f.: il.; 29,7 cm

1. Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática.

Incluí referências bibliográficas.

1. Informática – Teses. 2. Comparação de técnicas 3. Orientação a Objetos 4. Sistemas Multi-Agentes 5. Medição de Software. I. Staa, Arndt von. II. Pontifícia Universidade Católica do Rio de Janeiro. III. Departamento de Informática IV. Título.

CDD: 004

Agradecimentos

Durante o período em que cursei o mestrado eu passei por muitas provações da vida, problemas financeiros, familiares e psicológicos. Graças às pessoas a minha volta eu tive forças para superar todos os problemas que vinham ao meu encontro.

Agradeço a minha mãe pelo grande coração e generosidade, por partilhar comigo o pouco que tem. Ao meu pai por sempre estar disponível quando eu pedia socorro. A minha avó pelas orações.

Tenho muito a agradecer a PUC-Rio que me formou Bacharel em Sistemas de Informação e me deu a oportunidade de me tornar Mestre em Informática, e apenas exigiu que eu fosse um bom aluno.

Agradeço ao SPA da PUC-Rio que está me auxiliando a enfrentar meus problemas de ansiedade e depressão.

Agradeço aos professores Carlos J. P. de Lucena e Alessandro F. Garcia pelos bons conselhos.

Agradeço ao professor Ricardo Choren que me indicou o caminho correto no momento que eu estava mais perdido. Sem ele eu não teria continuado o mestrado.

Tenho muito a agradecer também ao meu orientador Professor Arndt von Staa que além de me apoiar e dar bons conselhos foi compreensivo e paciente.

Aos meus amigos da graduação na PUC, do Mestrado na PUC, e do Laboratório de Engenharia de Software que se tornou a minha segunda casa.

Agradeço a CAPES pelo apoio financeiro necessário à realização desse trabalho.

Agradeço a FAPERJ pelo apoio financeiro ao projeto GeoRisc que é de extrema importância para o Estado do Rio de Janeiro.

E finalmente agradeço a minha companheira Joana Paula Souza dos Santos que sempre esteve presente ao meu lado nos bons e nos maus momentos, na saúde e na doença, na pobreza e espero que futuramente na riqueza.

Resumo

Cerqueira, Sérgio Luiz Ruivace; Staa, Arndt von. Comparação de Projeto Baseado em Agentes e Orientação a Objetos na Plataforma GeoRisc. Rio de Janeiro, 2011. 108p. Dissertação de Mestrado - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Diversas tecnologias de implementação de software são discutidas na literatura. Duas dessas tecnologias são a orientação a objetos, que se encontra consolidada, e a orientação a agentes, que vem sendo objeto de muitos estudos e experimentos. Esses estudos indicam a orientação a agentes como muito promissora e como uma evolução da orientação a objetos. No entanto, há poucos trabalhos comparando essas duas técnicas e os poucos trabalhos se baseiam em comparações ideológicas e qualitativas. Essa dissertação tem por objetivo desenvolver e avaliar modos sistemáticos de avaliação de duas arquiteturas de implementação de sistemas. As duas tecnologias apresentadas foram comparadas e foi determinado se a utilização de uma tecnologia trouxe benefícios, desvantagens ou foi indiferente face à outra. A comparação foi realizada tomando por base um problema real, ou seja, foram criadas duas implementações que solucionam o problema de modo similar cada uma usando uma tecnologia. Para o desenvolvimento desse trabalho foi criado um plano de medição com base na técnica Goal Question Metric. O plano de medição foi aplicado às duas implementações e resultados obtidos foram avaliados definindo os benefícios de cada técnica. Por fim, foi feita uma crítica da utilização do modelo GQM em um projeto real.

Palayras-chave

Comparação de técnicas; Sistemas Orientados a Objetos; Sistemas Multi-Agentes; Medição de Software

Abstract

Cerqueira, Sérgio Luiz Ruivace; Staa, Arndt von (Advisor). **Comparison of agent and object oriented projects using the GeoRisc platform.** Rio de Janeiro, 2011. 108p. MSc. Dissertation - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

There are several software development technologies currently in the literature. Two such technologies are object orientation, which is consolidated, and agent orientation, which has been the subject of many studies and experiments. These studies indicate the agent orientation as very promising and an evolution of object orientation. However, there is only a few studies comparing these two techniques and these studies have been based on ideological and qualitative comparisons. This dissertation aims to develop and evaluate methods of systematic evaluation of two architectures for implementing systems. The two technologies presented were compared and determined whether the use of technology has brought benefits, disadvantages or was indifferent to the other. The comparison was performed based on taking a real problem; in other words, two implementations have been created that address the problem similarly each using a technology. To develop this work, it was created a measurement plan based on the technique Goal Question Metric. The measurement plan was applied to both implementations and results were evaluated by defining the benefits of each technique. Finally was done a discussion about the use of the GQM model in a real project.

Keywords

Comparing Techniques; Object-Oriented Systems; Multi-Agent Systems; Software Measurement

Sumário

1 Introdução	13
1.1. Contribuições	15
1.2. Esboço da solução	15
2 Fundamentos	17
2.1. Medição	17
2.2. A abordagem Objetivo Pergunta Métrica (GQM)	18
3 Trabalhos Relacionados	20
3.1. Agentes e objetos	20
3.2. Objetos e agentes comparados	22
3.3. Engenharia de SMA com Aspectos e Padrões	24
3.4. Agentes e Objetos: Um Estudo Empírico no Design e In	nplementação
de SMA	26
4 Plataforma GeoRisc	31
4.1. Domínio	31
4.2. Arquitetura	32
4.3. Modelos	34
4.3.1. Modelo de Precipitação	34
4.3.2. Modelo de Combinação Qualitativa	35
4.3.3. Modelo de Fator de Segurança	37
4.4. Ferramentas Adicionais	39
4.4.1. Comparação de Modelos	39
4.4.2. Especialista	40
4.5. Plataforma Orientada a Objetos	42
4.5.1. Arquitetura	43
4.6. Plataforma Orientada a Agentes	44
4.6.1. Arquitetura	44

5 Modelo de Medição das Plataformas	48
5.1. Métricas utilizadas	51
5.1.1. Número de Linhas de Código (LOC)	51
5.1.2. Número de operações (NOO)	52
5.1.3. Número de classes (NOC)	52
5.1.4. Tempo da tarefa (TT)	53
5.1.5. Acoplamento entre objetos (CBO)	53
5.1.6. Falta de coesão nos métodos (LCOM)	54
5.1.7. Número de atributos (NOA)	54
5.1.8. Peso dos métodos por classe (WMC)	54
5.1.9. Complexidade ciclomática (CC)	55
6 Execução das medições	57
6.1. Coleta dos dados	57
6.2. Objetivo Desenvolvimento	58
6.2.1. LOC	59
6.2.2. NOO	59
6.2.3. NOC	60
6.2.4. WMC	60
6.2.5. Análise dos resultados	61
6.2.6. Ameaças a validade	61
6.3. Objetivo Operação	62
6.3.1. TT	63
6.3.2. Análise dos resultados	66
6.3.3. Ameaças a validade	66
6.4. Objetivo Manutenção	67
6.4.1. CBO	67
6.4.2. LCOM	68
6.4.3. NOA	68
6.4.4. WMC	69
6.4.5. NOO	69
6.4.6. NOC	69
6.4.7 Cenários de manutenção do sistema	70

6.4.8. Análise dos resultados	72
6.4.9. Ameaças a validade	74
7 Discussão	75
8 Conclusão	78
9 Referências Bibliográficas	79
10 Apêndice I – Manual de Utilização da Plataforma GeoRisc	83
10.1. Requisitos	84
10.2. Instalação	84
10.3. Tela Inicial	84
10.4. Ferramentas da Plataforma	86
10.4.1. Barra de Ferramentas	86
10.4.2. Coluna de camadas	87
10.4.3. Barra de Status	88
10.5. Modelos	88
10.5.1. Modelo de Combinação Qualitativa	88
10.5.2. Modelo de Precipitação	92
10.5.3. Modelo Fator de Segurança	93
10.6. Funcionalidades	94
10.6.1. Especialista	94
10.6.2. Comparação de Modelos	94
10.6.3. Inventário	94
11 Apêndice II – Tabelas de Medições Completas	97
11.1. Implementação OO	97
11.2. Implementação OA	102

Lista de Figuras

Figura 1 - A composição de camadas (ARCGIS, 2009)	32
Figura 2 - Arquitetura da Plataforma	33
Figura 3 - Critério de precipitação	35
Figura 4 - Cálculo da combinação qualitativa	36
Figura 5 – Dados utilizados no cálculo do fator de segurança	37
Figura 6 – Individualização dos eventos de chuva	38
Figura 7 - Cálculo da razão de recarga	38
Figura 8 - Função de resposta durante a chuva	38
Figura 9 - Função de resposta após a chuva	38
Figura 10 - Fórmulas para calcular a carga hidráulica normalizada	39
Figura 11 - Cálculo da carga hidráulica total	39
Figura 12 - Condições geométricas iniciais do talude	39
Figura 13 - Influência da umidade do solo	39
Figura 14 - Funcionamento do especialista	40
Figura 15 - Ontologia do domínio do Especialista	41
Figura 16 - Arquitetura da plataforma OO	43
Figura 17 - Arquitetura da plataforma OA	45
Figura 18 - Arquitetura OO/SMA	46
Figura 19 - Medições dos projetos do sistema OO	57
Figura 20 - Medições dos projetos do sistema OA	57
Figura 21 - Tipo de comparações realizadas entre as métricas	58
Figura 22 - Visão geral da plataforma	84
Figura 23 - Modelos disponíveis	85
Figura 24 - Funcionalidades disponíveis	86
Figura 25 - Barra de ferramentas	86
Figura 26 - Coluna de camadas	87
Figura 28 - Planos de informação	89
Figura 29 - Plano de informação: Declividade	90
Figura 30 - Plano de informação: Uso e cobertura	91
Figura 31 - Menu, do plano de informação	91

Figura 32 - Combinação dos planos de informação	92
Figura 33 - Seleção de um tipo de camada no modelo de precipitação	93
Figura 34 - Dados gerais do inventário	95
Figura 35 - Referências geo-espaciais do inventário	95
Figura 36 - Característica do movimento no inventário	96
Figura 37 - Inventário cadastrado	96